Fabrication of Zwitterionized Nanocellulose/Polyvinyl Alcohol Composite Hydrogels Derived from Camellia Oleifera Shells for High-Performance Flexible Sensing
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Extraction of Nanocellulose
2.3. Chlorination Modification of Nanocellulose
2.4. ATRP Polymerization
2.5. Preparation of PVA Gels
2.6. Preparation of PSBMA/PVA Gels
2.7. Preparation of NC-PSBMA/PVA Gels
2.8. Instrumentation and Characterization
3. Results and Discussion
3.1. Micro-Morphological Analysis of Camellia Oleifera Shell Nanocellulose
3.2. Structural Characterization
3.3. Micro-Morphological Analysis of NC-PSBMA/PVA Hydrogels Surface
3.4. Mechanical Strength Characterization of Hydrogels
3.5. Characterization of Conductivity for Hydrogels
3.6. Sensing Performance Characterization of NC-PSBMA/PVA Hydrogel
3.7. ECG Signal Acquisition Testing for NC-PSBMA/PVA Hydrogels
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mo, F.; Lin, Y.; Liu, Y.; Zhou, P.; Yang, J.; Ji, Z.; Wang, Y. Advances in ionic conductive hydrogels for skin sensor applications. Mater. Sci. Eng. R Rep. 2025, 165, 100989. [Google Scholar]
- Wang, L.; Xu, T.; Zhang, X. Multifunctional conductive hydrogel-based flexible wearable sensors. TrAC Trends Anal. Chem. 2021, 134, 116130. [Google Scholar]
- Wu, H.; Qi, H.; Wang, X.; Qiu, Y.; Shi, K.; Zhang, H.; Zhang, Z.; Zhang, W.; Tian, Y. Stretchable, sensitive, flexible strain sensor incorporated with patterned liquid metal on hydrogel for human motion monitoring and human–machine interaction. J. Mater. Chem. C 2022, 10, 8206–8217. [Google Scholar]
- Chen, H.; Zhou, J.; Cao, H.; Liang, D.; Chen, L.; Yang, Y.; Wang, L.; Xie, J.; Duan, H.; Fu, Y. Thermo-Responsive and Phase-Separated Hydrogels for Cardiac Arrhythmia Diagnosis with Deep Learning Algorithms. Biosens. Bioelectron. 2025, 276, 117262. [Google Scholar]
- Agrawal, A.; Hussain, C.M. 3D-printed hydrogel for diverse applications: A review. Gels 2023, 9, 960. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J.; Zhang, Q.; Hu, N.; Jiang, Z.; Kan, Q.; Kang, G. Growth of double-network tough hydrogel coatings by surface-initiated polymerization. ACS Appl. Mater. Interfaces 2024, 16, 10822–10831. [Google Scholar]
- Zhang, M.; Xu, S.; Wang, R.; Che, Y.; Han, C.; Feng, W.; Wang, C.; Zhao, W. Electrospun nanofiber/hydrogel composite materials and their tissue engineering applications. J. Mater. Sci. Technol. 2023, 162, 157–178. [Google Scholar]
- Lyu, J.; Zhou, Q.; Wang, H.; Xiao, Q.; Qiang, Z.; Li, X.; Wen, J.; Ye, C.; Zhu, M. Mechanically strong, freeze-resistant, and ionically conductive organohydrogels for flexible strain sensors and batteries. Adv. Sci. 2023, 10, 2206591. [Google Scholar]
- Wang, T.; Xu, B.; Yu, T.; Yu, Y.; Fu, J.; Wang, Y.; Gao, X.; Xue, Z.; Li, R.; Chang, G. PVA/chitosan-based multifunctional hydrogels constructed through multi-bonding synergies and their application in flexible sensors. Carbohydr. Polym. 2025, 350, 123034. [Google Scholar]
- Li, M.; Pu, J.; Cao, Q.; Zhao, W.; Gao, Y.; Meng, T.; Chen, J.; Guan, C. Recent advances in hydrogel-based flexible strain sensors for harsh environment applications. Chem. Sci. 2024, 15, 17799–17822. [Google Scholar]
- Zhong, Y.; Lin, Q.; Yu, H.; Shao, L.; Cui, X.; Pang, Q.; Zhu, Y.; Hou, R. Construction methods and biomedical applications of PVA-based hydrogels. Front. Chem. 2024, 12, 1376799. [Google Scholar]
- Kumar, A.; Han, S.S. PVA-based hydrogels for tissue engineering: A review. Int. J. Polym. Mater. Polym. Biomater. 2017, 66, 159–182. [Google Scholar]
- Leif, K. Effective visco-elastic models of tough, doubly cross-linked, single-network polyvinyl alcohol (PVA) hydrogels. Contin. Mech. Thermodyn. 2021, 33, 2315–2329. [Google Scholar]
- Hu, Y.; Luo, J.; Luo, S.; Fei, T.; Song, M.; Qin, H. High-strength polyvinyl alcohol-based hydrogel by vermiculite and lignocellulosic nanofibrils for electronic sensing. e-Polymers 2023, 23, 20230081. [Google Scholar]
- Di, X.; Ma, Q.; Xu, Y.; Yang, M.; Wu, G.; Sun, P. High-performance ionic conductive poly (vinyl alcohol) hydrogels for flexible strain sensors based on a universal soaking strategy. Mater. Chem. Front. 2021, 5, 315–323. [Google Scholar]
- Bai, H.; Chen, D.; Zhu, H.; Zhang, S.; Wang, W.; Ma, P.; Dong, W. Photo-crosslinking ionic conductive PVA-SbQ/FeCl3 hydrogel sensors. Colloids Surf. A Physicochem. Eng. Asp. 2022, 648, 129205. [Google Scholar]
- Hu, D.; Liu, D.; Hu, Y.; Wang, Y.; Lu, Y.; Bai, C.; Hossain, K.R.; Jiang, P.; Wang, X. Dual-physical network PVA hydrogel commensurate with articular cartilage bearing lubrication enabled by harnessing nanoscale crystalline domains. Nano Res. 2024, 17, 9784–9795. [Google Scholar]
- Zhang, X.; Zhou, S.; Wang, Z.; Wei, X.; Zhang, S.; Jin, J. Facile preparation of hydrogel-coated surfaces with antifouling and salt resistance for efficient solar-driven water evaporation. ACS Appl. Mater. Interfaces 2023, 15, 50196–50205. [Google Scholar]
- Tsou, C.H.; Chen, S.; Li, X.; Chen, J.C.; De Guzman, M.R.; Sun, Y.L.; Zhang, Y. Highly resilient antibacterial composite polyvinyl alcohol hydrogels reinforced with CNT-NZnO by forming a network of hydrogen and coordination bonding. J. Polym. Res. 2022, 29, 412. [Google Scholar]
- Karimzadeh, Z.; Mahmoudpour, M.; Rahimpour, E.; Jouyban, A. Nanomaterial based PVA nanocomposite hydrogels for biomedical sensing: Advances toward designing the ideal flexible/wearable nanoprobes. Adv. Colloid Interface Sci. 2022, 305, 102705. [Google Scholar]
- Zhou, Y.; Chu, R.; Fan, L.; Meng, X.; Zhao, J.; Wu, G.; Sun, F. Study on the mechanism and performance of polymer gels by TE and PVA chemical cross-linking. J. Appl. Polym. Sci. 2022, 139, 52043. [Google Scholar]
- Gautam, L.; Warkar, S.G.; Ahmad, S.I.; Kant, R.; Jain, M. A review on carboxylic acid cross-linked polyvinyl alcohol: Properties and applications. Polym. Eng. Sci. 2022, 62, 225–246. [Google Scholar]
- Martínez-Ramírez, A.P.; Rincón-Ortiz, S.A.; Baldovino-Medrano, V.G.; Blanco-Tirado, C.; Combariza, M.Y. Influence of reaction variables on the surface chemistry of cellulose nanofibers derived from palm oil empty fruit bunches. RSC Adv. 2023, 13, 36117–36129. [Google Scholar] [PubMed]
- Wang, Q.; Feng, X.; Liu, X. Functionalization of nanocellulose using atom transfer radical polymerization and applications: A review. Cellulose 2023, 30, 8495–8537. [Google Scholar]
- Chan, N.; Cunningham, M.F.; Hutchinson, R.A. Reducing ATRP catalyst concentration in batch, semibatch and continuous reactors. Macromol. React. Eng. 2010, 4, 369–380. [Google Scholar]
- Abdelhaleem, A.F.; Abdel Goad, M.A.-H. Nanocellulose preparation, production modeling and characterization. J. Adv. Eng. Trends 2024, 43, 79–85. [Google Scholar]
- Wang, H.; Wu, J.; Huang, B.; Lu, Q.-L. One-pot synthesis of UPy-functionalized nanocellulose under mechanochemical synergy for high-performance epoxy nanocomposites. Polymers 2022, 14, 2428. [Google Scholar]
- Kumar, A.; Durand, H.; Zeno, E.; Balsollier, C.; Watbled, B.; Sillard, C.; Fort, S.; Baussanne, I.; Belgacem, N.; Lee, D. The surface chemistry of a nanocellulose drug carrier unravelled by MAS-DNP. Chem. Sci. 2020, 11, 3868–3877. [Google Scholar]
- James, A.; Rahman, M.R.; Mohamad Said, K.A.; Kanakaraju, D.; Sueraya, A.Z.; Kuok, K.K.; Bin Bakri, M.K.; Rahman, M.M. A review of nanocellulose modification and compatibility barrier for various applications. J. Thermoplast. Compos. Mater. 2024, 37, 2149–2199. [Google Scholar]
- Wang, H.; Wu, J.; Lian, Y.; Li, Y.; Huang, B.; Lu, Q. Zirconium phosphate assisted phosphoric acid Co-catalyzed hydrolysis of lignocellulose for enhanced extraction of nanocellulose. Polymers 2023, 15, 447. [Google Scholar] [CrossRef]
- Garrido-Miranda, K.A.; Pesenti, H.; Contreras, A.; Vergara-Figueroa, J.; Recio-Sánchez, G.; Chumpitaz, D.; Ponce, S.; Hernandez-Montelongo, J. Nanocellulose/Nanoporous Silicon Composite Films as a Drug Delivery System. Polymers 2024, 16, 2055. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S. Advancements in Nanocellulose Derived from Plant Waste: Strategies for Sustainable Innovations and Applications. J. Solid Waste Technol. Manag. 2024, 50, 543–563. [Google Scholar]
- Gou, J.; Liu, W.; Tang, A. A renewable and biodegradable nanocellulose-based gel polymer electrolyte for lithium-ion battery. J. Mater. Sci. 2020, 55, 10699–10711. [Google Scholar]
- Abushammala, H.; Mao, J. Novel electrically conductive cellulose nanocrystals with a core-shell nanostructure towards biodegradable electronics. Nanomaterials 2023, 13, 782. [Google Scholar] [CrossRef]
- Nielsen, J.B.; Kühl, J.T.; Pietersen, A.; Graff, C.; Lind, B.; Struijk, J.J.; Holst, A. G, P-wave duration and the risk of atrial fibrillation: Results from the Copenhagen ECG Study. Heart Rhythm 2015, 12, 1887–1895. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Peng, W.; Lei, Z.; Jian, J.; Cong, J.; Zhao, C.; Wu, Y.; Su, J.; Han, S. Fabrication of Zwitterionized Nanocellulose/Polyvinyl Alcohol Composite Hydrogels Derived from Camellia Oleifera Shells for High-Performance Flexible Sensing. Polymers 2025, 17, 1901. https://doi.org/10.3390/polym17141901
Li J, Peng W, Lei Z, Jian J, Cong J, Zhao C, Wu Y, Su J, Han S. Fabrication of Zwitterionized Nanocellulose/Polyvinyl Alcohol Composite Hydrogels Derived from Camellia Oleifera Shells for High-Performance Flexible Sensing. Polymers. 2025; 17(14):1901. https://doi.org/10.3390/polym17141901
Chicago/Turabian StyleLi, Jingnan, Weikang Peng, Zhendong Lei, Jialin Jian, Jie Cong, Chenyang Zhao, Yuming Wu, Jiaqi Su, and Shuaiyuan Han. 2025. "Fabrication of Zwitterionized Nanocellulose/Polyvinyl Alcohol Composite Hydrogels Derived from Camellia Oleifera Shells for High-Performance Flexible Sensing" Polymers 17, no. 14: 1901. https://doi.org/10.3390/polym17141901
APA StyleLi, J., Peng, W., Lei, Z., Jian, J., Cong, J., Zhao, C., Wu, Y., Su, J., & Han, S. (2025). Fabrication of Zwitterionized Nanocellulose/Polyvinyl Alcohol Composite Hydrogels Derived from Camellia Oleifera Shells for High-Performance Flexible Sensing. Polymers, 17(14), 1901. https://doi.org/10.3390/polym17141901