Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,097)

Search Parameters:
Keywords = anticancer compounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2432 KiB  
Article
Alkali Lignin-Based Biopolymer Formulations for Electro-Assisted Drug Delivery of Natural Antioxidants in Breast Cancer Cells—A Preliminary Study
by Severina Semkova, Radina Deneva, Georgi Antov, Donika Ivanova and Biliana Nikolova
Int. J. Mol. Sci. 2025, 26(15), 7481; https://doi.org/10.3390/ijms26157481 (registering DOI) - 2 Aug 2025
Abstract
Recently, a number of natural biologically active substances have been proven to be attractive alternatives to conventional anticancer medicine or as adjuvants in contemporary combination therapies. Although lignin-based materials were previously accepted as waste materials with limited usefulness, recent studies increasingly report the [...] Read more.
Recently, a number of natural biologically active substances have been proven to be attractive alternatives to conventional anticancer medicine or as adjuvants in contemporary combination therapies. Although lignin-based materials were previously accepted as waste materials with limited usefulness, recent studies increasingly report the possibility of their use for novel applications in various industrial branches, including biomedicine. In this regard, the safety, efficiency, advantages and limitations of lignin compounds for in vitro/in vivo applications remain poorly studied and described. This study was carried out to investigate the possibility of using newly synthesized, alkali lignin-based micro-/nano-biopolymer formulations (Lignin@Formulations/L@F) as carriers for substances with antioxidant and/or anticancer effectiveness. Moreover, we tried to assess the opportunity for using an electro-assisted approach for achieving improved intracellular internalization. An investigation was conducted on an in vitro panel of breast cell lines, namely two breast cancer lines with different metastatic potentials and one non-tumorigenic line as a control. The characterization of all tested formulations was performed via DLS (dynamic light scattering) analysis. We developed an improved separation procedure via size/charge unification for all types of Lignin@Formulations. Moreover, in vitro applications were investigated. The results demonstrate that compared to healthy breast cells, both tested cancer lines exhibited slight sensitivity after treatment with different formulations (empty or loaded with antioxidant substances). This effect was also enhanced after applying electric pulses. L@F loaded with Quercetin was also explored only on the highly metastatic cancer cell line as a model for the breast cancer type most aggressive and non-responsive to traditional treatments. All obtained data suggest that the tested formulations have potential as carriers for the electro-assisted delivery of natural antioxidants such as Quercetin. Full article
(This article belongs to the Special Issue Natural Products in Cancer Prevention and Treatment)
Show Figures

Figure 1

30 pages, 4011 KiB  
Article
Multitarget Design of Steroidal Inhibitors Against Hormone-Dependent Breast Cancer: An Integrated In Silico Approach
by Juan Rodríguez-Macías, Oscar Saurith-Coronell, Carlos Vargas-Echeverria, Daniel Insuasty Delgado, Edgar A. Márquez Brazón, Ricardo Gutiérrez De Aguas, José R. Mora, José L. Paz and Yovanni Marrero-Ponce
Int. J. Mol. Sci. 2025, 26(15), 7477; https://doi.org/10.3390/ijms26157477 (registering DOI) - 2 Aug 2025
Abstract
Hormone-dependent breast cancer, particularly in its treatment-resistant forms, remains a significant therapeutic challenge. In this study, we applied a fully computational strategy to design steroid-based compounds capable of simultaneously targeting three key receptors involved in disease progression: progesterone receptor (PR), estrogen receptor alpha [...] Read more.
Hormone-dependent breast cancer, particularly in its treatment-resistant forms, remains a significant therapeutic challenge. In this study, we applied a fully computational strategy to design steroid-based compounds capable of simultaneously targeting three key receptors involved in disease progression: progesterone receptor (PR), estrogen receptor alpha (ER-α), and HER2. Using a robust 3D-QSAR model (R2 = 0.86; Q2_LOO = 0.86) built from 52 steroidal structures, we identified molecular features associated with high anticancer potential, specifically increased polarizability and reduced electronegativity. From a virtual library of 271 DFT-optimized analogs, 31 compounds were selected based on predicted potency (pIC50 > 7.0) and screened via molecular docking against PR (PDB 2W8Y), HER2 (PDB 7JXH), and ER-α (PDB 6VJD). Seven candidates showed strong binding affinities (ΔG ≤ −9 kcal/mol for at least two targets), with Estero-255 emerging as the most promising. This compound demonstrated excellent conformational stability, a robust hydrogen-bonding network, and consistent multitarget engagement. Molecular dynamics simulations over 100 nanoseconds confirmed the structural integrity of the top ligands, with low RMSD values, compact radii of gyration, and stable binding energy profiles. Key interactions included hydrophobic contacts, π–π stacking, halogen–π interactions, and classical hydrogen bonds with conserved residues across all three targets. These findings highlight Estero-255, alongside Estero-261 and Estero-264, as strong multitarget candidates for further development. By potentially disrupting the PI3K/AKT/mTOR signaling pathway, these compounds offer a promising strategy for overcoming resistance in hormone-driven breast cancer. Experimental validation, including cytotoxicity assays and ADME/Tox profiling, is recommended to confirm their therapeutic potential. Full article
Show Figures

Graphical abstract

17 pages, 1872 KiB  
Article
Bioactive Chalcones from Aizoon africanum: Isolation and Cytotoxicity Against Liver and Neural Cancer Cells
by Ali O. E. Eltahir, Naeem Sheik Abdul, Taskeen F. Docrat, Paolo Bristow, Elias Chipofya, Robert C. Luckay, Monde A. Nyila, Jeanine L. Marnewick, Kadidiatou O. Ndjoubi and Ahmed A. Hussein
Plants 2025, 14(15), 2389; https://doi.org/10.3390/plants14152389 (registering DOI) - 2 Aug 2025
Abstract
Aizoon africanum (L.) Klak (Synonym Galenia africana L.) is traditionally used for a variety of medicinal purposes; however, it has been reported to cause liver damage and severe ascites, particularly in sheep and Angora goats in the arid regions of the Western Cape. [...] Read more.
Aizoon africanum (L.) Klak (Synonym Galenia africana L.) is traditionally used for a variety of medicinal purposes; however, it has been reported to cause liver damage and severe ascites, particularly in sheep and Angora goats in the arid regions of the Western Cape. This study explores its cytotoxic properties to identify potential cytotoxic compound(s) in the plant. The methanolic extract of A. africanum was re-investigated and subjected to various chromatographic techniques, including preparative HPLC, resulting in the isolation of eight compounds (18). Structural elucidation was primarily based on NMR data. Among the isolated compounds, four were flavanones, one was a flavonone, and three were chalcones. Notably, compound 8 was identified as a new chalcone, while compounds 2 and 3 were reported for the first time from this plant. The toxicity of these isolated compounds was evaluated against the HepG2 and SH-SY5Y cancer cell lines using the MTT assay. We further investigated markers of cell death using spectrophotometric and luminometric methods. Among the isolated compounds, 7 and 8 exhibited cytotoxic activities within the range of 3.0–20.0 µg/mL. Notably, the compounds demonstrated greater cytotoxicity towards liver-derived HepG2 cells compared to the neuronal SH-SY5Y cell line. Compound 7 (2′,4′-dihydroxychalcone) was identified as inducing apoptosis through the intrinsic pathway without causing overt necrosis. The findings indicate that the phytochemicals derived from A. africanum exhibit differential cytotoxic effects based on cell type, suggesting potential for developing novel anticancer agents, particularly compound 7. Additionally, the identification of compound 8 provides insight into the liver toxicity of this plant observed in sheep in South Africa. Full article
Show Figures

Figure 1

12 pages, 1435 KiB  
Article
Amino Acid Analysis and Cytotoxicity Study of Iraqi Ocimum basilicum Plant
by Omar Hussein Ahmed
Molecules 2025, 30(15), 3232; https://doi.org/10.3390/molecules30153232 (registering DOI) - 1 Aug 2025
Abstract
Background: This paper deals with the detection of amino acid composition of Iraqi Ocimum basilicum (basil) leaves and evaluation of the cytotoxic effects of the plant leaf extract on human colorectal cancer cells. Methods: Leaves of Ocimum basilicum were collected from Iraq in [...] Read more.
Background: This paper deals with the detection of amino acid composition of Iraqi Ocimum basilicum (basil) leaves and evaluation of the cytotoxic effects of the plant leaf extract on human colorectal cancer cells. Methods: Leaves of Ocimum basilicum were collected from Iraq in November 2024. After drying and powdering, the plant material went through cold methanol extraction. Initial phytochemical screening was conducted to identify the presence of alkaloids, flavonoids, coumarins, and terpenoids. Amino acid analysis was completed by an amino acid analyzer with fluorescence detection. The cytotoxic effect was evaluated via the MTT assay on HRT-18 cell lines. Morphological changes were further tested using dual Propidium Iodide/Acridine Orange assay fluorescent staining. Results: Seventeen amino acids were detected in the plant extract. The extract showed dose-dependent cytotoxic effects on HRT-18 cells, with significant reduction in cell viability at concentrations of more than 25 µg/mL. Morphological alterations of membrane blebbing and cell shrinkage were observed, suggesting apoptotic activity. The IC50 value confirmed strong cytotoxic potential. Conclusions: The extract of Ocimum basilicum leaf cultivated in Iraq shows a rich amino acid profile and significant cytotoxic activity against colorectal cancer cells that highlights its potential effect as a natural source of anticancer compounds. Full article
Show Figures

Figure 1

35 pages, 7970 KiB  
Article
Heteroaryl-Capped Hydroxamic Acid Derivatives with Varied Linkers: Synthesis and Anticancer Evaluation with Various Apoptosis Analyses in Breast Cancer Cells, Including Docking, Simulation, DFT, and ADMET Studies
by Ekta Shirbhate, Biplob Koch, Vaibhav Singh, Akanksha Dubey, Haya Khader Ahmad Yasin and Harish Rajak
Pharmaceuticals 2025, 18(8), 1148; https://doi.org/10.3390/ph18081148 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: Cancer suffers from unresolved therapeutic challenges owing to the lack of targeted therapies and heightened recurrence risk. This study aimed to investigate the new series of hydroxamate by structurally modifying the pharmacophore of vorinostat. Methods: The present work involves the synthesis [...] Read more.
Background/Objectives: Cancer suffers from unresolved therapeutic challenges owing to the lack of targeted therapies and heightened recurrence risk. This study aimed to investigate the new series of hydroxamate by structurally modifying the pharmacophore of vorinostat. Methods: The present work involves the synthesis of 15 differently substituted 2H-1,2,3-triazole-based hydroxamide analogs by employing triazole ring as a cap with varied linker fragments. The compounds were evaluated for their anticancer effect, especially their anti-breast cancer response. Molecular docking and molecular dynamics simulations were conducted to examine binding interactions. Results: Results indicated that among all synthesized hybrids, the molecule VI(i) inhibits the growth of MCF-7 and A-549 cells (GI50 < 10 μg/mL) in an antiproliferative assay. Compound VI(i) was also tested for cytotoxic activity by employing an MTT assay against A549, MCF-7, and MDA-MB-231 cell lines, and the findings indicate its potent anticancer response, especially against MCF-7 cells with IC50 of 60 µg/mL. However, it experiences minimal toxicity towards the normal cell line (HEK-293). Mechanistic studies revealed a dual-pathway activation: first, apoptosis (17.18% of early and 10.22% of late apoptotic cells by annexin V/PI analysis); second, cell cycle arrest at the S and G2/M phases. It also promotes ROS generation in a concentration-dependent manner. The HDAC–inhibitory assay, extended in silico molecular docking, and MD simulation experiments further validated its significant binding affinity towards HDAC 1 and 6 isoforms. DFT and ADMET screening further support the biological proclivity of the title compounds. The notable biological contribution of VI(i) highlights it as a potential candidate, especially against breast cancer cells. Full article
(This article belongs to the Section Medicinal Chemistry)
32 pages, 2108 KiB  
Review
Phytochemical Composition and Multifunctional Applications of Ricinus communis L.: Insights into Therapeutic, Pharmacological, and Industrial Potential
by Tokologo Prudence Ramothloa, Nqobile Monate Mkolo, Mmei Cheryl Motshudi, Mukhethwa Michael Mphephu, Mmamudi Anna Makhafola and Clarissa Marcelle Naidoo
Molecules 2025, 30(15), 3214; https://doi.org/10.3390/molecules30153214 (registering DOI) - 31 Jul 2025
Viewed by 28
Abstract
Ricinus communis (Euphorbiaceae), commonly known as the castor oil plant, is prized for its versatile applications in medicine, industry, and agriculture. It features large, deeply lobed leaves with vibrant colours, robust stems with anthocyanin pigments, and extensive root systems for nutrient absorption. Its [...] Read more.
Ricinus communis (Euphorbiaceae), commonly known as the castor oil plant, is prized for its versatile applications in medicine, industry, and agriculture. It features large, deeply lobed leaves with vibrant colours, robust stems with anthocyanin pigments, and extensive root systems for nutrient absorption. Its terminal panicle-like inflorescences bear monoecious flowers, and its seeds are enclosed in prickly capsules. Throughout its various parts, R. communis harbours a diverse array of bioactive compounds. Leaves contain tannins, which exhibit astringent and antimicrobial properties, and alkaloids like ricinine, known for anti-inflammatory properties, as well as flavonoids like rutin, offering antioxidant and antibacterial properties. Roots contain ellagitannins, lupeol, and indole-3-acetic acid, known for anti-inflammatory and liver-protective effects. Seeds are renowned for ricin, ricinine, and phenolic compounds crucial for industrial applications such as biodegradable polymers. Pharmacologically, it demonstrates antioxidant effects from flavonoids and tannins, confirmed through minimum inhibitory concentration (MIC) assays for antibacterial activity. It shows potential in managing diabetes via insulin signalling pathways and exhibits anti-inflammatory properties by activating nuclear factor erythroid 2-related factor 2 (Nrf2). Additionally, it has anti-fertility effects and potential anticancer activity against cancer stem cells. This review aims to summarize Ricinus communis’s botanical properties, therapeutic uses, chemical composition, pharmacological effects, and industrial applications. Integrating the current knowledge offers insights into future research directions, emphasizing the plant’s diverse roles in agriculture, medicine, and industry. Full article
Show Figures

Figure 1

20 pages, 2717 KiB  
Article
Unlocking the Potential of Gracilaria chilensis Against Prostate Cancer
by Verónica Torres-Estay, Lorena Azocar, Camila Schmidt, Macarena Aguilera-Olguín, Catalina Ramírez-Santelices, Emilia Flores-Faúndez, Paula Sotomayor, Nancy Solis, Daniel Cabrera, Loretto Contreras-Porcia, Francisca C. Bronfman and Alejandro S. Godoy
Plants 2025, 14(15), 2352; https://doi.org/10.3390/plants14152352 - 31 Jul 2025
Viewed by 158
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related death among men in most Western countries. Current therapies for PCa are limited, often ineffective, and associated with significant side effects. As a result, there is a growing interest in exploring new therapeutic [...] Read more.
Prostate cancer (PCa) is the second leading cause of cancer-related death among men in most Western countries. Current therapies for PCa are limited, often ineffective, and associated with significant side effects. As a result, there is a growing interest in exploring new therapeutic agents, particularly from the polyphyletic group of algae, which offers a promising source of compounds with anticancer properties. Our research group has focused on investigating the effects of a novel oleoresin from Gracilaria chilensis, known as Gracilex®, as a potential therapeutic agent against PCa using both in vitro and in vivo models. Our findings indicate that Gracilex® exhibits a time- and dose-dependent inhibitory effect on cell survival in LNCaP and PC-3 PCa, reducing viability by over 50% and inducing apoptosis, as evidenced by a significant increase in activated caspase-3 expression in both cell lines. Moreover, Gracilex® significantly reduces the proliferation rate of both LNCaP and PC-3 prostate cancer cell lines, as evidenced by a marked decrease in the growth curve slope (p = 0.0034 for LNCaP; p < 0.0001 for PC-3) and a 40–50% reduction in the proportion of Ki-67-positive PCa cells. In addition, Gracilex® significantly reduces in vitro cell migration and invasion in LNCaP and PC-3 cell lines. Lastly, Gracilex® inhibits tumor growth in an in vivo xenograft model, an effect that correlates with the reduced PCa cell proliferation observed in tumor tissue sections. Collectively, our data strongly support the broad antitumoral effects of Gracilex® on PCa cells in vitro and in vivo. These findings advance our understanding of its potential therapeutic role in PCa and highlight the relevance of further investigating algae-derived compounds for cancer treatment. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

25 pages, 7320 KiB  
Article
A Comprehensive Evaluation of a Chalcone Derivative: Structural, Spectroscopic, Computational, Electrochemical, and Pharmacological Perspectives
by Rekha K. Hebasur, Varsha V. Koppal, Deepak A. Yaraguppi, Neelamma B. Gummagol, Raviraj Kusanur and Ninganagouda R. Patil
Photochem 2025, 5(3), 20; https://doi.org/10.3390/photochem5030020 - 30 Jul 2025
Viewed by 124
Abstract
This study details how 3-(naphthalen-2-yl)-1-phenylprop-2-en-1-one (3NPEO) behaves in terms of photophysics when exposed to different solvents. The solvatochromic effect study reveals significant polarity shifts in the excited states of the 3NPEO compound, likely due to an intramolecular proton transfer mechanism. Measurements of dipole [...] Read more.
This study details how 3-(naphthalen-2-yl)-1-phenylprop-2-en-1-one (3NPEO) behaves in terms of photophysics when exposed to different solvents. The solvatochromic effect study reveals significant polarity shifts in the excited states of the 3NPEO compound, likely due to an intramolecular proton transfer mechanism. Measurements of dipole moments provide insight into their resonance structures in both ground and excited states. Electrochemical analysis revealed a reversible redox process, indicating a favorable charge transport potential. HOMO and LUMO energies of the compound were computed via oxidation and reduction potential standards. 3NPEO exhibits optimal one-photon and two-photon absorption characteristics, validating its suitability for visible wavelength laser applications in photonic devices. Furthermore, molecular docking and dynamics simulations demonstrated strong interactions between 3NPEO and the progesterone receptor enzyme, supported by structure–activity relationship (SAR) analyses. In vitro cytotoxicity assays on the MDAMB-231 breast cancer cell line showed moderate tumor cell inhibitory activity. Apoptosis studies confirmed the induction of both early and late apoptosis. These findings suggest that 3NPEO holds promise as a potential anticancer agent targeting the progesterone receptor in breast cancer cells. Overall, the findings highlight the substantial influence of solvent polarity on the photophysical properties and the design of more effective and stable therapeutic agents. Full article
Show Figures

Figure 1

55 pages, 6122 KiB  
Review
Isorhamnetin: Reviewing Recent Developments in Anticancer Mechanisms and Nanoformulation-Driven Delivery
by Juie Nahushkumar Rana, Kainat Gul and Sohail Mumtaz
Int. J. Mol. Sci. 2025, 26(15), 7381; https://doi.org/10.3390/ijms26157381 - 30 Jul 2025
Viewed by 116
Abstract
Natural compounds, particularly flavonoids, have emerged as promising anticancer agents due to their various biological activities and no or negligible toxicity towards healthy tissues. Among these, isorhamnetin, a methylated flavonoid, has gained significant attention for its potential to target multiple cancer hallmarks. This [...] Read more.
Natural compounds, particularly flavonoids, have emerged as promising anticancer agents due to their various biological activities and no or negligible toxicity towards healthy tissues. Among these, isorhamnetin, a methylated flavonoid, has gained significant attention for its potential to target multiple cancer hallmarks. This review comprehensively explores the mechanisms by which isorhamnetin exerts its anticancer effects, including cell cycle regulation, apoptosis, suppression of metastasis and angiogenesis, and modulation of oxidative stress and inflammation. Notably, isorhamnetin arrests cancer cell proliferation by regulating cyclins, and CDKs induce apoptosis via caspase activation and mitochondrial dysfunction. It inhibits metastatic progression by downregulating MMPs, VEGF, and epithelial–mesenchymal transition (EMT) markers. Furthermore, its antioxidant and anti-inflammatory properties mitigate reactive oxygen species (ROS) and pro-inflammatory cytokines, restricting cancer progression and modulating tumor microenvironments. Combining isorhamnetin with other treatments was also discussed to overcome multidrug resistance. Importantly, this review integrates the recent literature (2022–2024) and highlights isorhamnetin’s roles in modulating cancer-specific signaling pathways, immune evasion, tumor microenvironment dynamics, and combination therapies. We also discuss nanoformulation-based strategies that significantly enhance isorhamnetin’s delivery and bioavailability. This positions isorhamnetin as a promising adjunct in modern oncology, capable of improving therapeutic outcomes when used alone or in synergy with conventional treatments. The future perspectives and potential research directions were also summarized. By consolidating current knowledge and identifying critical research gaps, this review positions Isorhamnetin as a potent and versatile candidate in modern oncology, offering a pathway toward safer and more effective cancer treatment strategies. Full article
(This article belongs to the Special Issue The Role of Natural Compounds in Cancer and Inflammation, 2nd Edition)
Show Figures

Figure 1

28 pages, 2898 KiB  
Review
Chemical Composition and Biological Activities of Pelargonium sp.: A Review with In Silico Insights into Potential Anti-Inflammatory Mechanism
by Diana Celi, Karina Jimenes-Vargas, António Machado, José Miguel Álvarez-Suárez and Eduardo Tejera
Molecules 2025, 30(15), 3198; https://doi.org/10.3390/molecules30153198 (registering DOI) - 30 Jul 2025
Viewed by 125
Abstract
The Pelargonium genus, encompassing over 280 species, remains markedly underexplored despite extensive traditional use for respiratory, gastrointestinal, and dermatological disorders. This review of aqueous, alcoholic, and hydroalcoholic extracts reveals critical research gaps: only 10 species have undergone chemical characterization, while 17 have been [...] Read more.
The Pelargonium genus, encompassing over 280 species, remains markedly underexplored despite extensive traditional use for respiratory, gastrointestinal, and dermatological disorders. This review of aqueous, alcoholic, and hydroalcoholic extracts reveals critical research gaps: only 10 species have undergone chemical characterization, while 17 have been evaluated for biological activities. Phytochemical analysis identified 252 unique molecules across all studies, with flavonoids emerging as the predominant class (n = 108). Glycosylated derivatives demonstrated superior bioactivity profiles compared to non-glycosylated analogs. Phenolic acids (n = 43) and coumarins (n = 31) represented additional major classes. Experimental studies primarily documented antioxidant, antibacterial, and anti-inflammatory effects, with emerging evidence for antidiabetic, anticancer, and hepatoprotective activities. However, methodological heterogeneity across studies limits comparative analysis and comprehensive understanding. In silico target prediction analysis was performed on 197 high-confidence molecular structures. Glycosylated flavonols, anthocyanidins, flavones, and coumarins showed strong predicted interactions with key inflammatory targets (ALOX15, ALOX5, PTGER4, and NOS2) and metabolic regulators (GSK3A and PI4KB), providing mechanistic support for observed therapeutic effects and suggesting potential applications in chronic inflammatory and metabolic diseases. These findings underscore the substantial therapeutic potential of underexplored Pelargonium species and advocate for systematic research employing untargeted metabolomics, standardized bioassays, and compound-specific mechanistic validation to fully unlock the pharmacological potential of this diverse genus. Full article
Show Figures

Figure 1

35 pages, 2638 KiB  
Review
Genetic Divergence and Functional Significance of Bioactive Compounds in Rice and Barley: Implications for Biofortification and Human Health
by Essam ElShamey, Jiazhen Yang, Xiaomeng Yang, Md. Mahmudul Hasan, Tao Yang and Yawen Zeng
Int. J. Mol. Sci. 2025, 26(15), 7374; https://doi.org/10.3390/ijms26157374 (registering DOI) - 30 Jul 2025
Viewed by 88
Abstract
The functional components in cereals (rice and barley), such as gamma-aminobutyric acid (GABA), resistant starch (RS), and alkaloids, play crucial roles in human health, offering benefits such as improved cardiovascular function, enhanced gut microbiota, and potential anticancer properties. Rice (Oryza sativa) [...] Read more.
The functional components in cereals (rice and barley), such as gamma-aminobutyric acid (GABA), resistant starch (RS), and alkaloids, play crucial roles in human health, offering benefits such as improved cardiovascular function, enhanced gut microbiota, and potential anticancer properties. Rice (Oryza sativa) and barley (Hordeum vulgare) are key dietary staples with distinct genetic architectures influencing the biosynthesis and accumulation of these bioactive compounds. In this study, we explore the interaction and divergence of gene loci associated with GABA, RS, and alkaloid pathways in rice and barley, leveraging comparative genomics to identify conserved and species-specific regulatory mechanisms. We highlight key quantitative trait loci (QTLs) and candidate genes, such as GAD (glutamate decarboxylase) for GABA synthesis, SSIIa and GBSS for RS formation, and alkaloid biosynthesis genes including CYP80G2. Additionally, we discuss the health implications of these functional components, including their roles in reducing hypertension, managing diabetes, and exhibiting neuroprotective effects. Understanding the genetic differences between rice and barley in accumulating these compounds can guide biofortification strategies to enhance nutritional quality in cereal crops, ultimately benefiting human health and dietary outcomes. Full article
(This article belongs to the Special Issue Molecular Insight into Plant Bioactive Compounds)
Show Figures

Figure 1

19 pages, 4477 KiB  
Article
Agapanthussaponin A from the Underground Parts of Agapanthus africanus Induces Apoptosis and Ferroptosis in Human Small-Cell Lung Cancer Cells
by Tomoki Iguchi, Tamami Shimazaki and Yoshihiro Mimaki
Molecules 2025, 30(15), 3189; https://doi.org/10.3390/molecules30153189 - 30 Jul 2025
Viewed by 135
Abstract
To explore the potential seed compounds from natural products as anticancer agents against small-cell lung cancer (SCLC), the underground parts of Agapanthus africanus, a plant commonly used for ornamental purposes, were investigated. Three spirostan-type steroidal glycosides (13) were [...] Read more.
To explore the potential seed compounds from natural products as anticancer agents against small-cell lung cancer (SCLC), the underground parts of Agapanthus africanus, a plant commonly used for ornamental purposes, were investigated. Three spirostan-type steroidal glycosides (13) were isolated and identified by nuclear magnetic resonance spectral analysis. Compounds 13 exhibited cytotoxicity against SBC-3 human SCLC cells, with IC50 values of 0.56, 1.4, and 7.4 µM, respectively. Compound 1, also known an agapanthussaponin A, demonstrated the most potent cytotoxicity among the isolated compounds and was evaluated for its apoptosis- and ferroptosis-inducing activities. Compound 1 arrested the cell cycle of SBC-3 cells in the G2/M phase and induced apoptosis primarily via the mitochondrial pathway, characterized by caspases-3 and -9 activation, loss of mitochondrial membrane potential, and overproduction of reactive oxygen species. Additionally, 1 triggered ferroptosis via a dual mechanism consisting of enhanced cellular iron uptake through upregulation of transferrin and transferrin receptor 1 expression and impaired glutathione synthesis via downregulation of both xCT and glutathione peroxidase 4 expression. Compound 1 induces cell death via the apoptosis and ferroptosis pathways, suggesting its promise as a seed compound for the development of anticancer therapeutics against SCLC. Full article
Show Figures

Graphical abstract

18 pages, 1263 KiB  
Review
Fertility Protection in Female Cancer Patients: From Molecular Mechanisms of Gonadotoxic Therapies to Pharmacotherapeutic Possibilities
by Weronika Zajączkowska, Maria Buda, Witold Kędzia and Karina Kapczuk
Int. J. Mol. Sci. 2025, 26(15), 7314; https://doi.org/10.3390/ijms26157314 - 29 Jul 2025
Viewed by 271
Abstract
Chemotherapeutic agents and radiotherapy are highly effective in treating malignancies. However, they carry a significant risk of harming the gonads and may lead to endocrine dysfunction and reproductive issues. This review outlines the molecular mechanisms of gonadotoxic therapies, focusing on radiation, alkylating agents, [...] Read more.
Chemotherapeutic agents and radiotherapy are highly effective in treating malignancies. However, they carry a significant risk of harming the gonads and may lead to endocrine dysfunction and reproductive issues. This review outlines the molecular mechanisms of gonadotoxic therapies, focusing on radiation, alkylating agents, and platinum compounds. It discusses the loss of PMFs due to gonadotoxic exposure, including DNA double-strand breaks, oxidative stress, and dysregulated signaling pathways like PI3K/PTEN/Akt/mTOR and TAp63-mediated apoptosis. Furthermore, it explores strategies to mitigate gonadal damage, including GnRH agonists, AMH, imatinib, melatonin, sphingolipid metabolites, G-CSF, mTOR inhibitors, AS101, and LH. These therapies, paired with existing fertility preservation methods, could safeguard reproductive and hormonal functions and improve the quality of life for young cancer patients. Despite the progress made in recent years in understanding gonadotoxic mechanisms, gaps remain due to questionable reliance on mouse models and the lack of models replicating human ovarian dynamics. Long-term studies are vital for wider analyses and exploration of protective strategies based on various animal models and clinical trials. It is essential to verify that these substances do not hinder the anti-cancer effectiveness of treatments or cause lasting DNA changes in granulosa cells, raising the risk of miscarriages and infertility. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

25 pages, 14674 KiB  
Article
Eco-Friendly Silver Nanoparticles Synthesis Method Using Medicinal Plant Fungal Endophytes—Biological Activities and Molecular Docking Analyses
by Harish Chandra, Sagar Vishwakarma, Nilesh Makwana, Arun S. Kharat, Vijeta Chaudhry, Sumit Chand, Rajendra Prasad, Soban Prakash, Annapurna Katara, Archana Yadav, Manisha Nigam and Abhay Prakash Mishra
Biology 2025, 14(8), 950; https://doi.org/10.3390/biology14080950 - 28 Jul 2025
Viewed by 374
Abstract
The integration of nanotechnology and green synthesis strategies provides innovative solutions in biomedicine. This study focuses on the biofabrication of silver nanoparticles (AgNPs) using Corynespora smithii, an endophytic fungus isolated from Bergenia ciliata. The eco-friendly synthesis process employed fungal extracts as [...] Read more.
The integration of nanotechnology and green synthesis strategies provides innovative solutions in biomedicine. This study focuses on the biofabrication of silver nanoparticles (AgNPs) using Corynespora smithii, an endophytic fungus isolated from Bergenia ciliata. The eco-friendly synthesis process employed fungal extracts as reducing and stabilizing agents thereby minimizing the need for hazardous chemicals. The AgNPs demonstrated strong potent biological activities, showcasing significant antioxidant, antibacterial, and anticancer properties. The antibacterial efficacy was demonstrated against various Gram-positive and Gram-negative bacteria, while cytotoxicity on the A549 lung cancer cell line revealed an IC50 value of 10.46 µg/mL. A molecular docking analysis revealed interactions between the major bioactive compound, dimethylsulfoxonium formylmethylide, and the pathogenic proteins, Staphylococcus aureus and Salmonella typhi, displaying moderate binding affinities. Furthermore, the ADME analysis of dimethylsulfoxonium formylmethylide indicated favourable pharmacokinetic properties, including high gastrointestinal absorption, minimal lipophilicity, and low potential for drug–drug interactions, making it a promising candidate for oral drug formulations. These findings further support the compound’s suitability for biomedical applications. This research emphasizes the potential of C. smithii as a sustainable source for synthesizing bioactive nanoparticles, paving the way for their application in developing novel therapeutic agents. This study highlights the significance of harnessing endophytic fungi from medicinal plants for sustainable nanotechnology advancements. Full article
Show Figures

Graphical abstract

0 pages, 3605 KiB  
Article
Luminescent Properties and Cytotoxic Activity of 2-phenylbenzoxazole Fluorosulfate Derivatives
by Nadezhda V. Danilenko, Mariia O. Lutsuk, Alexey A. Ryadun, Dmitry I. Pavlov, Evgenii V. Plotnikov, Daria D. Eskova, Yulia D. Klimenko, Andrei S. Potapov and Andrei I. Khlebnikov
Int. J. Mol. Sci. 2025, 26(15), 7261; https://doi.org/10.3390/ijms26157261 - 27 Jul 2025
Viewed by 216
Abstract
The synthesis of 2-phenylbenzoxazole fluorosulfate derivatives was carried out using the SuFEx reaction. To study the anticancer properties of the obtained compounds, the cell lines PC-3 (obtained from prostate adenocarcinoma), BT-474, and MCF-7 (both obtained from breast carcinoma) were used. The cytotoxicity on [...] Read more.
The synthesis of 2-phenylbenzoxazole fluorosulfate derivatives was carried out using the SuFEx reaction. To study the anticancer properties of the obtained compounds, the cell lines PC-3 (obtained from prostate adenocarcinoma), BT-474, and MCF-7 (both obtained from breast carcinoma) were used. The cytotoxicity on murine 3T3L1 embryonic was also investigated. Among the tested compounds, the ortho-substituted fluorosulfate derivative (BOSo) exhibited significant cytotoxicity against MCF-7 cells. The biological findings are consistent with molecular docking results, which revealed a structural similarity between BOSo and known inhibitors of hER and HER2 receptors—tamoxifen and SYR127063. Therefore, BOSo shows promise as a potential therapeutic agent with antiproliferative properties. The photoluminescent characteristics of the fluorosulfate derivatives were examined in the solid state, in acetonitrile solution and in PBS, with the highest quantum yields reaching up to 64% for the para-fluorosulfate derivative in acetonitrile. Overall, these compounds demonstrate considerable potential for the development of new multifunctional molecular tools that combine biological activity with fluorescent properties. Full article
Show Figures

Figure 1

Back to TopTop