Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (744)

Search Parameters:
Keywords = amino acid salts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5032 KiB  
Article
Genome-Wide Analysis of the AT-Hook Gene Family in Malus sieversii and Functional Characterization of MsAHL13
by Da Zhang, Chao Zhao, Xin Liu, Han Wang, Bowei Zhu, Guodong Zhao, Dongmei Chen, Tongsheng Zhao, Haijiao Xu, Yingjie Wang, Chaohong Zhang and Xinsheng Zhang
Plants 2025, 14(17), 2625; https://doi.org/10.3390/plants14172625 (registering DOI) - 23 Aug 2025
Abstract
AT-hook motif nuclear-localized (AHL) proteins are pivotal in plant growth, development, and stress responses. Nevertheless, there is limited research on AHL proteins in Malus sieversii. Our study identified 25 AHL genes from the M. sieversii genome, named MsAHL1–MsAHL25. The encoded protein sequences [...] Read more.
AT-hook motif nuclear-localized (AHL) proteins are pivotal in plant growth, development, and stress responses. Nevertheless, there is limited research on AHL proteins in Malus sieversii. Our study identified 25 AHL genes from the M. sieversii genome, named MsAHL1–MsAHL25. The encoded protein sequences had lengths ranging from 195 to 554 amino acids, molecular weights from 19.17 to 58.53 kDa, and isoelectric points from 4.67 to 10.09. Chromosomal mapping revealed that these 25 genes were unevenly distributed across 10 chromosomes. Collinearity analysis of AHL genes in M. sieversii implied that gene loss might have occurred during its evolution. The phylogenetic tree classified the AHL proteins of M. sieversii into two subfamilies, showing a close relationship with multiple proteins of M. domestica. Promoter analysis indicated that the AHL genes in M. sieversii harbored numerous stress- and hormone-responsive elements, suggesting their potential role in various stress responses. qRT-PCR analysis of six representative MsAHLs under biotic and abiotic stresses demonstrated that the expression of MsAHL13, MsAHL15, and MsAHL17 was significantly upregulated under salt, drought, and cold stresses, while MsAHL01 expression was inhibited under low-temperature stress. All six MsAHLs were induced by the pathogen Valsa mali. Subcellular localization analysis of the specifically expressed protein MsAHL13 showed its nuclear location. Furthermore, luciferase and yeast two-hybrid assays confirmed the in vitro physical interaction between the MsAHL13 and MsMYB1 proteins. This research offers an important theoretical basis for further exploration of the functional mechanisms of this gene family in responding to environmental stresses. Full article
Show Figures

Figure 1

18 pages, 6274 KiB  
Article
iTRAQ-Based Phosphoproteomic Profiling Reveals Spermidine Enhanced SOS Signaling and Metabolic Reprogramming in Cucumber Seedlings Under Salt Stress
by Bin Li, Danyi Wang, Liru Ren, Bo Qiao, Lincao Wei and Lingjuan Han
Horticulturae 2025, 11(8), 973; https://doi.org/10.3390/horticulturae11080973 - 17 Aug 2025
Viewed by 275
Abstract
Soil salinity severely impairs plant growth, and polyamines such as spermidine (Spd) are known to bolster stress tolerance by acting as osmoprotectants and signaling molecules. Using TiO2 enrichment, iTRAQ quantification, and bioinformatics analysis, we identified 870 proteins and 157 differentially phosphorylated proteins. [...] Read more.
Soil salinity severely impairs plant growth, and polyamines such as spermidine (Spd) are known to bolster stress tolerance by acting as osmoprotectants and signaling molecules. Using TiO2 enrichment, iTRAQ quantification, and bioinformatics analysis, we identified 870 proteins and 157 differentially phosphorylated proteins. Functional annotation showed that salt stress activated key components of the Salt Overly Sensitive pathway, particularly serine threonine kinases (SOS2) and Ca2+ binding sensors (SOS3). Among thirty-six SOS-associated kinases detected, eight SOS2 isoforms, four MAPKs, and two SOS3 homologs were significantly upregulated by NaCl, and Spd further increased the phosphorylation of six SOS2 proteins and one SOS3 protein under salt stress, with no detectable effect on SOS1. qRT PCR revealed enhanced expression of MAPKs and calcium-dependent protein kinases, suggesting a phosphorylation-centered model in which Spd amplifies Ca2+-mediated SOS signaling and reinforces ion homeostasis through coordinated transcriptional priming and post-translational control. Additional, proteins involved in protein synthesis and turnover (ribosomal subunits, translation initiation factors, ubiquitin–proteasome components), DNA replication and transcription, and RNA processing showed differential expression under salt or Spd treatment. Central metabolic pathways were reprogrammed, involving glycolysis, the TCA cycle, the pentose phosphate pathway, as well as ammonium transporters and amino acid biosynthetic enzymes. These findings indicate that exogenous Spd regulated phosphorylation-mediated networks involving the SOS signaling pathway, protein homeostasis, and metabolism, thereby enhancing cucumber salt tolerance. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

21 pages, 3964 KiB  
Article
Screening for GmRCD1-Interacting Proteins in Glycine Max and Characterization of the GmRCD1-GmNAC058 Interaction
by Yupeng Li, Youda Bu, Yun Liu and Guobao Liu
Int. J. Mol. Sci. 2025, 26(16), 7760; https://doi.org/10.3390/ijms26167760 - 11 Aug 2025
Viewed by 189
Abstract
In response to abiotic stress, plants utilize hub protein-mediated signaling networks, with members of the SIMILAR TO RCD ONE (SRO) protein family playing a pivotal role in regulating stress resistance pathways. This study investigates the functional role of the soybean GmRCD1 protein and [...] Read more.
In response to abiotic stress, plants utilize hub protein-mediated signaling networks, with members of the SIMILAR TO RCD ONE (SRO) protein family playing a pivotal role in regulating stress resistance pathways. This study investigates the functional role of the soybean GmRCD1 protein and its interaction mechanisms to elucidate its molecular regulatory network in stress resistance responses. By employing yeast two-hybrid technology to screen a soybean cDNA library under high-salt stress conditions, 17 potential interacting proteins were identified, which include NAC transcription factors (e.g., GmNAC058), ubiquitin–proteasome proteins, and ribosomal proteins. Subsequent validation using GST pull-down and bimolecular fluorescence complementation assays confirmed the direct interaction between GmRCD1 and GmNAC058, which is mediated by the RST domain of GmRCD1 and the C-terminal disordered region (amino acids 288–323) of GmNAC058. Subcellular localization studies revealed that both proteins are nuclear-localized, aligning with their roles in transcriptional regulation. Furthermore, PAR binding assays demonstrated that both GmRCD1 and AtRCD1 can bind to PAR polymers; however, PARP activity analysis revealed that neither protein exhibits catalytic activity, indicating their participation in stress responses via non-enzymatic mechanisms. This study represents the first to elucidate the interaction network and structural basis between soybean GmRCD1 and GmNAC058, providing crucial theoretical support for understanding the multifunctional roles of plant hub proteins in stress resistance regulation and for molecular breeding in soybean. Full article
(This article belongs to the Special Issue Molecular Biology of Soybean)
Show Figures

Figure 1

15 pages, 4075 KiB  
Article
Biological Characteristics and Domestication of a Wild Hericium coralloides
by Ji-Ling Song, Ya Xin, Zu-Fa Zhou, Xue-Ping Kang, Yang Zhang, Wei-Dong Yuan and Bin Yu
Horticulturae 2025, 11(8), 917; https://doi.org/10.3390/horticulturae11080917 - 5 Aug 2025
Viewed by 305
Abstract
Hericium coralloides is a highly valued gourmet and medicinal species with growing market demand across East Asia, though industrial production remains limited by cultivation challenges. This study investigated the molecular characteristics, biological traits, domestication potential, and cultivation protocols of Hericium coralloides strains collected [...] Read more.
Hericium coralloides is a highly valued gourmet and medicinal species with growing market demand across East Asia, though industrial production remains limited by cultivation challenges. This study investigated the molecular characteristics, biological traits, domestication potential, and cultivation protocols of Hericium coralloides strains collected from the Changbaishan Nature Reserve (Jiling, China). Optimal conditions for mycelial growth included mannose as the preferred carbon source, peptone as the nitrogen source, 30 °C incubation temperature, pH 5.5, and magnesium sulfate as the essential inorganic salt. The fruiting bodies had a protein content of 2.43% g/100 g (fresh sample meter). Total amino acids comprised 53.3% of the total amino acid profile, while essential amino acids accounted for 114.11% relative to non-essential amino acids, indicating high nutritional value. Under optimized domestication conditions—70% hardwood chips, 20% cottonseed hulls, 8% bran, 1% malic acid, and 1% gypsum—bags reached full colonization in 28 days, with a 15-day maturation phase and initial fruiting occurring after 12–14 days. The interval between flushes was 10–12 days. The average yield reached 318.65 ± 31.74 g per bag, with a biological conversion rate of 63.73%. These findings demonstrate that Hericium coralloides possesses significant potential for edible and commercial applications. This study provides a robust theoretical foundation and resource reference for its artificial cultivation, supporting its broader industrial and economic utilization. Full article
(This article belongs to the Special Issue Advances in Propagation and Cultivation of Mushroom)
Show Figures

Figure 1

14 pages, 8505 KiB  
Article
Overexpression of Ent-Kaurene Synthase Genes Enhances Gibberellic Acid Biosynthesis and Improves Salt Tolerance in Anoectochilus roxburghii (Wall.) Lindl.
by Lin Yang, Fuai Sun, Shanyan Zhao, Hangying Zhang, Haoqiang Yu, Juncheng Zhang and Chunyan Yang
Genes 2025, 16(8), 914; https://doi.org/10.3390/genes16080914 - 30 Jul 2025
Viewed by 367
Abstract
Background: Anoectochilus roxburghii (Wall.) Lindl. (A. roxburghii) was widely used in traditional Chinese medicine and also as a health food in China. Gibberellins (GAs) are plant hormones that regulate various aspects of growth and development in A. roxburghii. Ent-kaurene [...] Read more.
Background: Anoectochilus roxburghii (Wall.) Lindl. (A. roxburghii) was widely used in traditional Chinese medicine and also as a health food in China. Gibberellins (GAs) are plant hormones that regulate various aspects of growth and development in A. roxburghii. Ent-kaurene synthase (KS) plays a crucial role in the biosynthesis of GAs in plants. However, there is limited functional analysis of KS in GA biosynthesis and its effect on salt tolerance, especially in A. roxburghii. Methods: The ArKS genes were cloned from A. roxburghii, and its salt tolerance characteristics were verified by prokaryotic expression. Under salt stress, analyze the regulation of KS gene on GA and active ingredient content by qRT-PCR and HPLC-MS/MS, and explore the mechanism of exogenous GAs promoting active ingredient enrichment by regulating the expression level of the KS under salt stress. Results: The ArKS protein was highly homologous to KSs with other plant species; subcellular localization of KS protein was lacking kytic vacuole. The transformants displayed a significant increase in salt tolerance under the stress conditions of 300 mM NaCl. And the expression of ArKS genes and the GAs accumulation was downregulated under the salt stress; among them, the contents of GA3, GA7, GA8, GA24, and GA34 showed a significant decrease. It was further found that there was an increase (1.36 times) in MDA content and a decrease (0.84 times) in relative chlorophyll content under the salt conditions from A. roxburghii. However, the content of active constituents was elevated from A. roxburghii under the NaCl stress, including polysaccharides, total flavonoids, and free amino acids, which increased by 1.14, 1.23, and 1.44 times, respectively. Interestingly, the ArKS gene expression and the chlorophyll content was increased, MDA content showed a decrease from 2.02 μmoL·g−1 to 1.74 μmoL·g−1 after exogenous addition of GAs, and the elevation of active constituents of polysaccharides, total flavonoids, and free amino acids were increased by 1.02, 1.09, and 1.05 times, implying that GAs depletion mitigated the damage caused by adversity to A. roxburghii. Conclusions: The ArKS gene cloned from A. roxburghii improved the salt tolerance of plants under salt stress by regulating GA content. Also, GAs not only alleviate salt tolerance but also play a key role in the synthesis of active components in A. roxburghii. The functions of KS genes and GAs were identified to provide ideas for improving the salt tolerance and quality of ingredients in artificial cultivation from A. roxburghii. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

21 pages, 3912 KiB  
Article
Screening and Phenotyping of Lactic Acid Bacteria in Boza
by Xudong Zhao, Longying Pei, Xinqi Wang, Mingming Luo, Sihan Hou, Xingqian Ye, Wei Liu and Yuting Zhou
Microorganisms 2025, 13(8), 1767; https://doi.org/10.3390/microorganisms13081767 - 29 Jul 2025
Viewed by 448
Abstract
The aim of this study was to isolate and identify lactic acid bacteria (LAB) from a traditional fermented beverage, Boza, and to conduct an in-depth study on their fermentation and probiotic properties. The fermentation (acid production rate, acid tolerance, salt tolerance, amino acid [...] Read more.
The aim of this study was to isolate and identify lactic acid bacteria (LAB) from a traditional fermented beverage, Boza, and to conduct an in-depth study on their fermentation and probiotic properties. The fermentation (acid production rate, acid tolerance, salt tolerance, amino acid decarboxylase activity) and probiotic properties (gastrointestinal tolerance, bile salt tolerance, hydrophobicity, self-aggregation, drug resistance, bacteriostatic properties) of the 16 isolated LAB were systematically analyzed by morphological, physiological, and biochemical tests and 16S rDNA molecular biology. This analysis utilized principal component analysis (PCA) to comprehensively evaluate the biological properties of the strains. The identified LAB included Limosilactobacillus fermentum (9 strains), Levilactobacillus brevis (2 strains), Lacticaseibacillus paracasei (2 strains), and Lactobacillus helveticus (3 strains). These strains showed strong environmental adaptation at different pH (3.5) and temperature (45 °C), with different gastrointestinal colonization, tolerance, and antioxidant properties. All the strains did not show hemolytic activity and were inhibitory to Staphylococcus aureus, and showed resistance to kanamycin, gentamicin, vancomycin, and streptomycin. Based on the integrated scoring of biological properties by principal component analysis, Limosilactobacillus fermentum S4 and S6 and Levilactobacillus brevis S5 had excellent fermentation properties and tolerance and could be used as potential functional microbial resources. Full article
(This article belongs to the Special Issue Microbial Fermentation in Food Processing)
Show Figures

Figure 1

24 pages, 5977 KiB  
Article
An Investigation into the Evolutionary Characteristics and Expression Patterns of the Basic Leucine Zipper Gene Family in the Endangered Species Phoebe bournei Under Abiotic Stress Through Bioinformatics
by Yizhuo Feng, Almas Bakari, Hengfeng Guan, Jingyan Wang, Linping Zhang, Menglan Xu, Michael Nyoni, Shijiang Cao and Zhenzhen Zhang
Plants 2025, 14(15), 2292; https://doi.org/10.3390/plants14152292 - 25 Jul 2025
Viewed by 391
Abstract
The bZIP gene family play a crucial role in plant growth, development, and stress responses, functioning as transcription factors. While this gene family has been studied in several plant species, its roles in the endangered woody plant Phoebe bournei remain largely unclear. This [...] Read more.
The bZIP gene family play a crucial role in plant growth, development, and stress responses, functioning as transcription factors. While this gene family has been studied in several plant species, its roles in the endangered woody plant Phoebe bournei remain largely unclear. This study comprehensively analyzed the PbbZIP gene family in P. bournei, identifying 71 PbbZIP genes distributed across all 12 chromosomes. The amino acid count in these genes ranged from 74 to 839, with molecular weights varying from 8813.28 Da to 88,864.94 Da. Phylogenetic analysis categorized the PbbZIP genes into 12 subfamilies (A-K, S). Interspecific collinearity analysis revealed homologous PbbZIP genes between P. bournei and Arabidopsis thaliana. A promoter cis-acting element analysis indicated that PbbZIP genes contain various elements responsive to plant hormones, stress signals, and light. Additionally, expression analysis of public RNA-seq data showed that PbbZIP genes are distributed across multiple tissues, exhibiting distinct expression patterns specific to root bark, root xylem, stem bark, stem xylem, and leaves. We also performed qRT-PCR analysis on five representative PbbZIP genes (PbbZIP14, PbbZIP26, PbbZIP32, PbbZIP67, and PbbZIP69). The results demonstrated significant differences in the expression of PbbZIP genes under various abiotic stress conditions, including salt stress, heat, and drought. Notably, PbbZIP67 and PbbZIP69 exhibited robust responses under salt or heat stress conditions. This study confirmed the roles of the PbbZIP gene family in responding to various abiotic stresses, thereby providing insights into its functions in plant growth, development, and stress adaptation. The findings lay a foundation for future research on breeding and enhancing stress resistance in P. bournei. Full article
(This article belongs to the Special Issue Advances in Forest Tree Genetics and Breeding)
Show Figures

Figure 1

24 pages, 4780 KiB  
Article
Bioinformatics and Functional Validation of CqPRX9L1 in Chenopodium quinoa
by Hongxia Guo, Linzhuan Song, Yufa Wang, Li Zhao and Chuangyun Wang
Plants 2025, 14(14), 2246; https://doi.org/10.3390/plants14142246 - 21 Jul 2025
Viewed by 447
Abstract
As a plant-specific peroxidase family, class III peroxidase (PRX) plays an important role in plant growth, development, and stress response. In this study, a preliminary functional analysis of CqPRX9L1 was conducted. Bioinformatics analysis revealed that CqPRX9L1 encodes a 349-amino acid protein belonging to [...] Read more.
As a plant-specific peroxidase family, class III peroxidase (PRX) plays an important role in plant growth, development, and stress response. In this study, a preliminary functional analysis of CqPRX9L1 was conducted. Bioinformatics analysis revealed that CqPRX9L1 encodes a 349-amino acid protein belonging to the plant-peroxidase-like superfamily, featuring a transmembrane domain and cytoplasmic localization. The promoter region of CqPRX9L1 harbors various cis-acting elements associated with stress responses, hormone signaling, light regulation, and meristem-specific expression. The tissue-specific expression pattern of the CqPRX9L1 gene and its characteristics in response to different stresses were explored using subcellular localization, quantitative real-time PCR (qRT-PCR), and heterologous transformation into Arabidopsis thaliana. The results showed that CqPRX9L1, with a transmembrane structure, was localized in the cytoplasm, which encodes 349 amino acids and belongs to the plant-peroxisome-like superfamily. The promoter region contains stress-response elements, hormone-response elements, light-response elements, and meristem expression-related elements. The expression of CqPRX9L1 was relatively higher in ears and roots at the panicle stage than in stems and leaves. CqPRX9L1 showed a dynamic expression pattern of first decreasing and then increasing under abiotic stresses such as 15% PEG 6000, low temperature, and salt damage, with differences in response time and degree. CqPRX9L1 plays an important role in response to abiotic stress by affecting the activity of antioxidant enzymes such as superoxide dismutase (SOD) and peroxidase (POD), as well as the synthesis and decomposition of proline (Pro). CqPRX9L1 also affects plant bolting and flowering by regulating key flowering genes (such as FT and AP1) and gibberellin (GA)-related pathways. The results establish a foundation for revealing the functions and molecular mechanisms of the CqPRX9L1 gene. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

18 pages, 1657 KiB  
Review
Alkaline Amino Acids for Salt Reduction in Surimi: A Review
by Tong Shi, Guxia Wang, Yu Xie, Wengang Jin, Xin Wang, Mengzhe Li, Yuanxiu Liu and Li Yuan
Foods 2025, 14(14), 2545; https://doi.org/10.3390/foods14142545 - 21 Jul 2025
Viewed by 479
Abstract
Surimi products are popular due to their high protein and low fat content. However, traditional processing methods rely on high concentrations of salt (2–3%) to maintain texture and stability, contributing to excessive sodium intake. As global health trends advance, developing green and low-salt [...] Read more.
Surimi products are popular due to their high protein and low fat content. However, traditional processing methods rely on high concentrations of salt (2–3%) to maintain texture and stability, contributing to excessive sodium intake. As global health trends advance, developing green and low-salt technologies while maintaining product quality has become a research focus. Alkaline amino acids regulate protein conformation and intermolecular interactions through charge shielding, hydrogen bond topology, metal chelation, and hydration to compensate for the defects of solubility, gelation, and emulsification stability in the low-salt system. This article systematically reviews the mechanisms and applications of alkaline amino acids in reducing salt and maintaining quality in surimi. Research indicates that alkaline amino acids regulate the conformational changes of myofibrillar proteins through electrostatic shielding, hydrogen bond topology construction, and metal chelation, significantly improving gel strength, water retention, and emulsion stability in low-salt systems, with the results comparable to those in high-salt systems. Future research should optimize addition strategies using computational simulations technologies and establish a quality and safety evaluation system to promote industrial application. This review provides a theoretical basis for the green processing and functional enhancement of surimi products, which could have significant academic and industrial value. Full article
(This article belongs to the Special Issue Innovative Technology of Aquatic Product Processing)
Show Figures

Figure 1

23 pages, 12625 KiB  
Article
Genome-Wide Identification and Expression Analysis of Auxin-Responsive GH3 Gene Family in Pepper (Capsicum annuum L.)
by Qiao-Lu Zang, Meng Wang, Lu Liu, Xiao-Mei Zheng and Yan Cheng
Plants 2025, 14(14), 2231; https://doi.org/10.3390/plants14142231 - 18 Jul 2025
Viewed by 522
Abstract
As an auxin-responsive gene, Gretchen Hagen 3 (GH3) maintains hormonal homeostasis by conjugating excess auxin with amino acids in plant stress-related signaling pathways. GH3 genes have been characterized in many plant species, but the characteristics of pepper (Capsicum annuum L.) [...] Read more.
As an auxin-responsive gene, Gretchen Hagen 3 (GH3) maintains hormonal homeostasis by conjugating excess auxin with amino acids in plant stress-related signaling pathways. GH3 genes have been characterized in many plant species, but the characteristics of pepper (Capsicum annuum L.) GH3 (CaGH3) gene family members in response to multiple stimulants are largely unknown. In this study, we systematically identified the CaGH3 gene family at the genome level and identified eight members on four chromosomes in pepper. CaGH3s were divided into two groups (I and III) and shared conserved motifs, domains, and gene structures. Moreover, CaGH3s had close evolutionary relationships with tomato (Solanum lycopersicum L.), and the promoters of most CaGH3 genes contained hormone and abiotic stress response elements. A protein interaction prediction analysis demonstrated that the CaGH3-3/3-6/3-7/3-8 proteins were possibly core members of the CaGH3 family interaction. In addition, qRT-PCR results showed that CaGH3 genes were differentially expressed in pepper tissues and could be induced by phytohormones (IAA, ABA, and MeJA) and abiotic stresses (salt, low temperature, and drought) with different patterns. In addition, CaGH3-5 and CaGH3-7 were cloned, and the sequences showed a high degree of conservation. Moreover, the results of subcellular localization indicated that they were located in the membrane and chloroplast. Notably, after overexpressing CaGH3-7 in tomato, RNA-seq was performed on wild-type and transgenic lines, and the differentially expressed genes were mainly enriched in response to external stimuli. This study not only lays the foundation for a comprehensive understanding of the function of the CaGH3 gene family during plant growth and stress responses but also provides potential genetic resources for pepper resistance breeding. Full article
Show Figures

Figure 1

25 pages, 4595 KiB  
Article
Probiotic Potentials and Protective Effects of Ligilactobacillus animalis LA-1 Against High-Fat Diet-Induced Obesity in Mice
by Qingya Wang, Yuyin Huang, Kun Meng, Haiou Zhang, Yunsheng Han, Rui Zhang, Xiling Han, Guohua Liu, Hongying Cai and Peilong Yang
Nutrients 2025, 17(14), 2346; https://doi.org/10.3390/nu17142346 - 17 Jul 2025
Cited by 1 | Viewed by 726
Abstract
Background/Objectives: Obesity is increasingly recognized as a global health concern due to its association with metabolic disorders and gut microbiota dysbiosis. While probiotics offer promise in regulating gut microbiota and improving host metabolism, strain-specific effects remain underexplored, particularly for canine-derived probiotics. This [...] Read more.
Background/Objectives: Obesity is increasingly recognized as a global health concern due to its association with metabolic disorders and gut microbiota dysbiosis. While probiotics offer promise in regulating gut microbiota and improving host metabolism, strain-specific effects remain underexplored, particularly for canine-derived probiotics. This study aimed to isolate and characterize a novel probiotic strain, Ligilactobacillus animalis LA-1, and evaluate its anti-obesity effects and underlying mechanisms using a high-fat diet (HFD)-induced obese mouse model. Methods: LA-1 was isolated from the feces of a healthy dog and assessed for probiotic potential in vitro, including gastrointestinal tolerance, bile salt hydrolase activity, cholesterol-lowering capacity, and fatty acid absorption. Male C57BL/6J mice were fed either a standard chow diet or an HFD for 16 weeks, with HFD mice receiving oral LA-1 supplementation (2 × 109 CFU/day). Multi-omics analyses, including 16S rRNA gene sequencing, short-chain fatty acid (SCFA) quantification, and untargeted liver metabolomics, were employed to investigate the effects of LA-1 on gut microbiota composition, metabolic pathways, and obesity-related phenotypes. Results: LA-1 supplementation significantly alleviated HFD-induced weight gain, hepatic lipid accumulation, and adipose tissue hypertrophy, without affecting food intake. It improved serum lipid profiles, reduced liver injury markers, and partially restored gut microbiota composition, decreasing the Firmicutes/Bacteroidetes ratio and enriching SCFA-producing genera. Total SCFA levels, particularly acetate, propionate, and butyrate, increased following LA-1 treatment. Liver metabolomics revealed that LA-1 modulated pathways involved in lipid and amino acid metabolism, resulting in decreased levels of acetyl-CoA, triglycerides, and bile acids. Conclusions: L. animalis LA-1 exerts anti-obesity effects via gut microbiota modulation, enhanced SCFA production, and hepatic metabolic reprogramming. These findings highlight its potential as a targeted probiotic intervention for obesity and metabolic disorders. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

18 pages, 1381 KiB  
Article
Enhancing the Quality of Traditional Indonesian Shrimp Paste (Terasi) Through Tetragenococcus halophilus 54M106-3 Inoculation: Physicochemical, Sensory, and Bioactivity Insights
by Muhammad Alfid Kurnianto, Safrina Isnaini Adirama, Wenxi Xu, Sri Winarti and Dina Mustika Rini
Foods 2025, 14(14), 2419; https://doi.org/10.3390/foods14142419 - 9 Jul 2025
Viewed by 433
Abstract
Terasi is a traditional Indonesian fermented condiment made from rebon shrimp and salt. This study investigated the effects of Tetragenococcus halophilus inoculation and varying salt concentrations (6%, 12%, and 18%) on the physicochemical and sensory properties of terasi, compared to a non-inoculated [...] Read more.
Terasi is a traditional Indonesian fermented condiment made from rebon shrimp and salt. This study investigated the effects of Tetragenococcus halophilus inoculation and varying salt concentrations (6%, 12%, and 18%) on the physicochemical and sensory properties of terasi, compared to a non-inoculated control (25% salt), after 7, 14, and 21 days of fermentation. Inoculation decreased pH, soluble protein, and texture while increasing N-amino acid content, moisture, lactic acid bacteria (LAB), and color darkening. Higher salt levels raised pH, soluble protein, and texture but reduced N-amino acids, moisture, and LAB, resulting in a lighter color. LAB activity peaked on day 7, with moisture and texture increasing over time. Sensory analysis favored inoculated samples, and TOPSIS identified terasi with T. halophilus, 6% salt, and 7 days of fermentation as optimal in quality and preference. This formulation also demonstrated strong bioactivity, including antioxidant activity (3.90 mg AEAC/g sample by DPPH assay and 8.76 ± 0.22 mg AEAC/g sample by FRAP assay), antidiabetic potential via α-amylase and α-glucosidase inhibition (IC50 of 1.95 and 7.24 mg/mL), and antimicrobial effects against E. coli (32.78 mm) and S. aureus (30.85 mm). These results suggest that T. halophilus-inoculated terasi offers enhanced quality and functional properties, supporting its potential as a health-promoting fermented food product. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

19 pages, 8079 KiB  
Article
Identification and Expression Pattern Analysis of AsSWEET Gene Family in Achnatherum splendens
by Ming Hu, Wei Kou, Mingsu Chen, Xiaoying Li, Jingru Wang, Jiahuan Niu, Fei Wang, Hongbin Li and Rong Li
Int. J. Mol. Sci. 2025, 26(13), 6438; https://doi.org/10.3390/ijms26136438 - 4 Jul 2025
Viewed by 317
Abstract
Sugars Will Eventually Be Exported Transporters (SWEETs) are involved in plant growth and development, particularly in resistance to adverse environments. Achnatherum splendens (Trin.) Nevski exhibits rhizosheath formation and demonstrates notable salt and drought tolerance. We identified 31 sugar transporter family genes [...] Read more.
Sugars Will Eventually Be Exported Transporters (SWEETs) are involved in plant growth and development, particularly in resistance to adverse environments. Achnatherum splendens (Trin.) Nevski exhibits rhizosheath formation and demonstrates notable salt and drought tolerance. We identified 31 sugar transporter family genes (AsSWEETs) from the Achnatherum splendens genome in the NCBI database and performed bioinformatics analyses, including gene structure, subcellular localization, conserved sequences, promoter cis-acting elements, phylogenetic relationships, and chromosomal localization. The 31 AsSWEET genes are distributed across 13 chromosomes, encoding peptides ranging from 375 to 1353 amino acids. Their predicted molecular weights range from 31,499.38 to 109,286.91 Da, with isoelectric points (pI) between 4.78 and 5.21. The aliphatic index values range from 13.59 to 24.19, and the grand average of hydropathicity (GRAVY) values range from 0.663 to 1.664. An analysis of promoter cis-acting elements reveals that all 31 AsSWEET genes contain multiple elements related to light, stress, and hormone responses. Subcellular localization predictions indicate that most genes in this family are localized to the plasma membrane or tonoplast, with AsSWEET12-2 and AsSWEET3b localized in chloroplasts and AsSWEET2b-2 in the nucleus. qRT-PCR results show that AsSWEET13-1, AsSWEET13-3, and AsSWEET1a exhibit upregulated expression in response to salt and drought stress in the roots of Achnatherum splendens. These genes may serve as candidate genes for investigating the stress resistance mechanisms of Achnatherum splendens. The findings provide a theoretical basis for further research on stress resistance mechanisms and candidate gene identification under salt and drought stress in Achnatherum splendens. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

10 pages, 872 KiB  
Communication
High Use of Dietary Supplements and Low Adherence to the Mediterranean Diet Among Italian Adolescents: Results from the EduALI Project
by Sofia Lotti, Marta Tristan Asensi, Donato Cretì, Erika Mollo, Armando Sarti, Francesco Sciattella, Monica Dinu, Barbara Colombini, Luigi Rizzo and Francesco Sofi
Nutrients 2025, 17(13), 2213; https://doi.org/10.3390/nu17132213 - 3 Jul 2025
Viewed by 647
Abstract
Objective: Eating habits established during adolescence play a crucial role in shaping both current and future health status. However, adolescents today appear to be increasingly adopting poorer dietary and lifestyle habits. This study aims to investigate eating behaviors and supplement use among adolescent [...] Read more.
Objective: Eating habits established during adolescence play a crucial role in shaping both current and future health status. However, adolescents today appear to be increasingly adopting poorer dietary and lifestyle habits. This study aims to investigate eating behaviors and supplement use among adolescent students who participated in the EduALI nutrition education project. Methods: The project included first-year students from six sports-oriented scientific high schools in Florence. The students participated in six nutrition sessions, completing the International Physical Activity Questionnaire to assess physical activity performance, a questionnaire on dietary supplement use, and, to assess eating habits a Food Frequency Questionnaire (FFQ), as well as the Medi-Lite questionnaire to specifically assess adherence to the Mediterranean diet (MD). The data from the FFQ were compared with national dietary guidelines. Results: The study sample consisted of 83 students (69.9% male; average age: 13.8 ± 0.4 y). The results showed that 61.4% of participants had used supplements in the past year, most commonly mineral salts (56.6%) and vitamins (54.2%), followed by botanical products (22%), sports drinks (16%), proteins/amino acids (8%), and creatine (2%). Alarmingly, 27.7% used supplements without medical supervision. Students involved in individual sports had higher supplement consumption than those in team sports, especially creatine use. Eating habits revealed poor adherence to both the MD and Italian dietary guidelines, with deficiencies in fruits, vegetables, olive oil, fish, and legumes, and excessive intake of cheese, meat, especially red and processed meats. Conclusions: A high prevalence of supplement use among adolescents was observed, along with poor adherence to dietary guidelines and MD. These findings underscore the need for targeted, school- and sport-based interventions to enhance adolescents’ nutritional awareness and responsible supplement use. Full article
(This article belongs to the Section Sports Nutrition)
Show Figures

Figure 1

21 pages, 2873 KiB  
Article
Adaptive Evolution of Sporosarcina pasteurii Enhances Saline–Alkali Resistance for High-Performance Concrete Crack Repair via MICP
by Jieyu Liu, Huaihua Xu, Min Dong, Zilin Cheng, Chenkai Mi, Shuai Sun, Ruiying Zhu and Peipei Han
Microorganisms 2025, 13(7), 1526; https://doi.org/10.3390/microorganisms13071526 - 30 Jun 2025
Viewed by 611
Abstract
Microbially induced calcium carbonate precipitation (MICP) has emerged as a research focus in concrete crack remediation due to its environmental compatibility and efficient mineralization capacity. The hypersaline conditions of seawater (average 35 g/L NaCl) and alkaline environments (pH 12) within concrete cracks pose [...] Read more.
Microbially induced calcium carbonate precipitation (MICP) has emerged as a research focus in concrete crack remediation due to its environmental compatibility and efficient mineralization capacity. The hypersaline conditions of seawater (average 35 g/L NaCl) and alkaline environments (pH 12) within concrete cracks pose significant challenges to the survival of mineralization-capable microorganisms. To enhance microbial tolerance under these extreme conditions, this study employed a laboratory adaptive evolution strategy to successfully develop a Sporosarcina pasteurii strain demonstrating tolerance to 35 g/L NaCl and pH 12. Comparative analysis of growth characteristics (OD600), pH variation, urease activity, and specific urease activity revealed that the evolved strain maintained growth kinetics under harsh conditions comparable to the parental strain under normal conditions. Subsequent evaluations demonstrated the evolved strain’s superior salt–alkali tolerance through enhanced enzymatic activity, precipitation yield, particle size distribution, crystal morphology, and microstructure characterization under various saline–alkaline conditions. Whole-genome sequencing identified five non-synonymous mutated genes associated with ribosomal stability, transmembrane transport, and osmoprotectant synthesis. Transcriptomic profiling revealed 1082 deferentially expressed genes (543 upregulated, 539 downregulated), predominantly involved in ribosomal biogenesis, porphyrin metabolism, oxidative phosphorylation, tricarboxylic acid (TCA) cycle, and amino acid metabolism. In concrete remediation experiments, the evolved strain achieved superior performance with 89.3% compressive strength recovery and 48% reduction in water absorption rate. This study elucidates the molecular mechanisms underlying S. pasteurii’s salt–alkali tolerance and validates its potential application in the remediation of marine engineering. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

Back to TopTop