Enhancing the Quality of Traditional Indonesian Shrimp Paste (Terasi) Through Tetragenococcus halophilus 54M106-3 Inoculation: Physicochemical, Sensory, and Bioactivity Insights
Abstract
1. Introduction
2. Materials and Methods
2.1. Culture Starter Preparation
2.2. Terasi Preparation
2.3. Determination of Color and Moisture Content
2.4. Determination of pH
2.5. Determination of Texture
2.6. Determination of Soluble Protein
2.7. Determination of N-Amino Acid Content
2.8. Determination of Total Lactic Acid Bacteria
2.9. Sensory Evaluation
2.10. Determination of Optimal Treatment
2.11. Amino Acid Analysis
2.12. Antioxidant Activity Evaluation
2.13. Antimicrobial Activity Evaluation
2.14. Inhibition of α-Amylase Enzyme Activity
2.15. Inhibition of α-Glucosidase Enzyme Activity
2.16. Data Analysis
3. Results and Discussion
3.1. Chemical Properties of Terasi
3.2. Physical Properties of Terasi
3.3. Microbiological Properties of Terasi
3.4. Sensory Properties of Terasi
3.5. The Optimal Treatment of Terasi Formulation
3.6. Amino Acid Profile of Terasi
3.7. Antioxidant Activity of Terasi
3.8. Antimicrobial Activity of Terasi
3.9. Antidiabetic Activity (α-Amylase and α-Glucosidase Inhibition) of Terasi
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Herlina, V.T.; Setiarto, R.H.B. Terasi, Exploring the Indonesian Ethnic Fermented Shrimp Paste. J. Ethn. Foods 2024, 11, 7. [Google Scholar] [CrossRef]
- Zang, J.; Xu, Y.; Xia, W.; Regenstein, J.M. Quality, Functionality, and Microbiology of Fermented Fish: A Review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1228–1242. [Google Scholar] [CrossRef]
- Surya, R.; Nugroho, D.; Kamal, N.; Tedjakusuma, F. Effects of Fermentation Time on Chemical, Microbiological, Antioxidant, and Organoleptic Properties of Indonesian Traditional Shrimp Paste, Terasi. Int. J. Gastron. Food Sci. 2023, 31, 100643. [Google Scholar] [CrossRef]
- Wakinaka, T.; Iwata, S.; Takeishi, Y.; Watanabe, J.; Mogi, Y.; Tsukioka, Y.; Shibata, Y. Isolation of Halophilic Lactic Acid Bacteria Possessing Aspartate Decarboxylase and Application to Fish Sauce Fermentation Starter. Int. J. Food Microbiol. 2019, 292, 137–143. [Google Scholar] [CrossRef]
- Yu, J.; Lu, K.; Zi, J.; Yang, X.; Zheng, Z.; Xie, W. Halophilic Bacteria as Starter Cultures: A New Strategy to Accelerate Fermentation and Enhance Flavor of Shrimp Paste. Food Chem. 2022, 393, 133393. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liaw, R.; Liao, Y.; Wanangkarn, A.; Chen, W.; Tan, F. Molecular Identification and Relative Abundance of Microorganisms in Douchi Koji and Salted Egg White Sufu during Processing. Anim. Sci. J. 2021, 92, e13567. [Google Scholar] [CrossRef] [PubMed]
- Justé, A.; Lievens, B.; Rediers, H.; Willems, K.A. The Genus Tetragenococcus. In Lactic Acid Bacteria; Wiley: Hoboken, NJ, USA, 2014; pp. 213–227. [Google Scholar]
- Udomsil, N.; Rodtong, S.; Choi, Y.J.; Hua, Y.; Yongsawatdigul, J. Use of Tetragenococcus Halophilus as a Starter Culture for Flavor Improvement in Fish Sauce Fermentation. J. Agric. Food Chem. 2011, 59, 8401–8408. [Google Scholar] [CrossRef] [PubMed]
- Todorov, S.D.; Dioso, C.M.; Liong, M.T.; Nero, L.A.; Khosravi-Darani, K.; Ivanova, I.V. Beneficial Features of Pediococcus: From Starter Cultures and Inhibitory Activities to Probiotic Benefits. World J. Microbiol. Biotechnol. 2023, 39, 4. [Google Scholar]
- Prihanto, A.A.; Nurdiani, R.; Jatmiko, Y.D.; Firdaus, M.; Kusuma, T.S. Physicochemical and Sensory Properties of Terasi (an Indonesian Fermented Shrimp Paste) Produced Using Lactobacillus Plantarum and Bacillus Amyloliquefaciens. Microbiol. Res. 2021, 242, 126619. [Google Scholar] [CrossRef]
- Dai, H.; Leung, C.E.; Corradini, M.G.; Xiao, H.; Kinchla, A.J. Increasing the Nutritional Value of Strawberry Puree by Adding Xylo-Oligosaccharides. Heliyon 2020, 6, e03769. [Google Scholar] [CrossRef]
- Sant’Anna, V.; Gurak, P.D.; Ferreira Marczak, L.D.; Tessaro, I.C. Tracking Bioactive Compounds with Colour Changes in Foods—A Review. Dye. Pigment. 2013, 98, 601–608. [Google Scholar] [CrossRef]
- Kurnianto, M.A.; Munarko, H. Pengaruh Penambahan Kultur Starter dan Metabolit Lactobacillus Casei Terhadap Mutu Mikrobiologi Sosis Fermentasi Ikan Patin (Pangasius sp.). J. Kelaut. Dan Perikan. Terap. (JKPT) 2022, 5, 27–37. [Google Scholar] [CrossRef]
- Rizvi, N.B.; Aleem, S.; Khan, M.R.; Ashraf, S.; Busquets, R. Quantitative Estimation of Protein in Sprouts of Vigna radiate (Mung Beans), Lens culinaris (Lentils), and Cicer arietinum (Chickpeas) by Kjeldahl and Lowry Methods. Molecules 2022, 27, 814. [Google Scholar] [CrossRef]
- Srikandace, Y.; Priatni, S.; Pudjiraharti, S.; Kosasih, W.; Endah, E.S. The Production of Kerong Fish (Terapon Jarbua) Peptone Using Enzymatic Hydrolysis. IOP Conf. Ser. Earth Environ. Sci. 2018, 160, 012009. [Google Scholar] [CrossRef]
- Jariyah; Hidayat, A.W.; Munarko, H. Sensory Profile Characterization of Non-Wheat Flour Biscuits Using Rate-All That-Apply (RATA) and Emotional Sensory Mapping (ESM) Method. Future Foods 2024, 9, 100281. [Google Scholar] [CrossRef]
- Hedayati, S.; Niakousari, M.; Seidi Damyeh, M.; Mazloomi, S.M.; Babajafari, S.; Ansarifar, E. Selection of Appropriate Hydrocolloid for Eggless Cakes Containing Chubak Root Extract Using Multiple Criteria Decision-Making Approach. LWT 2021, 141, 110914. [Google Scholar] [CrossRef]
- Rezaei, J. Best-Worst Multi-Criteria Decision-Making Method. Omega 2015, 53, 49–57. [Google Scholar] [CrossRef]
- Afifah, D.N.; Sari, I.R.; Prastifani, N.T.; Fulyani, F.; Anjani, G.; Widyastuti, N.; Hastuti, V.N. Effect of Fermentation Time on Nutrition Content, Physical Properties, PH, Amino Acids, Fatty Acids Composition and Organoleptics on Fermented Mackerel Sausage (Rastrelliger Kanagurta Cuvier) Characteristics. Int. J. Food Stud. 2023, 12, 57–70. [Google Scholar] [CrossRef]
- Kurnianto, M.A.; Kusumaningrum, H.D.; Lioe, H.N.; Chasanah, E. Antibacterial and Antioxidant Potential of Ethyl Acetate Extract from Streptomyces AIA12 and AIA17 Isolated from Gut of Chanos Chanos. Biodiversitas 2021, 22, 3196–3206. [Google Scholar] [CrossRef]
- Faithong, N.; Benjakul, S.; Phatcharat, S.; Binsan, W. Chemical Composition and Antioxidative Activity of Thai Traditional Fermented Shrimp and Krill Products. Food Chem. 2010, 119, 133–140. [Google Scholar] [CrossRef]
- Apostolidis, E.; Kwon, Y.-I.; Shetty, K. Inhibitory Potential of Herb, Fruit, and Fungal-Enriched Cheese against Key Enzymes Linked to Type 2 Diabetes and Hypertension. Innov. Food Sci. Emerg. Technol. 2007, 8, 46–54. [Google Scholar] [CrossRef]
- Etsassala, N.G.E.R.; Badmus, J.A.; Marnewick, J.L.; Iwuoha, E.I.; Nchu, F.; Hussein, A.A. Alpha-Glucosidase and Alpha-Amylase Inhibitory Activities, Molecular Docking, and Antioxidant Capacities of Salvia Aurita Constituents. Antioxidants 2020, 9, 1149. [Google Scholar] [CrossRef]
- Daroonpunt, R.; Uchino, M.; Tsujii, Y.; Kazami, M.; Oka, D.; Tanasupawat, S. Chemical and Physical Properties of Thai Traditional Shrimp Paste (Ka-Pi). J. Appl. Pharm. Sci. 2016, 6, 058–062. [Google Scholar] [CrossRef]
- Xiong, T.; Li, J.; Liang, F.; Wang, Y.; Guan, Q.; Xie, M. Effects of Salt Concentration on Chinese Sauerkraut Fermentation. LWT—Food Sci. Technol. 2016, 69, 169–174. [Google Scholar] [CrossRef]
- Olaoye, O.; Onilude, A.; Dodd, C.E.R. Identification of Pediococcus Spp. From Beef and Evaluation of Their Lactic Acid Production in Varying Concentrations of Different Carbon Sources. Adv. Nat. Appl. Sci. 2008, 2, 197–207. [Google Scholar]
- Fujiwara, M.; Kuwahara, D.; Hayashi, M.; Zendo, T.; Sato, M.; Nakayama, J.; Sonomoto, K. Lowering Effect of Viable Pediococcus Pentosaceus QU 19 on the Rise in Postprandial Glucose. Biosci. Microbiota Food Health 2020, 39, 57–64. [Google Scholar] [CrossRef]
- Li, S.; Tang, S.; Mo, R.; Li, J.; Chen, L. Effects of NaCl Curing and Subsequent Fermentation with Lactobacillus Sakei or Lactobacillus Plantarum on Protein Hydrolysis and Oxidation in Yak Jerky. LWT 2023, 173, 114298. [Google Scholar] [CrossRef]
- Martini, S.; Solieri, L.; Tagliazucchi, D. Peptidomics: New Trends in Food Science. Curr. Opin. Food Sci. 2021, 39, 51–59. [Google Scholar] [CrossRef]
- Nunal, S.N.; Florece, C.M.C.; Treyes, M.A. Antagonistic Activities against Foodborne Pathogens and Use as Functional Starter Culture of Bacterial Strains Isolated from Fermented Shrimp Paste. Philipp. J. Nat. Sci. 2016, 21, 26–36. [Google Scholar]
- Annunziata, O.; Payne, A.; Wang, Y. Solubility of Lysozyme in the Presence of Aqueous Chloride Salts: Common-Ion Effect and Its Role on Solubility and Crystal Thermodynamics. J. Am. Chem. Soc. 2008, 130, 13347–13352. [Google Scholar] [CrossRef]
- Kramer, R.M.; Shende, V.R.; Motl, N.; Pace, C.N.; Scholtz, J.M. Toward a Molecular Understanding of Protein Solubility: Increased Negative Surface Charge Correlates with Increased Solubility. Biophys. J. 2012, 102, 1907–1915. [Google Scholar] [CrossRef] [PubMed]
- Guindo, C.O.; Morsli, M.; Bellali, S.; Drancourt, M.; Grine, G. A Tetragenococcus Halophilus Human Gut Isolate. Curr. Res. Microb. Sci. 2022, 3, 100112. [Google Scholar] [CrossRef]
- Tapal, A.; Tiku, P.K. Nutritional and Nutraceutical Improvement by Enzymatic Modification of Food Proteins. In Enzymes in Food Biotechnology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 471–481. [Google Scholar]
- Wijaya, C.H.; Wijaya, W.; Mehta, B.M. General Properties of Major Food Components. In Handbook of Food Chemistry; Cheung, P.C.K., Mehta, B.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 15–54. [Google Scholar]
- Wood, J.M. Bacterial Responses to Osmotic Challenges. J. General. Physiol. 2015, 145, 381–388. [Google Scholar] [CrossRef]
- Barcenilla, C.; Álvarez-Ordóñez, A.; López, M.; Alvseike, O.; Prieto, M. Microbiological Safety and Shelf-Life of Low-Salt Meat Products—A Review. Foods 2022, 11, 2331. [Google Scholar] [CrossRef]
- Chukeatirote, E.; Arfarita, N.; Niamsup, P.; Kanghae, A. Phenotypic and Genetic Characterization of Bacillus Species Exhibiting Strong Proteolytic Activity Isolated from Terasi, An Indonesian Fermented Seafood Product. J. Northeast. Agric. Univ. 2015, 22, 15–22. [Google Scholar] [CrossRef]
- Klomklao, S.; Benjakul, S.; Visessanguan, W.; Kishimura, H.; Simpson, B.K. Effects of the Addition of Spleen of Skipjack Tuna (Katsuwonus pelamis) on the Liquefaction and Characteristics of Fish Sauce Made from Sardine (Sardinella gibbosa). Food Chem. 2006, 98, 440–452. [Google Scholar] [CrossRef]
- Li, D.-Y.; Yuan, Z.; Liu, Z.-Q.; Yu, M.-M.; Guo, Y.; Liu, X.-Y.; Zhang, M.; Liu, H.-L.; Zhou, D.-Y. Effect of Oxidation and Maillard Reaction on Color Deterioration of Ready-to-Eat Shrimps during Storage. LWT 2020, 131, 109696. [Google Scholar] [CrossRef]
- Helmi, H.; Astuti, D.I.; Putri, S.P.; Sato, A.; Laviña, W.A.; Fukusaki, E.; Aditiawati, P. Dynamic Changes in the Bacterial Community and Metabolic Profile during Fermentation of Low-Salt Shrimp paste (Terasi). Metabolites 2022, 12, 118. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Lin, S.; Chen, T.; Li, S.; Wang, S.; Li, C.; Wang, R.; Sun, N. Evaluation of the Texture Characteristics and Taste of Shrimp Surimi with Partial Replacement of NaCl by Non-sodium Metal Salts. Food Chem. 2024, 459, 140403. [Google Scholar] [CrossRef]
- Drummond, L.; Álvarez, C.; Mullen, A.M. Chapter 4—Proteins Recovery From Meat Processing Coproducts. In Sustainable Meat Production and Processing; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 69–83. ISBN 978-0-12-814874-7. [Google Scholar]
- Xu, Y.; Zang, J.; Regenstein, J.M.; Xia, W. Technological Roles of Microorganisms in Fish Fermentation: A Review. Crit. Rev. Food Sci. Nutr. 2021, 61, 1000–1012. [Google Scholar] [CrossRef]
- Li, F.; Xiong, X.-S.; Yang, Y.-Y.; Wang, J.-J.; Wang, M.-M.; Tang, J.-W.; Liu, Q.-H.; Wang, L.; Gu, B. Effects of NaCl Concentrations on Growth Patterns, Phenotypes Associated With Virulence, and Energy Metabolism in Escherichia Coli BW25113. Front. Microbiol. 2021, 12, 705326. [Google Scholar] [CrossRef]
- Papadimitriou, K.; Alegría, Á.; Bron, P.A.; de Angelis, M.; Gobbetti, M.; Kleerebezem, M.; Lemos, J.A.; Linares, D.M.; Ross, P.; Stanton, C.; et al. Stress Physiology of Lactic Acid Bacteria. Microbiol. Mol. Biol. Rev. 2016, 80, 837–890. [Google Scholar] [CrossRef] [PubMed]
- Voidarou, C.; Antoniadou, Μ.; Rozos, G.; Tzora, A.; Skoufos, I.; Varzakas, T.; Lagiou, A.; Bezirtzoglou, E. Fermentative Foods: Microbiology, Biochemistry, Potential Human Health Benefits and Public Health Issues. Foods 2020, 10, 69. [Google Scholar] [CrossRef] [PubMed]
- Kurihara, K. Umami the Fifth Basic Taste: History of Studies on Receptor Mechanisms and Role as a Food Flavor. Biomed. Res. Int. 2015, 2015, 189402. [Google Scholar] [CrossRef]
- Cai, L.; Wang, Q.; Dong, Z.; Liu, S.; Zhang, C.; Li, J. Biochemical, Nutritional, and Sensory Quality of the Low Salt Fermented Shrimp Paste. J. Aquat. Food Prod. Technol. 2017, 26, 706–718. [Google Scholar] [CrossRef]
- Najafian, L.; Babji, A.S. Fractionation and Identification of Novel Antioxidant Peptides from Fermented Fish (Pekasam). J. Food Meas. Charact. 2018, 12, 2174–2183. [Google Scholar] [CrossRef]
- Najafian, L.; Babji, A.S. Purification and Identification of Antioxidant Peptides from Fermented Fish Sauce (Budu). J. Aquat. Food Prod. Technol. 2019, 28, 14–24. [Google Scholar] [CrossRef]
- Jamilah, I.; Suryanto, D.; Priyani, N.; Khoiriah, W.N.; Hartanto, A.; Ahmad, F. Bacterial Composition in Shrimp Paste of Northern Sumatra Related to Flavor and Chemical Properties. J. Phys. Conf. Ser. 2020, 1462, 012060. [Google Scholar] [CrossRef]
- Chikindas, M.L.; Weeks, R.; Drider, D.; Chistyakov, V.A.; Dicks, L.M. Functions and Emerging Applications of Bacteriocins. Curr. Opin. Biotechnol. 2018, 49, 23–28. [Google Scholar] [CrossRef]
- Date, K. Regulatory Functions of α-Amylase in the Small Intestine Other than Starch Digestion: α-Glucosidase Activity, Glucose Absorption, Cell Proliferation, and Differentiation. In New Insights Into Metabolic Syndrome; IntechOpen: Rijeka, Croatia, 2021. [Google Scholar]
- Zhang, M.; Zeng, S.; Hao, L.; Yao, S.; Wang, D.; Yang, H.; Wu, C. Structural Characterization and Bioactivity of Novel Exopolysaccharides Produced by Tetragenococcus halophilus. Food Res. Int. 2022, 155, 111083. [Google Scholar] [CrossRef]
- Kwun, S.-Y.; Yoon, J.-A.; Kim, G.-Y.; Bae, Y.-W.; Park, E.-H.; Kim, M.-D. Isolation of a Potential Probiotic Levilactobacillus Brevis and Evaluation of Its Exopolysaccharide for Antioxidant and α-Glucosidase Inhibitory Activities. J. Microbiol. Biotechnol. 2024, 34, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Xie, T.; Wu, Q.; Hu, Z.; Luo, Y.; Luo, F. Alpha-Glucosidase Inhibitory Peptides: Sources, Preparations, Identifications, and Action Mechanisms. Nutrients 2023, 15, 4267. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Lai, X.; Wu, X.; Wang, H.; Weng, N.; Lu, J.; Lyu, M.; Wang, S. Isolation of a Novel Anti-Diabetic α-Glucosidase Oligo-Peptide Inhibitor from Fermented Rice Bran. Foods 2023, 12, 183. [Google Scholar] [CrossRef]
- Ramadhan, A.H.; Nawas, T.; Zhang, X.; Pembe, W.M.; Xia, W.; Xu, Y. Purification and Identification of a Novel Antidiabetic Peptide from Chinese Giant Salamander (Andrias davidianus) Protein Hydrolysate against α-Amylase and α-Glucosidase. Int. J. Food Prop. 2017, 20, S3360–S3372. [Google Scholar] [CrossRef]
Treatment | Fermentation Time (Day) | L* | a* | b* | E | C* |
---|---|---|---|---|---|---|
6% salt with T. halophilus | 0 | 26.17 ± 0.084 n | 8.23 ± 0.000 e | 9.54 ± 0.091 k | 30.16 ± 0.51 c | −12.53 ± 0.30 k |
7 | 25.33 ± 0.063 m | 10.32 ± 0.021 c | 10.65 ± 0.035 j | 30.89 ± 0.76 bc | −10.30 ± 0.14 j | |
14 | 22.43 ± 0.155 o | 10.50 ± 0.035 b | 11.90 ± 0.056 i | 32.87 ± 0.49 ab | −9.26 ± 0.20 i | |
21 | 21.74 ± 0.275 o | 10.89 ± 0.098 a | 11.99 ± 0.084 i | 33.55 ± 0.27 a | −8.94 ± 0.02 i | |
12% salt with T. halophilus | 0 | 47.88 ± 0.141 d | 3.17 ± 0.021 j | 18.69 ± 0.106 h | 7.46 ± 0.85 g | −6.18 ± 0.36 h |
7 | 47.71 ± 0.155 b | 5.40 ± 0.007 g | 18.97 ± 0.063 g | 8.28 ± 0.48 g | −5.41 ± 0.07 g | |
14 | 44.56 ± 0.091 c | 6.81 ± 0.021 e | 18.93 ± 0.049 g | 10.69 ± 0.25 f | −5.02 ± 0.04 f | |
21 | 32.09 ± 0.070 k | 8.70 ± 0.063 d | 20.41 ± 0.007 e | 20.99 ± 2.41 d | −2.95 ± 0.31 d | |
18% salt with T. halophilus | 0 | 50.69 ± 0.077 b | 2.17 ± 0.127 k | 18.72 ± 0.028 g | 6.45 ± 0.00 gh | −6.29 ± 0.03 h |
7 | 50.20 ± 0.063 b | 3.98 ± 0.091 i | 19.99 ± 0.014 f | 6.00 ± 2.57 gh | −4.75 ± 0.09 f | |
14 | 46.17 ± 0.000 j | 5.32 ± 0.021 g | 20.88 ± 0.000 e | 7.80 ± 0.25 g | −3.59 ± 0.01 e | |
21 | 35.64 ± 0.106 g | 8.10 ± 0.060 o | 20.91 ± 0.035 e | 17.47 ± 0.80 e | −2.71 ± 0.33 d | |
25% salt without T. halophilus | 0 | 50.97 ± 0.098 b | 0.81 ± 0.155 m | 25.02 ± 0.106 d | 0.66 ± 0.00 i | −0.10 ± 0.14 c |
7 | 52.92 ± 0.007 a | 1.21 ± 0.000 l | 25.21 ± 0.000 c | 2.44 ± 2.57 i | 0.11 ± 0.06 c | |
14 | 49.90 ± 0.077 f | 5.18 ± 0.035 h | 26.68 ± 0.021 b | 4.84 ± 0.25 h | 2.04 ± 0.08 b | |
21 | 36.47 ± 0.162 e | 6.19 ± 0.021 f | 27.53 ± 0.063 a | 15.67 ± 0.80 e | 3.08 ± 0.04 a |
Treatment | Fermentation Time (Day) | Color | Aroma | Texture |
---|---|---|---|---|
6% salt with T. halophilus | 0 | 1.68 ± 0.627 ab | 1.96 ± 0.611 a | 1.76 ± 0.597 ab |
7 | 4.48 ± 0.585 hi | 4.52 ± 0.509 g | 3.64 ± 0.637 gh | |
14 | 4.56 ± 0.583 hi | 4.48 ± 0.509 g | 3.56 ± 0.650 de | |
21 | 4.64 ± 0.860 i | 4.44 ± 0.506 g | 3.64 ± 0.637 hi | |
12% salt with T. halophilus | 0 | 1.88 ± 0.665 b | 2.08 ± 0.862 a | 1.64 ± 0.700 ab |
7 | 2.88 ± 0.665 d | 3.28 ± 0.842 e | 3.16 ± 0.800 de | |
14 | 3.65 ± 0.820 e | 3.36 ± 0.637 e | 3.04 ± 0.734 de | |
21 | 4.20 ± 0.707 gh | 3.80 ± 0.707 f | 3.28 ± 0.678 fg | |
18% salt with T. halophilus | 0 | 2.32 ± 0.748 c | 2.56 ± 0.768 b | 2.80 ± 0.816 d |
7 | 2.72 ± 0.791 bc | 3.32 ± 0.476 e | 3.96 ± 0.789 hi | |
14 | 3.80 ± 0.763 fg | 3.76 ± 0.663 f | 4.04 ± 0.789 i | |
21 | 4.16 ± 0.800 gh | 4.24 ± 0.663 g | 4.04 ± 0.789 i | |
25% salt without T. halophilus | 0 | 1.44 ± 0.506 a | 2.36 ± 0.757 ab | 1.40 ± 0.500 a |
7 | 2.80 ± 0.763 d | 2.32 ± 0.852 ab | 1.96 ± 0.840 bc | |
14 | 3.08 ± 0.759 d | 2.84 ± 0.943 cd | 2.12 ± 0.725 gh | |
21 | 3.76 ± 0.723 ef | 3.08 ± 0.759 de | 2.62 ± 0.646 d |
Criteria | Weight | A+ | A− |
---|---|---|---|
Sensory—Color | 0.171 | 0.058 | 0.018 |
Sensory—Aroma | 0.282 | 0.083 | 0.029 |
Sensory—Texture | 0.096 | 0.035 | 0.015 |
Color—L* | 0.048 | 0.077 | 0.187 |
Color—a* | 0.048 | 0.003 | 0.000 |
Color—b* | 0.048 | 0.048 | 0.017 |
Texture | 0.048 | 0.004 | 0.007 |
Moisture Content | 0.057 | 0.056 | 0.075 |
N-Amino | 0.057 | 0.002 | 0.001 |
Soluble Protein | 0.096 | 0.184 | 0.100 |
pH | 0.018 | 0.001 | 0.001 |
Total Lactic Acid Bacteria | 0.032 | 0.009 | 0.005 |
Treatment | Fermentation Time (Day) | Rank | CL | di+ | di− |
---|---|---|---|---|---|
6% salt with T. halophilus | 0 | 5 | 0.533 | 0.089 | 0.101 |
7 | 1 | 0.611 | 0.075 | 0.118 | |
14 | 3 | 0.578 | 0.091 | 0.125 | |
21 | 2 | 0.596 | 0.087 | 0.128 | |
12% salt with T. halophilus | 0 | 15 | 0.285 | 0.122 | 0.049 |
7 | 12 | 0.365 | 0.109 | 0.063 | |
14 | 14 | 0.328 | 0.117 | 0.057 | |
21 | 4 | 0.568 | 0.074 | 0.097 | |
18% salt with T. halophilus | 0 | 10 | 0.413 | 0.113 | 0.079 |
7 | 9 | 0.421 | 0.110 | 0.080 | |
14 | 7 | 0.424 | 0.105 | 0.077 | |
21 | 4 | 0.568 | 0.075 | 0.098 | |
25% salt without T. halophilus | 0 | 8 | 0.422 | 0.125 | 0.091 |
7 | 11 | 0.409 | 0.122 | 0.084 | |
14 | 13 | 0.335 | 0.118 | 0.060 | |
21 | 6 | 0.531 | 0.077 | 0.087 |
Amino Acid | Composition (mg/g) | Percentage (%) |
---|---|---|
L-Alanine | 37.02 | 0.084 |
L-Arginine | 12.01 | 0.027 |
L-Aspartic acid | 52.09 | 0.119 |
Glycine | 15.44 | 0.035 |
L-Glutamic acid | 86.48 | 0.197 |
L-Histidine | 6.55 | 0.015 |
L-Isoleucine | 16.80 | 0.038 |
L-Leucine | 49.56 | 0.113 |
L-Lysine | 40.23 | 0.092 |
L-Valine | 24.06 | 0.055 |
L-Phenylalanine | 28.70 | 0.065 |
L-Proline | 12.69 | 0.029 |
L-Serine | 15.32 | 0.035 |
L-Threonine | 19.18 | 0.044 |
L-Tyrosine | 22.86 | 0.052 |
Biological Activity | Value |
---|---|
Antioxidant activity | |
DPPH radical scavenging activity | 3.90 ± 0.04 mg AEAC/g sample |
Ferric reducing antioxidant power | 8.76 ± 0.22 mg AEAC/g sample |
Antidiabetic activity | |
IC50 of α-amylase enzyme inhibition | |
Acarbose | 1.52 ± 0.02 b mg/mL |
Terasi | 1.95 ± 0.02 a mg/mL |
IC50 of α-glucosidase enzyme inhibition | |
Acarbose | 0.01 ± 0.00 b mg/mL |
Terasi | 7.24 ± 0.21 a mg/mL |
Antimicrobial activity (diameter zone of inhibition) | |
Against E. coli | |
Chloramphenicol (0.146 g/10 mL) | 61.54 ± 0.5 mm |
Distilled water (10 mL) | 0 mm |
Terasi (1 g/10 mL) | 32.78 ± 2.6 mm |
Against S. aureus | |
Chloramphenicol (0.146 g/10 mL) | 59.17 ± 0.8 mm |
Distilled water 10 mL | 0 mm |
Terasi (1 g/10 mL) | 30.85 ± 1.1 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurnianto, M.A.; Adirama, S.I.; Xu, W.; Winarti, S.; Rini, D.M. Enhancing the Quality of Traditional Indonesian Shrimp Paste (Terasi) Through Tetragenococcus halophilus 54M106-3 Inoculation: Physicochemical, Sensory, and Bioactivity Insights. Foods 2025, 14, 2419. https://doi.org/10.3390/foods14142419
Kurnianto MA, Adirama SI, Xu W, Winarti S, Rini DM. Enhancing the Quality of Traditional Indonesian Shrimp Paste (Terasi) Through Tetragenococcus halophilus 54M106-3 Inoculation: Physicochemical, Sensory, and Bioactivity Insights. Foods. 2025; 14(14):2419. https://doi.org/10.3390/foods14142419
Chicago/Turabian StyleKurnianto, Muhammad Alfid, Safrina Isnaini Adirama, Wenxi Xu, Sri Winarti, and Dina Mustika Rini. 2025. "Enhancing the Quality of Traditional Indonesian Shrimp Paste (Terasi) Through Tetragenococcus halophilus 54M106-3 Inoculation: Physicochemical, Sensory, and Bioactivity Insights" Foods 14, no. 14: 2419. https://doi.org/10.3390/foods14142419
APA StyleKurnianto, M. A., Adirama, S. I., Xu, W., Winarti, S., & Rini, D. M. (2025). Enhancing the Quality of Traditional Indonesian Shrimp Paste (Terasi) Through Tetragenococcus halophilus 54M106-3 Inoculation: Physicochemical, Sensory, and Bioactivity Insights. Foods, 14(14), 2419. https://doi.org/10.3390/foods14142419