Alkaline Amino Acids for Salt Reduction in Surimi: A Review
Abstract
1. Introduction
2. Structure and Functional Characteristics of Myofibrillar Protein in Surimi Products
2.1. The Key Role of Myofibrillar Protein in the Formation of Surimi Gel
2.2. Mechanism of Action of NaCl on the Functional Characteristics of Surimi
2.2.1. Solubility Regulation: Electrostatic Shielding and Myofilament Depolymerization
2.2.2. Gel Strengthening: Conformational Transformation and Crosslinking Coordination
2.2.3. Optimization of Emulsification Stability: Interfacial Adsorption Kinetics
2.3. Scientific Challenges and Solutions for a Low-Salt Surimi System
2.3.1. Drastic Reduction in Protein Solubility and Extraction Efficiency
2.3.2. Defects of Gel Network and Texture Degradation
2.3.3. Emulsion Instability and Phase Separation Risk
2.3.4. Microbial Safety and Shelf-Life Bottleneck
3. Physicochemical Properties of Alkaline Amino Acids and Their Interaction Mechanism with Myofibrillar Protein
3.1. Arginine
3.1.1. Topological Construction of Hydrogen Bond Network
3.1.2. Π-Cation Interaction
3.1.3. Charge Shielding and Colloid Stability Regulation
3.2. Lysine
3.2.1. Dynamic Protonation Regulation
3.2.2. Maillard-Assisted Crosslinking
3.2.3. Directed Assembly of Hydrate Layer
3.3. Histidine
Proton Buffering Effect of Imidazole Ring
4. The Effect of Alkaline Amino Acids on the Functional Characteristics of Surimi Products
4.1. Improve the Solubility of Myofibrillar Protein
4.2. Improve Emulsification Performance and Interfacial Stability
4.3. Enhance the Thermal Gel and Water Retention Ability
Item | NaCl Concentration | L-Lysine | L-Arginine | L-Histidine | Material | Ref. |
---|---|---|---|---|---|---|
Particle Size | 0.1 M | 0.1% addition reduced droplet size from 2.5 to 1.8 μm, with uniform distribution | 0.1% addition reduced droplet size from 2.5 to 1.9 μm, inhibiting aggregation | 1 g L−1 addition reduced droplet size from 2.7 to 1.6 μm, improving emulsion stability | Myosin-stabilized emulsion | [99] |
Zeta Potential | 0.1 M | Increased from −25.3 to −8.7 mV | Increased from −12.5 to −5.8 mV | Absolute value decreased, suppressing aggregation | Shrimp/fish/chicken surimi | [100] |
Solubility | 0.1–0.6 M | >30% increase (from ~60 to >90%) | Rose from <30% to 85% | Increased by 22.3%, inhibiting aggregation | Porcine/fish/chicken myosin | [101] |
Water- Holding Capacity (WHC) | 1% | Rose from 60% to 85% | Rose from 62% to 89% | Decreased from 66.7% to 40.3% (requires optimization) | Shrimp surimi/beef paste | [100] |
Gel Strength | 1% | Enhanced by 378.83% (vs. low-salt control ≈ 440 g·mm) | Reached 1676.56 g·mm | Increased from 0.10 N to 0.22 N (≈120% increase) | Shrimp surimi/beef paste | [100] |
5. Limitations and Future Prospects of Current Research
5.1. Limitations of the Study
5.1.1. Lack of Singularity of Research Objects and Universality of Mechanism
5.1.2. Standardization of Dosage and Risk of Side Effects
5.1.3. Limitations of the Evaluation System
5.2. Future Outlook
5.2.1. Multi-Scale Mechanism Analysis
5.2.2. Cross-Category Standardization Research
5.2.3. Establishment of a Quality and Safety Evaluation System
5.2.4. Technology Integration and Application Expansion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, W.; Wen, L.; Xiong, S.; Xiao, S.; An, Y. Investigation of the effect of chemical composition of surimi and gelling temperature on the odor characteristics of surimi products based on gas chromatography-mass spectrometry/olfactometry. Food Chem. 2023, 420, 135977. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Zhang, Z.; Zhang, R.; Gao, R.; McClements, D.J. Development of functional or medical foods for oral administration of insulin for diabetes treatment: Gastroprotective edible microgels. J. Agric. Food Chem. 2018, 66, 4820–4826. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; You, J.; Yin, T.; Xiong, S.; Liu, R. Simultaneous effect of high intensity ultrasound power, time, and salt contents on gelling properties of silver carp surimi. Food Chem. 2023, 403, 134478. [Google Scholar] [CrossRef] [PubMed]
- Moe, S.M.; Drüeke, T.B. Management of secondary hyperparathyroidism: The importance and the challenge of controlling parathyroid hormone levels without elevating calcium, phosphorus, and calcium-phosphorus product. Am. J. Nephrol. 2003, 23, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Luo, N.; Guo, C.; Wang, X.; Xia, S. Enhancing gel strength and saltiness perception of low-salt surimi gels: Synergistic effects of lysine assisted with water bath-microwave heating. Food Biosci. 2024, 61, 104827. [Google Scholar] [CrossRef]
- Wang, R.; Gao, R.; Xiao, F.; Zhou, X.; Wang, H.; Xu, H.; Gong, C.; Huang, P.; Zhao, Y. Effect of chicken breast on the physicochemical properties of unwashed sturgeon surimi gels. LWT–Food Sci. Technol. 2019, 113, 108306. [Google Scholar] [CrossRef]
- Rodrigues, F.M.; Rosenthal, A.; Tiburski, J.H.; Cruz, A.G.D. Alternatives to reduce sodium in processed foods and the potential of high pressure technology. Food Sci. Technol. 2015, 36, 1–8. [Google Scholar] [CrossRef]
- Xiong, Z.; Shi, T.; Zhang, W.; Kong, Y.; Yuan, L.; Gao, R. Improvement of gel properties of low salt surimi using low-dose L-arginine combined with oxidized caffeic acid. LWT–Food Sci. Technol. 2021, 145, 111303. [Google Scholar] [CrossRef]
- Wickline, S.A.; Hou, K.K.; Pan, H. Peptide-based nanoparticles for systemic extrahepatic delivery of therapeutic nucleotides. Int. J. Mol. Sci. 2023, 24, 9455. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, M.; Monto, A.R.; Yuan, L.; Jin, W.; Gao, R. Enhancement of the gelling properties of Aristichthys nobilis: Insights into intermolecular interactions between okra polysaccharide and myofibrillar protein. Curr. Res. Food Sci. 2024, 9, 100814. [Google Scholar] [CrossRef] [PubMed]
- Monto, A.R.; Li, M.; Wang, X.; Wijaya, G.Y.A.; Shi, T.; Xiong, Z.; Yuan, L.; Jin, W.; Li, J.; Gao, R. Recent developments in maintaining gel properties of surimi products under reduced salt conditions and use of additives. Crit. Rev. Food Sci. Nutr. 2021, 62, 8518–8533. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Hu, W.; Chen, L.; Ouyang, K.; Chen, H.; Lin, S.; Wang, W. Basic Amino Acids as Salt Substitutes in Low-Salt Gel-Based Meat Products: A Comprehensive Review of Mechanisms, Benefits, and Future Perspectives. Foods 2025, 14, 637. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Gao, F.; Zhang, Y.; Peng, Z.; Jamali, M.A. Effect of l-histidine and l-lysine on the properties of oil-in-water emulsions stabilized by porcine myofibrillar proteins at low/high ionic strength. LWT 2021, 141, 110883. [Google Scholar] [CrossRef]
- Oh, N.S.; Lee, H.A.; Lee, J.Y.; Joung, J.Y.; Lee, K.B.; Kim, Y.; Lee, K.W.; Kim, S.H. The dual effects of Maillard reaction and enzymatic hydrolysis on the antioxidant activity of milk proteins. J. Dairy Sci. 2013, 96, 4899–4911. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.I.; Li, D.; Tu, J.; Zhong, Y.; Zhang, D.; Wang, Z.; Tao, X. Mechanisms of change in gel water-holding capacity of myofibrillar proteins affected by lipid oxidation: The role of protein unfolding and cross-linking. Food Chem. 2021, 344, 128587. [Google Scholar] [CrossRef] [PubMed]
- Henderson, C.A.; Gomez, C.G.; Novak, S.M.; Mi-Mi, L.; Gregorio, C.C. Overview of the muscle cytoskeleton. Compr. Physiol. 2017, 7, 891–944. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Feng, G.; Gao, R.; Ren, J.; Zhou, X.; Wang, H.; Xu, H.; Zhao, Y.; Zeng, M. Thermal gel degradation (Modori) in sturgeon (Acipenseridae) surimi gels. J. Food Sci. 2019, 84, 3601–3607. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Zhang, X.; Chen, S.; Xue, Y.; Wang, Y.; Wu, Y. Analysis of quality-related proteins in golden pompano (Trachinotus ovatus) fillets with modified atmosphere packaging under superchilling storage. Food Sci. Hum. Wellness 2024, 13, 2253–2265. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Q.; Bao, Y.; Tan, Y.; Lametsch, R.; Hong, H.; Luo, Y. Recent advances on characterization of protein oxidation in aquatic products: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2022, 64, 1572–1591. [Google Scholar] [CrossRef] [PubMed]
- Shulpekova, Y.O.; Ostrovskaya, A.A.; Tumasheva, A.A.; Deeva, T.A.; Kopylov, A.T.; Malsagova, K.A.; Kaysheva, A.L.; Ivashkin, V.T. Food Intolerance: The Role of Histamine. Nutrients 2021, 13, 3207. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wei, G.; Li, J.; Tian, F.; Zheng, B.; Gao, P.; Zhou, R. Comparative study on the effect of different salts on surimi gelation and gel properties. Food Hydrocolloids 2023, 144, 108982. [Google Scholar] [CrossRef]
- Gao, R.; Wang, Y.; Mu, J.; Shi, T.; Yuan, L. Effect of L-histidine on the heat-induced aggregation of bighead carp (Aristichthys nobilis) myosin in low/high ionic strength solution. Food Hydrocolloids 2018, 75, 174–181. [Google Scholar] [CrossRef]
- Bao, Y.; Yan, D.; Xu, G.; Hong, H.; Gao, R. Effects of chopping temperature on the gel quality of silver carp (Hypophthalmichthys molitrix) surimi: Insight from gel-based proteomics. J. Sci. Food Agric. 2024, 104, 8212–8218. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, Q.; Shi, J.; Zhu, B.; Luo, Y. Changes in chemical interactions and gel properties of heat-induced surimi gels from silver carp (Hypophthalmichthys molitrix) fillets during setting and heating: Effects of different washing solutions. Food Hydrocolloids 2018, 75, 116–124. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, L.; Lu, M.; Ai, C.; Cao, H.; Xiao, J.; Zhong, S.; Teng, H. Effect of cellulose on gel properties of heat-induced low-salt surimi gels: Physicochemical characteristics, water distribution and microstructure. Food Chem. X 2023, 19, 100820. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, J.; Zhang, W.; Liu, C.; Jauregi, P.; Huang, M. Modification of heat-induced whey protein gels by basic amino acids. Food Hydrocolloids 2020, 100, 105397. [Google Scholar] [CrossRef]
- Zhou, C.; Hu, J.; Yu, X.; Yagoub, A.E.A.; Zhang, Y.; Ma, H.; Gao, X.; Otu, P.N.Y. Heat and/or ultrasound pretreatments motivated enzymolysis of corn gluten meal: Hydrolysis kinetics and protein structure. LWT–Food Sci. Technol. 2017, 77, 488–496. [Google Scholar] [CrossRef]
- Cheng, Y.; Shi, X.; Yeboah, G.B.; Chen, L.; Wu, J. Effect of multi-mode divergent ultrasound pretreatment on hardness, microstructure and digestion of acid-induced whey protein gels. Foods 2024, 13, 1926. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Donkor, P.; Ren, X.; Wu, J.; Agyemang, K.; Ayim, I.; Ma, H. Effect of ultrasound pretreatment with mono-frequency and simultaneous dual frequency on the mechanical properties and microstructure of whey protein emulsion gels. Food Hydrocolloids 2019, 89, 434–442. [Google Scholar] [CrossRef]
- Wu, Y.H.S.; Lin, Y.; Wang, S.; Lin, D.; Chen, J.; Chen, Y. Effects of washing step and salt-addition levels on textural and quality properties in the chicken-surimi products. Poult. Sci. 2022, 101, 101885. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Xie, Y.; Yin, T.; Hu, Y.; You, J.; Xiong, S.; Liu, R. Effect of high intensity ultrasound on gelation properties of silver carp surimi with different salt contents. Ultrason. Sonochem. 2021, 70, 105326. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Pang, X. Electrostatic interactions in protein structure, folding, binding, and condensation. Chem. Rev. 2018, 118, 1691–1741. [Google Scholar] [CrossRef] [PubMed]
- Golovanov, A.P.; Hautbergue, G.M.; Wilson, S.A.; Lian, L. A simple method for improving protein solubility and long-term stability. J. Am. Chem. Soc. 2004, 126, 8933–8939. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Zhou, T.; Wang, X.; Zou, Y.; Wang, D.; Xu, W. Effects of the structure and gel properties of myofibrillar protein on chicken breast quality treated with ultrasound-assisted potassium alginate. Food Chem. 2021, 358, 129873. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Pei, Z.; Wen, P.; Chin, Y.; Hu, Y. Effects of pH and NaCl on the Spatial Structure and Conformation of Myofibrillar Proteins and the Emulsion Gel System—Insights from Computational Molecular Dynamics on Myosin of Golden Pompano. Gels 2023, 9, 270. [Google Scholar] [CrossRef] [PubMed]
- Deitiker, P.R.; Epstein, H.F. Thick filament substructures in Caenorhabditis elegans: Evidence for two populations of paramyosin. J. Cell Biol. 1993, 123, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Enriquez, R.L.; Ocano-Higuera, V.M.; Torres-Arreola, W.; Ezquerra-Brauer, J.M.; Marquez-Rios, E. Chemical and functional characterization of sarcoplasmic proteins from giant squid (Dosidicus gigas) mantle. J. Chem. 2015, 2015, 538721. [Google Scholar] [CrossRef]
- Gould, J.; Wolf, B. Interfacial and emulsifying properties of mealworm protein at the oil/water interface. Food Hydrocolloids 2018, 77, 57–65. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, J.; Xu, Y.; Mi, H.; Yi, S.; Gao, R.; Li, X.; Li, J. Effects of chickpea protein-stabilized Pickering emulsion on the structure and gelling properties of hairtail fish myosin gel. Food Chem. 2023, 417, 135821. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ma, S.; Shao, Q.; Yi, S. Effects of Soy Protein Isolate and Inulin Conjugate on Gel Properties and Molecular Conformation of Spanish Mackerel Myofibrillar Protein. Foods 2024, 13, 2920. [Google Scholar] [CrossRef] [PubMed]
- Depta, P.N.; Gurikov, P.; Schroeter, B.; Forgács, A.; Kalmár, J.; Paul, G.; Marchese, L.; Heinrich, S.; Dosta, M. DEM-based approach for the modeling of gelation and its application to alginate. J. Chem. Inf. Model. 2021, 62, 49–70. [Google Scholar] [CrossRef] [PubMed]
- Barcenilla, C.; Álvarez-Ordóñez, A.; López, M.; Alvseike, O.; Prieto, M. Microbiological safety and shelf-life of low-salt meat products—A Review. Foods 2022, 11, 2331. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, J.; Teng, S.; Peng, Z.; Jamali, M.A. Quality improvement of prerigor salted ground chicken breast with basic amino acids at low NaCl level. Poult. Sci. 2023, 102, 102871. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Wang, H.; Guo, X.; Zhang, Z.; Gao, Z.; Gao, S.; Liu, Z.; Rao, S.; Meng, X. Insight into the mechanism of enhancing myofibrillar protein gel hardness by ultrasonic treatment combined with insoluble dietary fiber from oat. LWT–Food Sci. Technol. 2023, 178, 114539. [Google Scholar] [CrossRef]
- Calligaris, S.; Plazzotta, S.; Valoppi, F.; Anese, M. Combined high-power ultrasound and high-pressure homogenization nanoemulsification: The effect of energy density, oil content and emulsifier type and content. Food Res. Int. 2018, 107, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yan, J.; Ding, Y.; Rashid, M.T.; Ma, H. Effect of sweep frequency ultrasound and fixed frequency ultrasound thawing on gelling properties of myofibrillar protein from quick-frozen small yellow croaker and its possible mechanisms. LWT–Food Sci. Technol. 2021, 150, 111922. [Google Scholar] [CrossRef]
- Hand, L.W.; Terrell, R.N.; Smith, G.C. Effects of complete or partial replacement of sodium chloride on processing and sensory properties of hams. J. Food Sci. 1982, 47, 1776–1778. [Google Scholar] [CrossRef]
- Fuentes, A.; Fernández-Segovia, I.; Serra, J.A.; Barat, J.M. Influence of sodium replacement and packaging on quality and shelf life of smoked sea bass (Dicentrarchus labrax L.). LWT-Food Sci. Technol. 2011, 44, 917–923. [Google Scholar] [CrossRef]
- Kim, T.K.; Yong, H.I.; Jung, S.; Kim, H.M.; Choi, Y.S. Effect of reducing sodium chloride based on the sensory properties of meat products and the improvement strategies employed: A review. J. Anim. Sci. Technol. 2021, 63, 725. [Google Scholar] [CrossRef] [PubMed]
- Fullenkamp, D.E.; He, L.; Barrett, D.G.; Burghardt, W.R.; Messersimth, P.B. Mussel-inspired histidine-based transient network metal coordination hydrogels. Macromolecules 2013, 46, 1167–1174. [Google Scholar] [CrossRef] [PubMed]
- Nooshkam, M.; Varidi, M.; Zareie, Z.; Alkobeisi, F. Behavior of protein-polysaccharide conjugate-stabilized food emulsions under various destabilization conditions. Food Chem. X 2023, 18, 100725. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hu, X.; Han, J.; Ni, L.; X Tang, X.; Hu, Y.; Cen, T. Integrated method of thermosensitive triblock copolymer–salt aqueous two-phase extraction and dialysis membrane separation for purification of Lycium barbarum polysaccharide. Food Chem. 2016, 194, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Gouseti, O.; Larsen, M.E.; Amin, A.; Bakalis, S.; Petersen, I.L.; Lametsch, R.; Jensen, P.E. Applications of enzyme technology to enhance transition to plant proteins: A review. Foods 2023, 12, 2518. [Google Scholar] [CrossRef] [PubMed]
- Leng, W.; Li, Y.; Liang, X.; Yuan, L.; Li, X.; Gao, R. Thermo-reversible gelation and enhanced umami perception of myofibrillar proteins induced by protein-glutaminase-mediated deamidation. Food Chem. 2025, 471, 142802. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Meng, H.; Guo, X.; Tang, Z.; Yu, S. Natural aldehyde-chitosan Schiff base: Fabrication, pH-responsive properties, and vegetable preservation. Foods 2023, 12, 2921. [Google Scholar] [CrossRef] [PubMed]
- Javed, M.; Huang, H.; Ma, Y.; Ettoumi, F.E.; Wang, L.; Xu, Y.; EI-Seedi, H.R.; Ru, Q.; Luo, Z. Construction of self-assembled nanocellulose crystals/chitosan nanobubbles composite hydrogel with improved gallic acid release property. Food Chem. 2023, 438, 137948. [Google Scholar] [CrossRef] [PubMed]
- Rode, T.M.; Rotabakk, B.T. Extending shelf life of desalted cod by high pressure processing. Innov. Food Sci. Emerg. Technol. 2021, 69, 102476. [Google Scholar] [CrossRef]
- Pan, J.; Zhang, Z.; Mintah, B.K.; Xu, H.; Dabbour, M.; Cheng, Y.; Dai, C.; He, R.; Ma, H. Effects of nonthermal physical processing technologies on functional, structural properties and digestibility of food protein: A review. J. Food Process Eng. 2022, 45, e14010. [Google Scholar] [CrossRef]
- Shi, T.; Yuan, L.; Mu, J.; Gao, R. The effect of Arginine, Lysine and Histidine in the myosin secondary structure by circular dichroism and Raman spectroscopy. CyTA-J. Food 2019, 17, 656–660. [Google Scholar] [CrossRef]
- Gao, R.; Wang, X.; Shi, T.; Wijaya, G.Y.A.; Bai, F.; Wang, J.; Jin, W.; Yuan, L. Enhanced physical properties of reduced-salt surimi gels from Amur sturgeon (Acipenser schrenckii) by L-arginine and L-histidine. J. Food Process. Preserv. 2021, 45, e15887. [Google Scholar] [CrossRef]
- Wang, Y.; Mei, Y.; Du, R.; Zhang, S.; Wang, Q.; Dao, X.; Li, N.; Wang, L.; Wang, L.; He, R. Arginine as a regulator of antioxidant and gel formation in yak Myofibrillar proteins: Efficacy and mechanistic insights. Food Chem. X 2024, 24, 101839. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Feng, T.; Wang, X.; Zhang, X.; Xia, S. Gelation and microstructural properties of fish myofibrillar protein gels with the incorporation of L-lysine and L-arginine at low ionic strength. J. Sci. Food Agric. 2021, 101, 5469–5477. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Xiong, Z.; Jin, W.; Yuan, L.; Sun, Q.; Zhang, Y.; Li, X.; Gao, R. Suppression mechanism of L-arginine in the heat-induced aggregation of bighead carp (Aristichthys nobilis) myosin: The significance of ionic linkage effects and hydrogen bond effects. Food Hydrocolloids 2020, 102, 105596. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, F.; Wan, X.; Zhang, H.; Cai, M.; Hu, K.; Duan, Y. Effects of rapeseed protein addition on soybean protein-based textured protein produced by low-moisture extrusion: Changes in physicochemical attributes, structural properties and barrel flow behaviors. Food Hydrocolloids 2023, 149, 109631. [Google Scholar] [CrossRef]
- Mason, P.E.; Neilson, G.W.; Dempsey, C.E.; Barnes, A.C.; Cruickshank, J.M. The hydration structure of guanidinium and thiocyanate ions: Implications for protein stability in aqueous solution. Proc. Natl. Acad. Sci. USA 2003, 100, 4557–4561. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Wang, X.; Li, M.; Xiong, Z.; McClements, D.J.; Bao, Y.; Song, T.; Li, J.; Jin, W.; Gao, R. Mechanism of low-salt surimi gelation induced by microwave heating combined with l-arginine and transglutaminase: On the basis of molecular docking between l-arginine and myosin heavy chain. Food Chem. 2022, 391, 133184. [Google Scholar] [CrossRef] [PubMed]
- Lv, G.; Wang, H.; Wei, X.; Liu, X.; Yang, W.; Aalim, H.; Capanoglu, E.; Zou, X.; Battion, M.; Zhang, D. Cooking-induced oxidation and structural changes in chicken protein: Their impact on in vitro gastrointestinal digestion and intestinal flora fermentation characteristics. Foods 2023, 12, 4322. [Google Scholar] [CrossRef] [PubMed]
- Schönichen, A.; Webb, B.A.; Jacobson, M.P.; Barber, D.L. Considering protonation as a posttranslational modification regulating protein structure and function. Annu. Rev. Biophys. 2013, 42, 289–314. [Google Scholar] [CrossRef] [PubMed]
- Trujillo, C.; Rodriguez-Sanz, A.A.; Rozas, I. Aromatic Amino Acids–Guanidinium Complexes through Cation–π Interactions. Molecules 2015, 20, 9214–9228. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Lee, Y.; Jho, Y.; Hwang, D.S. Molecular hydration tunes the cation–π interaction strength in aqueous solution. Adv. Mater. Interfaces 2023, 10, 2201732. [Google Scholar] [CrossRef]
- Sun, W.; Xue, B.; Fan, Q.; Tao, R.; Wang, C.; Wang, X.; Li, Y.; Qin, M.; Wang, W.; Chen, B.; et al. Molecular engineering of metal coordination interactions for strong, tough, and fast-recovery hydrogels. Sci. Adv. 2020, 6, eaaz9531. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Ames, J.M.; Smith, R.D.; Baynes, J.W.; Metz, T.O. A perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: Probing the pathogenesis of chronic disease. J. Proteome Res. 2009, 8, 754–769. [Google Scholar] [CrossRef] [PubMed]
- Koniev, O.; Wagner, A. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem. Soc. Rev. 2015, 44, 5495–5551. [Google Scholar] [CrossRef] [PubMed]
- Campbell, K.S. Dynamic coupling of regulated binding sites and cycling myosin heads in striated muscle. J. Gen. Physiol. 2014, 143, 387–399. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, W.; Wang, S.; Shen, Y.; Pan, J.; Dong, X.; Li, S. The solubility and structures of porcine myofibrillar proteins under low-salt processing conditions as affected by the presence of L-lysine. Foods 2022, 11, 855. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Wang, X.; Hou, B.; Hao, C.; Li, X.; Wu, J. Construction of a lignosulfonate-lysine hydrogel for the adsorption of heavy metal ions. J. Agric. Food Chem. 2020, 68, 3050–3060. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Xu, W.; Yu, Q.; You, J.; Gao, R.; Bao, Y. Pre-rigor salting improves gel strength and water-holding of surimi gel made from snakehead fish (Channa argus): The role of protein oxidation. Food Chem. 2024, 450, 139269. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, L.; Gao, S.; Bao, Y.; Tan, Y.; Luo, Y.; Li, X.; Hong, H. Effect of protein oxidation in meat and exudates on the water holding capacity in bighead carp (Hypophthalmichthys nobilis) subjected to frozen storage. Food Chem. 2021, 370, 131079. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wen, C.; Duan, Y.; Zhang, H.; Ma, H. Structure and functional properties of watermelon seed protein–glucose conjugates prepared by different methods. LWT–Food Sci. Technol. 2021, 155, 113004. [Google Scholar] [CrossRef]
- Guo, X.; Peng, Z.; Zhang, Y.; Liu, B.; Cui, Y. The solubility and conformational characteristics of porcine myosin as affected by the presence of L-lysine and L-histidine. Food Chem. 2015, 170, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, Y.; Zhou, R.; Liu, Z.; Lu, F.; Lin, H.; Xu, X.; Zhou, G. L-histidine improves water retention of heat-induced gel of chicken breast myofibrillar proteins in low ionic strength solution. Int. J. Food Sci. Technol. 2016, 51, 1195–1203. [Google Scholar] [CrossRef]
- Nakashige, T.G.; Stephan, J.R.; Cunden, L.S.; Brophy, M.B.; Wommack, A.J.; Keegan, B.C.; Shearer, J.M.; Nolan, E.M. The hexahistidine motif of host-defense protein human calprotectin contributes to zinc withholding and its functional versatility. J. Am. Chem. Soc. 2016, 138, 12243–12251. [Google Scholar] [CrossRef] [PubMed]
- Mao, C.; Wu, J.; Zhang, X.; Ma, F.; Cheng, Y. Improving the solubility and digestibility of potato protein with an online ultrasound-assisted pH shifting treatment at medium temperature. Foods 2020, 9, 1908. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Chen, L.; Ouyang, K.; Chen, H.; Lin, S.; Wang, W. Effect of the Partial Substitution of NaCl with L-Arg on the Gel Properties and Aggregation Behavior of Beef Myosin. Foods 2025, 14, 680. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Sun, P.; Zhao, Y.; Du, X.; Ren, X.; Man, H.; Li, D. Effect of L-lysine on heat-induced aggregation behavior of Antarctic krill (Euphausia superba) Myofibrillar Protein. Food Bioprocess Technol. 2024, 17, 1448–1461. [Google Scholar] [CrossRef]
- Berhanu, W.M.; Masunov, A.E. Full length amylin oligomer aggregation: Insights from molecular dynamics simulations and implications for design of aggregation inhibitors. J. Biomol. Struct. Dyn. 2014, 32, 1651–1669. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Ding, X.; Li, Y.; Ma, H. The aggregation, structures and emulsifying properties of soybean protein isolate induced by ultrasound and acid. Food Chem. 2019, 279, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Scarff, C.A.; Carrington, G.; Casas-Mao, D.; Chalovich, J.M.; Knight, P.J.; Ranson, N.A.; Peckham, M. Structure of the shutdown state of myosin-2. Nature 2020, 588, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.; Sun, J.; Obadi, M.; Chen, Z.; Xu, B. Effects of saccharides on the rheological and gelling properties and water mobility of egg white protein. Food Hydrocolloids 2020, 108, 106038. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, T.; Wang, Y.; Liu, J.; Shi, W.; Hu, H.; Meng, Y.; Meng, X.; He, R. Influence of multi-frequency ultrasound treatment on conformational characteristics of beef myofibrillar proteins with different degrees of doneness. Foods 2023, 12, 2926. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Han, L.; Fu, Q.; Li, Y.; Liang, Z.; Su, J.; Li, B. Formation and inhibition of ε-(carboxymethyl) lysine in saccharide-lysine model systems during microwave heating. Molecules 2012, 17, 12758–12770. [Google Scholar] [CrossRef] [PubMed]
- Mao, C.; Wu, J.; Cheng, Y.; Chen, T.; Ren, X.; Ma, H. Physicochemical properties and digestive kinetics of whey protein gels filled with potato and whey protein mixture emulsified oil droplets: Effect of protein ratios. Food Funct. 2021, 12, 5927–5939. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Li, C.; Liu, X.; He, L.; Zhang, M.; Hang, S.; Huang, S.; Liu, Y.; Zhang, Y.; Jin, J. A multivariate insight into the organoleptic properties of porcine muscle by ultrasound-assisted brining: Protein oxidation, water state and microstructure. LWT–Food Sci. Technol. 2022, 159, 113136. [Google Scholar] [CrossRef]
- Li, S.; Li, M.; Cao, H.; Guan, X.; Zhang, Y.; Huang, K.; Zhang, Y. The intervening effect of L-lysine on the gel properties of wheat gluten under microwave irradiation. Food Chem. X 2022, 14, 100299. [Google Scholar] [CrossRef] [PubMed]
- Henao, A.; Ruiz, G.N.; Steinke, N.; Cerveny, S.; Macovez, R.; Guàrdia, E.; Busch, S.; McLain, S.E.; Lorenz, C.D.; Pardo, L.C. On the microscopic origin of the cryoprotective effect in lysine solutions. Phys. Chem. Chem. Phys. 2020, 22, 6919–6927. [Google Scholar] [CrossRef] [PubMed]
- Hao, D.; Tu, X.; Zhang, X.; Guo, S.; Sun, L.; Li, J.; Wang, D.; Xu, W.; Li, P. Effects of protease inactivation on textural quality of yellow-feathered chicken meat and the possible mechanism based on myofibrillar protein. Food Control 2024, 166, 110713. [Google Scholar] [CrossRef]
- Jin, J.; Ma, H.; Wang, W.; Luo, M.; Wang, B.; Qu, W.; He, R.; Owusu, J.; Li, Y. Effects and mechanism of ultrasound pretreatment on rapeseed protein enzymolysis. J. Sci. Food Agric. 2016, 96, 1159–1166. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Ding, X.; Dai, C.; Ma, H. Changes in the structure and dissociation of soybean protein isolate induced by ultrasound-assisted acid pretreatment. Food Chem. 2017, 232, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Cai, R.; Wang, P.; Xu, X.; Zhou, G.; Sun, J. Manipulating interfacial behavior and emulsifying properties of myosin through alkali-heat treatment. Food Hydrocolloids 2018, 85, 69–74. [Google Scholar] [CrossRef]
- Man, H.; Sun, P.; Lin, J.; Ren, X.; Li, D. Based on hydrogen and disulfide-mediated bonds, L-lysine and L-arginine enhanced the gel properties of low-salt mixed shrimp surimi (Antarctic krill and Pacific White Shrimp). Food Chem. 2024, 445, 138735. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zou, Y.; Han, M.; Pan, L.; Xing, T.; Xu, X.; Zhou, G. Solubilization of myosin in a solution of low ionic strength l-histidine: Significance of the imidazole ring. Food Chem. 2016, 196, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Munir, S.; Javed, M.; Hu, Y.; Liu, Y.; Xiong, S. The effect of acidic and alkaline pH on the physico-mechanical properties of surimi-based edible films incorporated with green tea extract. Polymers 2020, 12, 2281. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.; Shi, T.; Jin, W.; Bao, Y.; Monto, A.R.; Yuan, L.; Gao, R. Gel performance of surimi induced by various thermal technologies: A review. Crit. Rev. Food Sci. Nutr. 2022, 64, 3075–3090. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.; Wang, X.; Li, M.; Shi, T.; Jin, W.; Li, J.; Yuan, L.; Gao, R. Investigation of the enhancement mechanism of ethanol addition on the gel performance of heat-induced surimi. J. Food Eng. 2023, 355, 111581. [Google Scholar] [CrossRef]
- Hou, F.; Ding, W.; Qu, W.; Oladejo, A.O.; Xiong, F.; Zhang, W.; He, R.; Ma, H. Alkali solution extraction of rice residue protein isolates: Influence of alkali concentration on protein functional, structural properties and lysinoalanine formation. Food Chem. 2017, 218, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Qu, W.; Zhang, X.; Han, X.; Wang, Z.; He, R.; Ma, H. Structure and functional characteristics of rapeseed protein isolate–dextran conjugates. Food Hydrocolloids 2018, 82, 329–337. [Google Scholar] [CrossRef]
- Karabulut, G.; Subasi, B.G.; Ivanova, P.; Goksen, G.; Chalova, V.; Capanoglu, E. Towards sustainable and nutritional-based plant protein sources: A review on the role of rapeseed. Food Res. Int. 2025, 202, 115553. [Google Scholar] [CrossRef] [PubMed]
- Feng, R.; Yu, Q.; Bao, Y.; Chen, L.; Luo, Y.; Tan, Y.; Hong, H. Myofibrillar protein lipoxidation in fish induced by linoleic acid and 4-hydroxy-2-nonenal: Insights from LC-MS/MS analysis. Food Res. Int. 2024, 187, 114357. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, X.; Bai, F.; Fang, Y.; Wang, J.; Gao, R. The anti-skin-aging effect of oral administration of gelatin from the swim bladder of Amur sturgeon (Acipenser schrenckii). Food Funct. 2019, 10, 3890–3897. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Mu, Y.; Mohammed, O.; Dong, S.; Xu, B. Effects of single-mode microwave heating and dextran conjugation on the structure and functionality of ovalbumin–dextran conjugates. Food Res. Int. 2020, 137, 109468. [Google Scholar] [CrossRef] [PubMed]
- Molchanova, N.; Hansen, P.R.; Franzyk, H. Advances in development of antimicrobial peptidomimetics as potential drugs. Molecules 2017, 22, 1430. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.J. The Enhancement of Saltiness Perception in Fish Products by Microwave Treatment and the Processing Adaptability of Reduced-Salt Surimi. Ph.D. Thesis, Jiangnan University, Wuxi, China, 2021. (In Chinese). [Google Scholar]
- Campagnol, P.C.B.; dos Santos, B.A.; Morgano, M.A.; Terra, N.N.; Pollonio, M.A.R. Application of lysine, taurine, disodium inosinate and disodium guanylate in fermented cooked sausages with 50% replacement of NaCl by KCl. Meat Sci. 2011, 87, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Li, C.; Cui, H.; Lin, L. Plasma enhanced-nutmeg essential oil solid liposome treatment on the gelling and storage properties of pork meat batters. J. Food Eng. 2020, 266, 109696. [Google Scholar] [CrossRef]
- Zhai, Y.; Luan, A.; Yang, Z.; Rong, Z.; Liu, Y.; Wang, F.; Li, X. The impacts of cold plasma on the taste and odor formation of dried silver carp products. Food Chem. 2024, 454, 139775. [Google Scholar] [CrossRef] [PubMed]
- Matricardi, P.; Cencetti, C.; Ria, R.; Alhaique, F.; Coviello, T. Preparation and characterization of novel gellan gum hydrogels suitable for modified drug release. Molecules 2009, 14, 3376–3391. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Duan, Y.; Zhang, H.; Huang, F.; Wan, C.; Cheng, C.; Wang, L.; Peng, D.; Deng, Q. Ultrasound coupled with weak alkali cycling-induced exchange of free sulfhydryl–disulfide bond for remodeling interfacial flexibility of flaxseed protein isolates. Food Hydrocolloids 2023, 140, 108597. [Google Scholar] [CrossRef]
- Wen, C.; Zhang, J.; Duan, Y.; Zhang, H.; Ma, H. A mini-review on brewer’s spent grain protein: Isolation, physicochemical properties, application of protein, and functional properties of hydrolysates. J. Food Sci. 2019, 84, 3330–3340. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, Z.; Ren, W.; Wang, Y.; Mintah, B.K.; Dabbour, M.; Hou, Y.; He, R.; Cheng, Y.; Ma, H. Inhibition effect of ultrasound on the formation of lysinoalanine in rapeseed protein isolates during pH shift treatment. J. Agric. Food Chem. 2021, 69, 8536–8545. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Huang, Y.; Liu, T.; Jing, H.; Zhang, F.; Obadi, M.; Xu, B. Evaluation of crosslinking sites of egg white protein–polyphenol conjugates: Fabricated using a conventional and ultrasound-assisted free radical technique. Food Chem. 2022, 386, 132606. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, T.; Wang, G.; Xie, Y.; Jin, W.; Wang, X.; Li, M.; Liu, Y.; Yuan, L. Alkaline Amino Acids for Salt Reduction in Surimi: A Review. Foods 2025, 14, 2545. https://doi.org/10.3390/foods14142545
Shi T, Wang G, Xie Y, Jin W, Wang X, Li M, Liu Y, Yuan L. Alkaline Amino Acids for Salt Reduction in Surimi: A Review. Foods. 2025; 14(14):2545. https://doi.org/10.3390/foods14142545
Chicago/Turabian StyleShi, Tong, Guxia Wang, Yu Xie, Wengang Jin, Xin Wang, Mengzhe Li, Yuanxiu Liu, and Li Yuan. 2025. "Alkaline Amino Acids for Salt Reduction in Surimi: A Review" Foods 14, no. 14: 2545. https://doi.org/10.3390/foods14142545
APA StyleShi, T., Wang, G., Xie, Y., Jin, W., Wang, X., Li, M., Liu, Y., & Yuan, L. (2025). Alkaline Amino Acids for Salt Reduction in Surimi: A Review. Foods, 14(14), 2545. https://doi.org/10.3390/foods14142545