Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (143)

Search Parameters:
Keywords = alkaline provinces

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4641 KiB  
Article
The Hydrochemical Dynamics and Water Quality Evolution of the Rizhao Reservoir and Its Tributary Systems
by Qiyuan Feng, Youcheng Lv, Jianguo Feng, Weidong Lei, Yuqi Zhang, Mingyu Gao, Linghui Zhang, Baoqing Zhao, Dongliang Zhao and Kexin Lou
Water 2025, 17(15), 2224; https://doi.org/10.3390/w17152224 - 25 Jul 2025
Viewed by 288
Abstract
Rizhao Reservoir, Shandong Province, China, as a key regional water supply hub, provides water for domestic, industrial, and agricultural uses in and around Rizhao City by intercepting runoff, which plays a central role in guaranteeing water supply security and supporting regional development. This [...] Read more.
Rizhao Reservoir, Shandong Province, China, as a key regional water supply hub, provides water for domestic, industrial, and agricultural uses in and around Rizhao City by intercepting runoff, which plays a central role in guaranteeing water supply security and supporting regional development. This study systematically collected 66 surface water samples to elucidate the hydrochemical characteristics within the reservoir area, identify the principal influencing factors, and clarify the sources of dissolved ions, aiming to enhance the understanding of the prevailing water quality conditions. A systematic analysis of hydrochemical facies, solute provenance, and governing processes in the study area’s surface water was conducted, employing an integrated mathematical and statistical approach, comprising Piper trilinear diagrams, correlation analysis, and ionic ratios. Meanwhile, the entropy weight-based water quality index (EWQI) and irrigation water quality evaluation methods were employed to assess the surface water quality in the study area quantitatively. Analytical results demonstrate that the surface water system within the study area is classified as freshwater with circumneutral to slightly alkaline properties, predominantly characterized by Ca-HCO3 and Ca-Mg-SO4-Cl hydrochemical facies. The evolution of solute composition is principally governed by rock–water interactions, whereas anthropogenic influences and cation exchange processes exert comparatively minor control. Dissolved ions mostly originate from silicate rock weathering, carbonate rock dissolution, and sulfate mineral dissolution processes. Potability assessment via the entropy-weighted water quality index (EWQI) classifies surface waters in the study area as Grade I (Excellent), indicating compliance with drinking water criteria under defined boundary conditions. Irrigation suitability analysis confirms minimal secondary soil salinization risk during controlled agricultural application, with all samples meeting standards for direct irrigation use. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

21 pages, 8925 KiB  
Article
Zr-Th-REE Mineralization Associated with Albite–Aegirine-Bearing Rocks of the Burpala Alkaline Intrusion (North Baikal Region, South Margin of the Siberian Craton)
by Ivan Aleksandrovich Izbrodin, Anna Gennadievna Doroshkevich, Anastasia Evgenyevna Starikova, Alexandra Vladislavovna Malyutina, Tatyana Nikolaevna Moroz and Igor Sergeevich Sharygin
Minerals 2025, 15(7), 742; https://doi.org/10.3390/min15070742 - 16 Jul 2025
Viewed by 302
Abstract
The rocks of the Burpala alkaline intrusion contain a wide range of rare minerals that concentrate rare earth elements (REEs), Nb, Th, Li, and other incompatible elements. One of the examples of the occurrence of such mineralization is albite–aegirine rocks located at the [...] Read more.
The rocks of the Burpala alkaline intrusion contain a wide range of rare minerals that concentrate rare earth elements (REEs), Nb, Th, Li, and other incompatible elements. One of the examples of the occurrence of such mineralization is albite–aegirine rocks located at the contact zone between the intrusion and the host terrigenous–sedimentary rock. In albite–aegirine rocks, cubic crystals of “metaloparite”, partially or completely substituted by bastnäsite-(Ce) and polymorphic TiO2 phases (anatase and rutile) mainly represent the rare metal minerals. In albite–aegirine rocks, trace element minerals are predominantly represented by cubic crystals of “metaloparite”, which are partially or completely replaced by bastnäsite-(Ce) and polymorphic TiO2 phases such as anatase and rutile. Additionally, Th-bearing zircon (up to 17.7 wt% ThO2) and a variety of unidentified minerals containing REEs, Th, and Nb were detected. The obtained data indicate that bastnäsite-(Ce) is the result of the recrystallization of “metaloparite” accompanied by the formation of Th-bearing zircon and Nb-bearing rutile (up to 9.9 wt% Nb2O5) and the separation of various undiagnosed, unidentified LREE phases. Our studies show that remobilization of LREEs, HFSEs, and local enrichment of rocks in these elements occurred due to the effects of residual fluid enriched in fluorine and carbon dioxide. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

20 pages, 9728 KiB  
Article
The Response of the Functional Traits of Phragmites australis and Bolboschoenus planiculmis to Water and Saline–Alkaline Stresses
by Lili Yang, Yanjing Lou and Zhanhui Tang
Plants 2025, 14(14), 2112; https://doi.org/10.3390/plants14142112 - 9 Jul 2025
Viewed by 356
Abstract
Soil saline–alkaline stress and water stress, exacerbated by anthropogenic activities and climate change, are major drivers of wetland vegetation degradation, severely affecting the function of wetland ecosystems. In this study, we conducted a simulation experiment with three water levels and four saline–alkaline concentration [...] Read more.
Soil saline–alkaline stress and water stress, exacerbated by anthropogenic activities and climate change, are major drivers of wetland vegetation degradation, severely affecting the function of wetland ecosystems. In this study, we conducted a simulation experiment with three water levels and four saline–alkaline concentration levels as stress factors to assess eight key functional traits of Phragmites australis and Bolboschoenus planiculmis, dominant species in the salt marsh wetlands in the western region of Jilin province, China. The study aimed to evaluate how these factors influence the functional traits of P. australis and B. planiculmis. Our results showed that the leaf area, root biomass, and clonal biomass of P. australis significantly increased, and the leaf area of B. planiculmis significantly decreased under low and medium saline–alkaline concentration treatments, while the plant height, ramet number, and aboveground biomass of P. australis and the root biomass, clonal biomass, and clonal/belowground biomass ratio of B. planiculmis were significantly reduced and the ratio of belowground to aboveground biomass of B. planiculmis significantly increased under high saline–alkaline concentration treatment. The combination of drought conditions with medium and high saline–alkaline treatments significantly reduced leaf area, ramet number, and clonal biomass in both species. The interaction between flooding water level and medium and high saline–alkaline treatments significantly suppressed the plant height, root biomass, and aboveground biomass of both species, with the number of ramets having the greatest contribution. These findings suggest that the effects of water levels and saline–alkaline stress on the functional traits of P. australis and B. planiculmis are species-specific, and the ramet number–plant height–root biomass (RHR) strategy may serve as an adaptive mechanism for wetland clones to environmental changes. This strategy could be useful for predicting plant productivity in saline–alkaline wetlands. Full article
Show Figures

Figure 1

18 pages, 766 KiB  
Article
Effects of Fertilizers and Soil Amendments on Soil Physicochemical Properties and Carbon Sequestration of Oat (Avena sativa L.) Planted in Saline–Alkaline Land
by Jiao Liu, Yiming Zhu, Hao Wu, Guichun Dong, Guisheng Zhou and Donald L. Smith
Agronomy 2025, 15(7), 1582; https://doi.org/10.3390/agronomy15071582 - 28 Jun 2025
Cited by 1 | Viewed by 322
Abstract
The coastal tidal flat area of Jiangsu Province, China, is vast and has great potential for carbon sequestration. Planting oat in saline–alkaline land can increase carbon sequestration from the atmosphere into soil and, thus, improve soil quality. Harvesting oats can act as a [...] Read more.
The coastal tidal flat area of Jiangsu Province, China, is vast and has great potential for carbon sequestration. Planting oat in saline–alkaline land can increase carbon sequestration from the atmosphere into soil and, thus, improve soil quality. Harvesting oats can act as a biological desalination mechanism, and long-term planting may transform saline–alkaline land into high-quality arable land. Our experiment selected two oat varieties, Caesar (V1) and Menglong (V2), and used urea, organic fertilizer, microbial inoculant, and biochar as experimental factors to investigate the effects of fertilizers and soil amendments on soil improvement and carbon sequestration when cultivating oats. The results showed that when planting V1, the carbon sequestration of the farmland ecosystem was the highest with microbial inoculant and organic fertilizer treatments, and the soil salinity decreased the most with biochar treatment. When planting V2, the carbon sequestration of the farmland ecosystem was the highest with the urea + biochar treatment, the soil salinity decreased the most with organic fertilizer + microbial inoculant treatment, and the soil organic carbon content increased the most with organic fertilizer + biochar treatment. We found that the application of organic fertilizer and biochar significantly increased soil organic carbon (SOC) content by 22.03% compared to the control treatment. Additionally, the combined treatment of urea and biochar resulted in the highest agricultural carbon sink, with a 74.62% increase in oat carbon storage compared to conventional fertilization. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

18 pages, 6291 KiB  
Article
Petrological Exploration of Magma Storage and Evolution Conditions at the Eastern Virunga Volcanic Province (Rwanda, East African Rift System)
by Fabio Colle, Teresa Trua, Serena Giacomelli, Massimo D’Orazio and Roberto Valentino
Minerals 2025, 15(7), 666; https://doi.org/10.3390/min15070666 - 20 Jun 2025
Cited by 1 | Viewed by 299
Abstract
The Virunga Volcanic Province (VVP), located in the western branch of the East African Rift System, hosts a variety of alkaline lavas erupted from closely spaced volcanic centers. However, the magmatic system of this region, particularly in its eastern sector, remains insufficiently constrained. [...] Read more.
The Virunga Volcanic Province (VVP), located in the western branch of the East African Rift System, hosts a variety of alkaline lavas erupted from closely spaced volcanic centers. However, the magmatic system of this region, particularly in its eastern sector, remains insufficiently constrained. In this study, we present a petrological and geochemical investigation of basaltic to trachytic lavas from the eastern VVP. Thermobarometric analysis of mineral phases indicates that basalts originated from magma storage zones between 4 and 30 km deep, with crystallization temperatures of ~1200 °C and melt H2O contents lower than 1 wt%. In contrast, more evolved magmas crystallized at similar depths, but at lower temperatures (~1050 °C) and higher H2O contents, ranging from 2 to 4 wt%. Thermodynamic modelling suggests that extensive (up to 70%) fractional crystallization of an assemblage dominated by olivine, clinopyroxene, and plagioclase can produce the more evolved trachytic derivatives from basaltic parental melts. When integrated with previous studies from other VVP volcanoes, our findings deepen the understanding of the architecture of the magmatic system beneath the region, suggesting it resembles a well-developed multi-level plumbing system. Full article
Show Figures

Figure 1

24 pages, 8945 KiB  
Article
Chronological and Geochemical Characteristics of a Newly Discovered Biotite Granite Porphyry in the Zhuxi W-Cu Polymetallic Deposit, Jiangxi Province, South China: Implications for Cu Mineralization
by Yongpeng Ouyang, Qi Chen, Runling Zeng and Tongfei Li
Minerals 2025, 15(6), 624; https://doi.org/10.3390/min15060624 - 9 Jun 2025
Viewed by 313
Abstract
Multiple occurrences of adakitic rocks, with crystallization ages clustering around ~160 Ma, have been documented in the Zhuxi district, northeast Jiangxi Province, South China. This research identifies a new adakitic biotite granite porphyry within the Zhuxi W-Cu polymetallic deposit. Zircon U-Pb geochronology of [...] Read more.
Multiple occurrences of adakitic rocks, with crystallization ages clustering around ~160 Ma, have been documented in the Zhuxi district, northeast Jiangxi Province, South China. This research identifies a new adakitic biotite granite porphyry within the Zhuxi W-Cu polymetallic deposit. Zircon U-Pb geochronology of this porphyry yields a crystallization age of 161.6 ± 2.1 Ma. Integrated with previously published data, the adakitic rocks in the study area—comprising diorite porphyrite, biotite quartz monzonite porphyry, and the newly identified biotite granite porphyry—are predominantly calc-alkaline and peraluminous. They exhibit enrichment in light rare-earth elements (LREEs) and depletion in heavy rare-earth elements (HREEs), with slight negative Eu anomalies. The trace element patterns are characterized by enrichment in Ba, U, K, Pb, and Sr, alongside negative Nb, Ta, P, and Ti anomalies, indicative of arc-like magmatic signatures. Comparative analysis of geological and geochemical characteristics suggests that these three rock types are not comagmatic. Petrogenesis of the Zhuxi adakitic suite is linked to a dynamic tectonic regime involving Mesozoic crustal thickening, subsequent delamination, and lithospheric extension. Asthenospheric upwelling likely triggered partial melting of the overlying metasomatized lithospheric mantle, generating primary mantle-derived magmas. Underplating and advection of heat by these magmas induced partial melting of the thickened lower crust, forming the biotite granite porphyry. Partial melting of delaminated lower crustal material, interacting with the asthenosphere or asthenosphere-derived melts, likely generated the diorite porphyrite. The biotite quartz monzonite porphyry is interpreted to have formed from mantle-derived magmas that underwent assimilation of, or mixing with, silicic crustal melts during ascent. The ~160 Ma crystallization ages of these adakitic rocks are broadly contemporaneous with W-Mo mineralization in the Taqian mining area of the Zhuxi district. Furthermore, their geochemical signatures imply a prospective metallogenic setting for Cu-Mo mineralization around this period in the Taqian area. Full article
(This article belongs to the Special Issue Using Mineral Chemistry to Characterize Ore-Forming Processes)
Show Figures

Figure 1

21 pages, 6822 KiB  
Article
Soil Physicochemical Improvement in Coastal Saline–Alkali Lands Through Salix matsudana × alba Plantation
by Zhenxiao Chen, Zhenan Chen and Handong Gao
Forests 2025, 16(6), 933; https://doi.org/10.3390/f16060933 - 2 Jun 2025
Viewed by 372
Abstract
To evaluate the ecological remediation effect of Salix matsudana × alba on saline coastal soils, we established a five-year field experiment in Rudong County, Jiangsu Province, China. The experiment was designed with three salinity gradients (low, medium, and high) and five plant spacing [...] Read more.
To evaluate the ecological remediation effect of Salix matsudana × alba on saline coastal soils, we established a five-year field experiment in Rudong County, Jiangsu Province, China. The experiment was designed with three salinity gradients (low, medium, and high) and five plant spacing treatments (2 × 2 m, 2 × 3 m, 3 × 3 m, 3 × 4 m, and 4 × 4 m). Soil samples were collected annually at a depth of 0–20 cm using grid and random sampling methods. Indicators of soil physicochemical properties and heavy metal content were measured, including soil organic matter (SOM), pH, total nitrogen (TN), total phosphorus (TP), total potassium (TK), electrical conductivity (EC), total salinity (TS), and bulk density (BD). Additionally, eight heavy metals were analyzed: zinc (Zn), chromium (Cr), nickel (Ni), copper (Cu), cadmium (Cd), lead (Pb), arsenic (As), and mercury (Hg). Results showed that the hybrid willow significantly improved SOM content by up to 90% and reduced EC and TS by 52% and 60% over five years, especially under low and medium salinity conditions with dense planting (2 × 2 m, 2 × 3 m). The content of most heavy metals exhibited a decreasing trend or remained stable, indicating the plant’s phytostabilization potential (i.e., stabilization of heavy metals via plant-soil interaction). Principal component analysis (PCA) and random forest (RF) modeling identified SOM, EC, TS, and BD as the dominant factors influencing soil quality improvement. A soil quality index (SQI) was constructed based on PCA-derived weights, which further confirmed the positive ecological effect of this hybrid species on coastal saline soils. This study provides scientific evidence supporting the use of Salix matsudana × alba as a promising species for large-scale ecological restoration in coastal saline-alkaline lands. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

22 pages, 12129 KiB  
Article
Metallogenic Age and Tectonic Setting of the Haigou Gold Deposit in Southeast Jilin Province, NE China: Constraints from Magmatic Chronology and Geochemistry
by Zhongjie Yang, Yuandong Zhao, Cangjiang Zhang, Chuantao Ren, Qun Yang and Long Zhang
Minerals 2025, 15(6), 582; https://doi.org/10.3390/min15060582 - 29 May 2025
Viewed by 378
Abstract
Haigou deposit, located in Dunhua City, southeast Jilin Province, NE China, is a large-scale gold deposit. The gold ore body is categorized into two types: quartz-vein type and altered rock type, with the quartz-vein type being predominant. The vein gold ore body primarily [...] Read more.
Haigou deposit, located in Dunhua City, southeast Jilin Province, NE China, is a large-scale gold deposit. The gold ore body is categorized into two types: quartz-vein type and altered rock type, with the quartz-vein type being predominant. The vein gold ore body primarily occurs within the monzonite granite and monzonite rock mass in the Haigou area and is controlled by fault structures trending northeast, northwest, and near north-south. In order to constrain the age and tectonic setting of quartz vein-type gold mineralization, we conducted a detailed underground investigation and collected samples of monzonite granite and pyroxene diorite porphyrite veins related to quartz-vein-type gold mineralization for LA-ICP-MS zircon U-Pb dating and whole-rock main trace element data testing to confirm that monzonite granite is closely related to gold mineralization. Pyroxene diorite porphyry and gold mineralization were found in parallel veins. The zircon U-Pb weighted mean ages of monzonite and pyroxene diorite porphyrite veins are 317.1 ± 3.5 Ma and 308.8 ± 3.0 Ma, respectively, indicating that gold mineralization in monzonite, pyroxene diorite porphyrite veins, and quartz veins occurred in the Late Carboniferous. The monzonite granite and pyroxene diorite porphyrite veins associated with quartz vein-type gold mineralization have high SiO2, high K, and high Al2O3 and are all metaluminous high-potassium calc-alkaline rock series. Both of them are relatively enriched in light rare earth elements (LREE) and macroionic lithophile elements (LILE: Rb, Ba, K, etc.), but deficient in heavy rare earth elements (HREE) and high field strength elements (HFSE: Nb, Ta, P, Ti, etc.), the monzonitic granite Eu is a weak positive anomaly (δEu = 1.15–1.46), the pyroxene diorite porphyre dyke Eu is a weak positive anomaly (δEu = 1.09–1.13), and the Nb and Ta are negative anomalies. The Th/Nb values are 0.28–0.73 and 1.48–2.05, and La/Nb are 2.61–4.74 and 4.59–5.43, respectively, suggesting that diagenetic mineralization is the product of subduction in an active continental margin environment. In recent years, scholarly research on Sr, Nd, and Pb isotopes in Haigou rock masses has indicated that the magmatic source region in the Haigou mining areas is complex. It is neither a singular crustal source nor a mantle source but rather a mixed crust-mantle source, primarily resulting from the partial melting of lower crustal materials, with additional contributions from mantle-derived materials. In summary, the metallogenic characteristics, chronology data, geochemical characteristics, and regional tectonic interpretation indicate that at least one phase of magmatic-hydrothermal gold mineralization was established in the Late Carboniferous as a result of the subduction of the Paleo-Asian ocean plate at the northern margin of the North China Craton. Full article
Show Figures

Figure 1

16 pages, 1711 KiB  
Article
Mechanism and Regulation of Tea Saponin Extraction from C. oleifera Seed Meal in Subcritical Water
by Aifeng Niu, Chengming Wang, Fangrong Liu, Guowei Ling, Yu Wang, Shilin Liu and Xizhou Hu
Foods 2025, 14(11), 1849; https://doi.org/10.3390/foods14111849 - 22 May 2025
Viewed by 468
Abstract
Tea saponins are excellent natural surfactants, and previous studies on their extraction from C. oleifera seed meals in subcritical water have mainly focused on the optimization of external extraction conditions. In order to achieve the efficient extraction of tea saponins in subcritical water, [...] Read more.
Tea saponins are excellent natural surfactants, and previous studies on their extraction from C. oleifera seed meals in subcritical water have mainly focused on the optimization of external extraction conditions. In order to achieve the efficient extraction of tea saponins in subcritical water, this study explores the influence of the composition-internal factors on the extraction rate of tea saponins. In this study, the composition of three C. oleifera seed meals purchased from Hubei, Hunan and Guizhou province and extraction rates of tea saponins, dissolution rates of reducing sugars and proteins from these C. oleifera seed meals were compared, and the results showed that reducing sugars and proteins were intrinsic components affecting extraction rates of tea saponins in subcritical water. The simulation system involving tea saponins, whey protein isolate (WPI), and glucose in subcritical water showed that WPI reduced the content of tea saponins through the Maillard reaction, and glucose inhibited the participation of tea saponins in the Maillard reaction. The above mechanism was verified using alkaline protease, which changed the content of reducing sugars and proteins in the C. oleifera seed meal purchased from Hubei province, and provided guidance for achieving the efficient extraction of tea saponins. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

18 pages, 11780 KiB  
Article
Identification, Pathogenicity and Fungicide Sensitivity of Colletotrichum Species Causing Anthracnose on Polygonatum cyrtonema Hua
by Huixia Cai, Jinxin Li, Yanling Du, Di Wu, Jinyi Chen, Hong Chen, Kaili Qu, Yuhuan Miao and Dahui Liu
Agronomy 2025, 15(5), 1215; https://doi.org/10.3390/agronomy15051215 - 16 May 2025
Viewed by 436
Abstract
Anthracnose significantly threatens the cultivation of Polygonatum cyrtonema, severely impacting its quality and yield. Between 2022 and 2023, 50 Colletotrichum isolates were obtained from diseased leaves collected in three P. cyrtonema production areas within the Two Lakes region of China (Hubei and [...] Read more.
Anthracnose significantly threatens the cultivation of Polygonatum cyrtonema, severely impacting its quality and yield. Between 2022 and 2023, 50 Colletotrichum isolates were obtained from diseased leaves collected in three P. cyrtonema production areas within the Two Lakes region of China (Hubei and Hunan provinces). Morphological and molecular analyses identified six Colletotrichum species as the causative agents of anthracnose: C. aenigma, C. siamense, C. gloeosporioides, C. spaethianum, C. fructicola, and C. karsti. Among these pathogens, C. fructicola and C. spaethianum were predominant (82%), while C. siamense and C. fructicola exhibited the highest aggressiveness. Physiological investigations revealed that the optimal temperature range for all six pathogens was 25–28 °C. C. spaethianum thrived under acidic conditions, whereas C. aenigma, C. siamense, and C. gloeosporioides preferred alkaline environments. In contrast, C. fructicola and C. karsti showed no significant response to pH variations. Fungicide screening demonstrated that pyraclostrobin, prochloraz, and carbendazim effectively inhibited the growth of Colletotrichum species. These findings elucidate the epidemiological factors, primary pathogens, and effective control agents for P. cyrtonema anthracnose in the Two Lakes region, providing a basis for developing targeted prevention and control strategies. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

21 pages, 15391 KiB  
Article
Geochemical Study of Bitumen Residues on Potsherds from the al-Qusur Monastery (7th–9th c. CE): Composition and Origin
by Jacques Connan, Julie Bonnéric, Rémi Perrogon, Michael H. Engel, Renaud Gley, Alex Zumberge and Philippe Schaeffer
Molecules 2025, 30(9), 2006; https://doi.org/10.3390/molecules30092006 - 30 Apr 2025
Viewed by 363
Abstract
Geochemical and isotopic analysis of bitumen lining potsherds from the al-Qusur monastery (second half of the 7th c. CE and the middle of the 9th c. CE), at the central part of Failaka Island (Kuwait Bay), confirms the presence of two distinct compositional [...] Read more.
Geochemical and isotopic analysis of bitumen lining potsherds from the al-Qusur monastery (second half of the 7th c. CE and the middle of the 9th c. CE), at the central part of Failaka Island (Kuwait Bay), confirms the presence of two distinct compositional categories that can be matched to contemporary sources from two different areas of Iran: the Kermanshah province on one side, and the Khuzestan–Fars–Busher provinces on the other side. Potsherds comprise different types: TORP-S amphorae, TORP-C amphorae, SPORC storage jar, turquoise alkaline-glazed jar (TURQ.T), and CREAC jar. There is no relationship between the type of potsherd and the origin of bitumen. The bitumen coating SPORC jar, first identified as a kind of juice strainer to filter the «garum-like juice», was examined in greater details to try to identify traces of fish sauce mentioned in the Arabic kitchen books as ‘murri’, and quite similar to the Roman garum. The mineralogical analysis exhibits the classical minerals of archaeological mixtures (quartz, calcite, dolomite) and no halite. Hydrocarbons, alcohols, and methyl esters show a typical biodegraded bitumen signature but no fatty acids and terpenoids. It seems that the bitumen matrix has not adsorbed any molecules from the presumed «garum» filtered in the basin. Full article
Show Figures

Figure 1

23 pages, 15341 KiB  
Article
Petrogenesis of Middle Jurassic Syenite-Granite Suites and Early Cretaceous Granites with Associated Enclaves in Southwestern Zhejiang, SE China: Implications for Subduction-Related Tectonic Evolution Beneath Northeastern Cathaysia Block
by Yu Wang, Haoyuan Lan, Chong Jin and Yuhuang Zhang
Minerals 2025, 15(5), 474; https://doi.org/10.3390/min15050474 - 30 Apr 2025
Viewed by 459
Abstract
Late Mesozoic magmatism in Southeast China extensively reworked the Cathaysia Block’s crust, linked to the Paleo-Pacific Plate subduction beneath East Asia. The northeastern Cathaysia Block, largely covered by Cretaceous volcanic-sedimentary basins, has limited Jurassic exposure to Early Cretaceous intrusions, which provides critical insights [...] Read more.
Late Mesozoic magmatism in Southeast China extensively reworked the Cathaysia Block’s crust, linked to the Paleo-Pacific Plate subduction beneath East Asia. The northeastern Cathaysia Block, largely covered by Cretaceous volcanic-sedimentary basins, has limited Jurassic exposure to Early Cretaceous intrusions, which provides critical insights into deep crust-mantle processes. In this study, we present zircon U-Pb geochronology and Hf isotope, whole-rock geochemistry, and Sr-Nd isotopes of the Middle Jurassic syenite-granite suites and Early Cretaceous granites with enclaves in the Qingyuan area (SW Zhejiang Province) to constrain their petrogenesis and tectonic significance. Middle Jurassic syenites and alkali-feldspar granites (169–167 Ma) exhibit calc-alkaline to shoshonitic affinities and weakly peraluminous compositions. Early Cretaceous granites (134 Ma) and their enclaves (136 Ma) are high-K calc-alkaline and weakly peraluminous to metaluminous. All samples show LILE and LREE enrichment, HFSE depletion, and negative Eu and Sr anomalies, with only syenites displaying negative Ce anomalies. We suggest that the Middle Jurassic syenites originated from the partial melting of an enriched lithospheric mantle influenced by subduction-related metasomatism. Alkali-feldspar granites derived from partial melting of the basement of the Cathaysia Block. Early Cretaceous granites formed by partial melting of lower crustal mafic rocks, with enclaves representing earlier crystallization products, which were then mechanically mixed with granites. We propose the NE Cathaysia Block underwent significant reworking from the Middle Jurassic to the Early Cretaceous. Middle Jurassic syenites formed in a compressional setting linked to Paleo-Pacific Plate subduction, while Early Cretaceous magmatism reflects lithospheric extension and crust-mantle interaction triggered by slab rollback. Full article
Show Figures

Figure 1

22 pages, 13090 KiB  
Article
Petrological, Textural, Compositional, and Economic Potential of Carbonatites from the Peshawar Plain Alkaline Igneous Province, Northwestern Himalaya
by Mehboob ur Rashid and Hafiz U. Rehman
Minerals 2025, 15(5), 439; https://doi.org/10.3390/min15050439 - 23 Apr 2025
Viewed by 499
Abstract
Carbonatites, which are rare mantle-derived igneous rocks that are mainly enriched in carbonate minerals and host relatively higher amounts of rare earth element (REE)-bearing phases, remain subjects of extensive geological research due to their enigmatic origin and potential economic importance. This study aims [...] Read more.
Carbonatites, which are rare mantle-derived igneous rocks that are mainly enriched in carbonate minerals and host relatively higher amounts of rare earth element (REE)-bearing phases, remain subjects of extensive geological research due to their enigmatic origin and potential economic importance. This study aims to describe the petrographic, mineralogical, and some rare-earth element (REE) abundances of four carbonatite bodies (known as Sillai Patti, Loe Shilman, Warsak, and Jambil) exposed in the Peshawar Plain Alkaline Igneous Province (PPAIP), northwestern Himalaya, Pakistan, to identify their economic potential. The observed petrographic, textural features, and chemical compositions of the constituent minerals of the carbonatites were utilized to elucidate the evolutionary processes through which the rocks evolved. The results indicate distinct mineralogical assemblages dominated by calcite, dolomite, apatite, pyroxene, biotite, and feldspar, with accessory opaque and REE-bearing phases, such as pyrochlore, monazite, and britholite. The apatite grains display compositional zoning reflecting their growth under magmatic conditions. The petrographic features of apatite in some carbonatite samples, exhibiting preferred orientation in a particular direction and spongy or murky textures, indicate that the studied rocks underwent post-magmatic deformation or hydrothermal alteration. Calcite and dolomite, coexisting in some carbonatite samples, exhibit significant Mg-Fe variation, which is possibly related to magmatic differentiation. The pyroxene compositions vary from a low-calcium enstatite–ferrosilite series to high-calcium diopside, suggesting variable crystallization environments among the carbonatite bodies studied. The abundance of REE-bearing phases in the studied carbonatites emphasizes their high economic potential. These findings indicate that the PPAIP carbonatites originated from mantle-derived magmas and subsequently experienced metamorphic/metasomatic overprinting during their tectonic evolution. The abundance of REE-rich phases such as apatite, pyrochlore, monazite, and britholite underscores their high economic potential. Full article
(This article belongs to the Special Issue Geochemistry and Geochronology of High-Grade Metamorphic Rocks)
Show Figures

Graphical abstract

14 pages, 4068 KiB  
Article
Study on the Use of Soda Saline–Alkali Soil as a Rice-Seedling-Raising Soil After Short-Term Improvement
by Yingbin Nie, Lu Jiang, Xiran Liu, Lei Feng and Zhihong Li
Appl. Sci. 2025, 15(9), 4638; https://doi.org/10.3390/app15094638 - 22 Apr 2025
Cited by 1 | Viewed by 517
Abstract
In western Jilin Province, China, the presence of soda saline–alkali soil poses a significant threat to the raising of rice seedlings due to its harsh soil properties. The scarcity of suitable seedling-raising soil resources has become increasingly pronounced. A short-term soil-improvement experiment was [...] Read more.
In western Jilin Province, China, the presence of soda saline–alkali soil poses a significant threat to the raising of rice seedlings due to its harsh soil properties. The scarcity of suitable seedling-raising soil resources has become increasingly pronounced. A short-term soil-improvement experiment was conducted using the original saline–alkali soil sourced from the rice-growing region of Jilin Province, followed by the rice-seedling-raising test in the improved soil to identify an effective soil-improvement strategy. Four distinct treatments were established: no amendment (JCK); gypsum and straw (JCW); gypsum, straw, and sulfuric acid (JCWH); and gypsum, straw, and chemical fertilizer (JCWF). The effects of these amendment treatments on the soil physicochemical properties (pH, electrical conductivity, exchangeable sodium, total alkalinity) were evaluated, as well as the effects on soil organic carbon (SOC) and its components including humic acid carbon (HAC), and fulvic acid carbon (FAC). The results indicated that, compared to the control group, all amendment treatments effectively reduced the average soil pH by 0.53 to 0.79 units and decreased exchangeable sodium by 56.7% to 74.8%. Furthermore, the average SOC, HAC, and FAC increased by 48.3%, 89.4%, and 56.0%, respectively. Among the treatments, JCWH proved to be the most effective. After two years of improvement, the rice seedlings in the JCWH-treated soil exhibited the highest dry weight and plant height, surpassing those grown in the farmer’s seedling-raising soil. The scheme of utilizing soda saline–alkali soil for rice-seedling raising, following a short-term improvement treatment with corn straw, gypsum, and sulfuric acid (JCWH), provides technical support and an effective solution to the soil scarcity issue faced by seedling farmers in saline–alkali regions. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

26 pages, 6453 KiB  
Article
Petrological Studies and Geochemical Modelling of Water–Rock Interactions in the Grønnedal-Íka Alkaline Complex Generating Ikaite Deposition in Ikka Fjord, SW Greenland
by Sigríður María Aðalsteinsdóttir, Gabrielle J. Stockmann, Erik Sturkell, Enikő Bali, Guðmundur H. Guðfinnsson and Andri Stefánsson
Minerals 2025, 15(4), 373; https://doi.org/10.3390/min15040373 - 2 Apr 2025
Viewed by 567
Abstract
The Mesoproterozoic alkaline Grønnedal-Íka complex (1325 ± 6 Ma) is intruded into old Archean gneissic bedrock between Ikka Fjord and Kangilinnguit (Grønnedal) by Arsuk Fjord in Southwestern Greenland. This 8 × 2.8 km oval-shaped complex constitutes the oldest part of the Gardar Province, [...] Read more.
The Mesoproterozoic alkaline Grønnedal-Íka complex (1325 ± 6 Ma) is intruded into old Archean gneissic bedrock between Ikka Fjord and Kangilinnguit (Grønnedal) by Arsuk Fjord in Southwestern Greenland. This 8 × 2.8 km oval-shaped complex constitutes the oldest part of the Gardar Province, representing a failed continental rift across southern Greenland. It comprises outer rings of mainly nepheline syenites with a central plug of Fe- and Ca-rich carbonatites. Here, we present petrological data on the syenites and carbonatites combined with geochemical modelling of groundwater percolating through the Grønnedal-Íka complex and the secondary minerals and fluid chemistry arising from these fluid–rock reactions. The results show that modelling using input data of (1) meteoric water in a closed system with respect to atmospheric CO2 can (2) dissolve the primary minerals of the syenites and carbonatites and (3) simulate the fluid chemistry of the natural sodium carbonate springs of 3–4 °C and pH 10–11 seeping up through fractures at the bottom of Ikka Fjord, which (4) leads to the deposition of nearly a thousand tufa columns of the cold carbonate mineral ikaite (CaCO3•6H2O). Our results thereby support the geochemical relationship between fluid–rock reactions inside the Grønnedal-Íka alkaline complex and the precipitation of ikaite in the shape of submarine tufa columns in Ikka Fjord. The modelling indicates that the groundwater itself can be supersaturated with respect to ikaite and provide the seed crystals that lead to the columnar growth of ikaite up to 20 m tall in the seawater of Ikka Fjord. Full article
Show Figures

Figure 1

Back to TopTop