Effects of Fertilizers and Soil Amendments on Soil Physicochemical Properties and Carbon Sequestration of Oat (Avena sativa L.) Planted in Saline–Alkaline Land
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Site
2.2. Observations and Measurements
Growth Traits and Forage Yield
- SOCi—Soil organic carbon density of an individual soil layer (kg m−2)
- SOCI—Soil organic carbon density of a soil profile of multiple layers (kg m−2)
- Ci—Soil organic carbon content (%)
- Di—Soil bulk density (g cm−3)
- Ei—Soil thickness (cm)
2.3. Statistical Analysis
3. Results
3.1. Effects of Applied Fertilizers and Soil Amendments on Oat Fresh Forage Yield, Dry Forage Yield, and Crop Growth Rate
3.2. Effects of Fertilizers and Soil Amendments on Soil Organic Carbon, Organic Matter, and Nitrogen Content in Saline–Alkaline Soils
3.3. Effects of Different Fertilizers and Soil Conditioners on Soil pH and Salinity in Saline–Alkali Land
3.4. Effects of Different Fertilizers and Soil Conditioners on Carbon Sequestration in Saline–Alkaline Farmlands
4. Discussion
4.1. Effects of Fertilizers and Soil Conditioners on Oat Yield and Growth Rate
4.2. Effects of Fertilizers and Soil Conditioners on Soil Organic Carbon, Organic Matter, and Nitrogen Content
4.3. Effects of Fertilizers and Soil Conditioners on Soil pH and Salinity in Saline–Alkali Land
4.4. Effects of Fertilizers and Soil Conditioners on Carbon Sequestration in Saline–Alkali Arable Land
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, X.G.; Sun, R.B.; Tian, Y.P.; Guo, K.; Sun, H.Y.; Liu, X.J.; Chu, H.Y.; Liu, B.B. Long-term phytoremediation of coastal saline soil reveals plant species-specific patterns of microbial community recruitment. mSystems 2020, 5, e00719–e00741. [Google Scholar] [CrossRef] [PubMed]
- He, K.; He, G.; Wang, C.P.; Zhang, H.P.; Xu, Y.; Wang, S.M.; Kong, Y.Z.; Zhou, G.K.; Hu, R.B. Biochar amendment ameliorates soil properties and promotes miscanthus growth in a coastal saline-alkali soil. Appl. Soil Ecol. 2020, 155, e103674. [Google Scholar] [CrossRef]
- An, X.C.; Sun, M.L.; Ren, K.Y.; Xu, M.; Wang, Z.F.; Li, Y.; Liu, H.L.; Lian, B. Effect and mechanism of the improvement of coastal silt soil by application of organic fertilizer and gravel combined with Sesbania cannabina cultivation. Front. Plant Sci. 2023, 13, 1092089. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.; Xia, J.B.; Yang, H.J.; Liu, J.T.; Shao, P.S. Biochar and effective microorganisms promote Sesbania cannabina growth and soil quality in the coastal saline-alkali soil of the yellow river delta, China. Sci. Total Environ. 2021, 756, e143801. [Google Scholar] [CrossRef]
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.; Cheng, S.F.; Liu, X.Y.; Du, H.; Dai, M.Q.; Zhou, D.X.; Yang, W.J.; Zhao, Y. The R2R3-type MYB gene OsMYB91 has a function in coordinating plant growth and salt stress tolerance in rice. Plant Sci. 2015, 236, 146–156. [Google Scholar] [CrossRef]
- An, X.C.; Wang, Z.F.; Teng, X.M.; Zhou, R.R.; Wang, X.X.; Xu, M.; Lian, B. Rhizosphere bacterial diversity and environmental function prediction of wild salt-tolerant plants in coastal silt soil. Ecol. Indic. 2022, 137, 108503. [Google Scholar] [CrossRef]
- Gong, W.L.; Ju, Z.L.; Chai, J.K.; Zhou, X.R.; Lin, D.D.; Su, W.J.; Zhao, G.Q. Physiological and transcription analyses reveal the regulatory mechanism in Oat (Avena sativa) seedlings with different drought resistance under PEG-induced drought stress. Agronomy 2022, 12, 1005. [Google Scholar] [CrossRef]
- Bai, J.H.; Liu, J.H.; Zhang, N.; Yang, J.H.; Sa, R.L.; Wu, L. Effect of alkali stress on soluble sugar, antioxidant enzymes and yield of oat. J. Integr. Agr. 2013, 12, 1441–1449. [Google Scholar] [CrossRef]
- Sign, R.; De, S.; Belkheir, A. Avena sativa (oat), A potential neutraceutical and therapeutic agent: An overview. Crit. Rev. Food Sci. Nutr. 2013, 53, 126–144. [Google Scholar] [CrossRef]
- Rasane, P.; Jha, A.; Sabikhi, L.; Kumar, A.; Unnikrishnan, V.S. Nutritional advantages of oats and opportunities for its processing as value added foods—a review. J. Food Sci. Tech. Mys. 2015, 52, 662–675. [Google Scholar] [CrossRef] [PubMed]
- Holopainen-Mantila, U.; Vanhatalo, S.; Lehtinen, P.; Sozer, N. Oats as a source of nutritious alternative protein. J. Cereal Sci. 2024, 116, 103862. [Google Scholar] [CrossRef]
- Song, X.D.; Zhou, G.S.; Ma, B.L.; Wu, W.; Ahmad, I.; Zhu, G.L.; Yan, W.K.; Jiao, X.R. Nitrogen Application Improved Photosynthetic Productivity, Chlorophyll Fluorescence, Yield and Yield Components of Two Oat Genotypes under Saline Conditions. Agronomy 2019, 9, 115. [Google Scholar] [CrossRef]
- Xu, P.D.; Zhu, J.; Fu, Q.L.; Chen, J.Z.; Hu, H.Q.; Huang, Q.Y. Structure and biodegradability of dissolved organic matter from Ultisol treated with long-term fertilizations. J. Soil. Sediment. 2018, 18, 1865–1872. [Google Scholar] [CrossRef]
- Tripathi, R.; Nayak, A.K.; Bhattacharyya, P.; Shukl, A.K.; Shahid, M.; Raja, R.; Panda, B.B.; Mohanty, S.; Kumara, A.; Thilagama, V.K. Soil aggregation and distribution of carbon and nitrogen in different fractions after 41 years longterm fertilizer experiment in tropical rice-rice system. Geoderma 2014, 213, 280–286. [Google Scholar] [CrossRef]
- Tian, S.Y.; Zhu, B.J.; Yin, R.; Wang, M.W.; Jiang, Y.J.; Zhang, C.Z.; Li, D.M.; Chen, X.; Kardol, P.; Liu, M.Q. Organic fertilization promotes crop productivity through changes in soil aggregation. Soil Biol. Biochem. 2022, 165, 108533. [Google Scholar] [CrossRef]
- Zhang, H.F.; Pang, H.C.; Song, J.S.; Chang, F.D.; Wang, J.; Wang, X.; Zhang, Y.T.; Peixoto, L.; Li, Y.Y. Subsurface organic ameliorant plus polyethylene mulching strengthened soil organic carbon by altering saline soil aggregate structure and regulating the fungal community. Land Degrad. Dev. 2022, 33, 2543–2553. [Google Scholar] [CrossRef]
- Zhang, J.C.; Zhang, L.; Wang, P.; Huang, Q.W.; Yu, G.H.; Li, D.C.; Shen, Q.R.; Ran, W. The role of non-crystalline iron in the increase of SOC after long-term organic manure application to the red soil of southern China. Eur. J. Soil Sci. 2013, 64, 797–804. [Google Scholar] [CrossRef]
- Schmidt, M.W.I.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; et al. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef]
- Wu, Y.P.; Li, Y.F.; Zheng, C.Y.; Zhang, Y.F.; Sun, Z.J. Organic amendment application influence soil organism abundance in saline alkali soil. Eur. J. Soil Biol. 2013, 54, 32–40. [Google Scholar] [CrossRef]
- Zhang, Z.K.; Liu, H.; Liu, X.X.; Chen, Y.; Lu, Y.; Shen, M.C.; Dang, K.K.; Zhao, Y.; Dong, Y.H.; Li, Q.Y.; et al. Organic fertilizer enhances rice growth in severe saline-alkali soil by increasing soil bacterial diversity. Soil Use. Manag. 2022, 38, 964–977. [Google Scholar] [CrossRef]
- Sun, D.; Hale, L.; Crowley, D. Nutrient supplementation of pinewood biochar for use as a bacterial inoculum carrier. Biol. Fert. Soils 2016, 52, 515–522. [Google Scholar] [CrossRef]
- Celestina, C.; Hunt, J.R.; Sale, P.W.G.; Franks, A.E. Attribution of crop yield responses to application of organic amendments: A critical review. Soil Tillage Res. 2019, 186, 135–145. [Google Scholar] [CrossRef]
- Lu, P.N.; Bainard, L.D.; Ma, B.; Liu, J.H. Bio-fertilizer and rotten straw amendments alter the rhizosphere bacterial community and increase oat productivity in a saline–alkaline environment. Sci. Rep. 2020, 10, 19896. [Google Scholar] [CrossRef] [PubMed]
- Pandey, D.; Agrawal, M.; Singh Bohra, J.; Adhya, T.K.; Bhattacharyya, P. Recalcitrant and labile carbon pools in a sub-humid tropical soil under different tillage combinations: A case study of rice–wheat system. Soil Tillage Res. 2014, 143, 116–122. [Google Scholar] [CrossRef]
- Jílkova, V.; Jandova, K.; Kukla, J. Responses of microbial activity to carbon, nitrogen, and phosphorus additions in forest mineral soils differing in organic carbon content. Biol. Fert. Soils 2021, 57, 513–521. [Google Scholar] [CrossRef]
- Li, Y.M.; Duan, Y.; Wang, G.L.; Wang, A.Q.; Shao, G.Z.; Meng, X.H.; Hu, H.Y.; Zhang, D.M. Straw alters the soil organic carbon composition and microbial community under different tillage practices in a meadow soil in Northeast China. Soil Tillage Res. 2021, 208, 104879. [Google Scholar] [CrossRef]
- Zhu, G.L.; Liu, J.; Wu, H.; Zhu, Y.M.; Nimir, N.E.A.; Zhou, G.S. The Optimum Mixed Cropping Ratio of Oat and Alfalfa Enhanced Plant Growth, Forage Yield, and Forage Quality in Saline Soil. Plants 2024, 13, 3103. [Google Scholar] [CrossRef]
- Walkley, A. Studies on the Organic Matter of Soils; University of London: London, UK, 1933. [Google Scholar]
- Lynch, J.M.; Barbano, D.M. Kjeldahl nitrogen analysis as a reference method for protein determination in dairy products. J. Aoac Int. 1999, 82, 1389–1398. [Google Scholar] [CrossRef]
- Bolt, G.H. Soil pH, an early diagnostic tool: Its determination and interpretation. Adv. Geoecology 1997, 177–210. [Google Scholar] [CrossRef]
- Hernández, T.D.B.; Slater, B.K.; Shaffer, J.M.; Basta, N. Comparison of methods for determining organic carbon content of urban soils in Central Ohio. Geoderma. Reg. 2023, 34, e00680. [Google Scholar] [CrossRef]
- Green, J.K.; Seneviratne, S.I.; Berg, A.M.; Findell, K.L.; Hagemann, S.; Lawrence, D.M.; Gentine, P. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 2019, 565, 476–479. [Google Scholar] [CrossRef]
- Zhang, M.K.; Walelign, D.B.; Tang, H.J. Effects of biochar’s application on active organic carbon fractions in soil. J. Soil Water Conserv. 2012, 26, 127–137, (ln Chinese). [Google Scholar]
- Liu, J.; Lu, F.G.; Zhu, Y.M.; Wu, H.; Ahmad, I.; Dong, G.C.; Zhou, G.S.; Wu, Y.Q. The Effects of Planting Density and Nitrogen Application on the Growth Quality of Alfalfa Forage in Saline Soils. Agriculture 2024, 14, 302. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Wu, H.; Zhu, Y.M.; Ahmad, I.; Dong, G.C.; Zhou, G.S.; Wu, Y.Q. Association between Reactive Oxygen Species, Transcription Factors, and Candidate Genes in Drought-Resistant Sorghum. Int. J. Mol. Sci. 2024, 25, 6464. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.L.; Gong, T.; Wang, J.W.; Li, G.J.; Liu, Y.Y.; Zhen, J.; Ning, M.; Yue, D.D.; Du, Z.M.; Chen, G.C. Effects of Compound Microbial Fertilizer on Soil Characteristics and Yield of Wheat (Triticum aestivum L.). J. Soil Sci. Plant Nut. 2020, 20, 2740–2748. [Google Scholar] [CrossRef]
- Maftu’ah, E.; Saleh, M.; Sulaseman, Y.; Napisah, K.; Agustina, R.; Mukhlis, M.; Anwar, K.; Ningsih, R.D.; Masganti, M.; Masganti, M.; et al. Si-Humate as soil ameliorant to improve the properties of acid sulfate soil, growth, and rice yield. Chil. J. Agr. Res. 2024, 84, 267–280. [Google Scholar]
- Myburgh, P.A.; Howell, C.L. Effects of Soil Ameliorants Produced from Recycled Glass on the Establishment of Table Grapes. S. Afr. J. Enol. Vitic. 2023, 44, 101–111. [Google Scholar] [CrossRef]
- Danapriatna, N.; Ismarani, I.; Dede, M. Application of biochar and biological fertilizer to improve soil quality and Oryza sativa L. productivity. Cogent Food Agr. 2023, 9, 2207416. [Google Scholar] [CrossRef]
- Li, X.Y.; Li, B.; Chen, L.; Liang, J.Y.; Huang, R.; Tang, X.Y.; Zhang, X.; Wang, C.Q. Partial substitution of chemical fertilizer with organic fertilizer over seven years increases yields and restores soil bacterial community diversity in wheat-rice rotation. Eur. J. Agron. 2022, 133, 126445. [Google Scholar] [CrossRef]
- Luo, G.W.; Friman, V.P.; Chen, H.; Liu, M.Q.; Wang, M.; Guo, S.W.; Ling, N.; Shen, Q.R. Long-term fertilization regimes drive the abundance and composition of N-cycling-related prokaryotic groups via soil particle-size differentiation. Soil Biol. Biochem. 2018, 116, 213–223. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, K.; Han, L.F.; Chen, Y.L.; Liu, J.; Xing, B.S. Biochar stability and impact on soil organic carbon mineralization depend on biochar processing, aging and soil clay content. Soil Biol. Biochem. 2022, 169, 108657. [Google Scholar] [CrossRef]
- Ma, Y.Q.; Woolf, D.; Fan, M.S.; Qian, L.; Li, R.; Lehmann, J. Global crop production increase by soil organic carbon. Nat. Geosci. 2023, 16, 1159–1165. [Google Scholar] [CrossRef]
- Zhang, J.; Amonette, J.E.; Flury, M. Effect of biochar and biochar particle size on plant-available water of sand, silt loam, and clay soil. Soil Till. Res. 2021, 212, 104992. [Google Scholar] [CrossRef]
- Sadegh-Zadeh, F.; Parichehreh, M.; Jalili, B.; Bahmanyar, M.A. Rehabilitation of calcareous saline-sodic soil by means of biochars and acidified biochars. Land Degrad. Dev. 2018, 29, 3262–3271. [Google Scholar] [CrossRef]
- Li, H.; Wang, B.J.; Siri, M.; Liu, C.; Feng, C.L.; Shao, X.Q.; Liu, K.S. Calcium-modified biochar rather than original biochar decreases salinization indexes of saline-alkaline soil. Environ. Sci. Pollut. R. 2023, 30, 74966–74976. [Google Scholar] [CrossRef]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef]
- Kabir, E.; Kim, K.H.; Kwon, E.E. Biochar as a tool for the improvement of soil and environment. Front. Environ. Sci. 2023, 11, 1324533. [Google Scholar] [CrossRef]
- Gong, H.Y.; Li, Y.F.; Li, S.J. Effects of the interaction between biochar and nutrients on soil organic carbon sequestration in soda saline-alkali grassland: A review. Glob. Ecol. Conserv. 2021, 26, e01449. [Google Scholar] [CrossRef]
- Naz, M.; Dai, Z.C.; Hussain, S.; Tariq, M.; Danish, S.; Khan, I.U.; Qi, S.S.; Du, D.L. The soil pH and heavy metals revealed their impact on soil microbial community. J. Environ. Manag. 2022, 321, 115770. [Google Scholar] [CrossRef]
- Malik, A.A.; Puissant, J.; Buckeridge, K.M.; Goodall, T.; Jehmlich, N.; Chowdhury, S.; Gweon, H.S.; Peyton, J.M.; Mason, K.E.; Van Agtmaal, M.; et al. Land use driven change in soil pH affects microbial carbon cycling processes. Nat. Commun. 2018, 9, 3591. [Google Scholar] [CrossRef]
- Cooper, J.M.; Warman, P.R. Effects of three fertility amendments on soil dehydrogenase activity, organic C and pH. Can. J. Soil Sci. 1997, 77, 281–283. [Google Scholar] [CrossRef]
- Zhang, K.; Wei, H.Y.; Chai, Q.; Li, L.L.; Wang, Y. Biological soil conditioner with reduced rates of chemical fertilization improves soil functionality and enhances rice production in vegetable-rice rotation. Appl. Soil Ecol. 2024, 195, 105242. [Google Scholar] [CrossRef]
- Yang, J.; Chen, Z.Y.; Dai, J.; Liu, F.; Zhu, J. Effects of Long-Term Organic Fertilizer Application on Tea Plantation Soil of Its Physical and Chemical Properties and Microbial Communities. Pol. J. Environ. Stud. 2025, 34, 905–916. [Google Scholar] [CrossRef]
- Huo, Q.Y.; Gong, M.; Jiang, Y.W.; Yang, X.; Kong, M.; He, J.X.; Zhang, Q.; Song, J.Q.; Li, X.Z.; Han, W.; et al. Microencapsulated Microbial Seed Coating Could Improve Soil Environment and Maize Grain Yield in Saline Soil. Plants 2024, 13, 3139. [Google Scholar] [CrossRef]
- Yu, Q.; Hu, X.; Ma, J.; Ye, J.; Sun, W.; Wang, Q.; Lin, H. Effects of long-term organic material applications on soil carbon and nitrogen fractions in paddy field. Soil Tillage Res. 2020, 196, 104483. [Google Scholar] [CrossRef]
- Li, X.; Kang, X.F.; Zou, J.Z.; Yin, J.H.; Wang, Y.C.; Li, A.; Ma, X.D. Allochthonous arbuscular mycorrhizal fungi promote Salix viminalis L. -mediated phytoremediation of polycyclic aromatic hydrocarbons characterized by increasing the release of organic acids and enzymes in soils. Ecotox. Environ. Safe. 2023, 249, 114461. [Google Scholar] [CrossRef]
- Lin, Y.C.; Yu, C.L.; Zhang, Y.B.; Lu, L.; Xu, D.; Peng, X.L. Biochar modification methods and mechanisms for salt-affected soil and saline-alkali soil improvement: A review. Soil Use Manag. 2024, 40, e12992. [Google Scholar] [CrossRef]
- Ababsa, N.; Boudjabi, S.; Chenchouni, H. Biochar Amendments Changed Soil Properties and Improved Cereal Crop Growth Under Salt Stress. J. Soil Sci. Plant Nut. 2023, 23, 4912–4925. [Google Scholar] [CrossRef]
- Gao, S.J.; Liu, X.R.; Li, Y.C.; Liu, X.W. Effects of biochar and straw return on greenhouse gas emissions and global warming potential in the farmland. Sci. Agric. Sin. 2024, 57, 935–949. (In Chinese) [Google Scholar] [CrossRef]
- Wu, D.; Sun, P.; Lu, P.Z.; Chen, Y.Y.; Guo, J.M.; Liu, M.; Wang, L.; Zhang, C.J. Effect and approach of Enteromorpha prolifera biochar to improve coastal saline soil. Environ. Sci. 2020, 41, 1941–1949. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Y.F.; Liang, S.; Liang, Y.X.; Liu, X.X. A Comprehensive Accounting of Carbon Emissions and Carbon Sinks of China’s Agricultural Sector. Land 2024, 13, 1452. [Google Scholar] [CrossRef]
- She, W.; Wu, Y.; Huang, H.; Chen, Z.D.; Cui, G.X.; Zheng, H.B.; Guan, C.Y.; Chen, F. Integrative analysis of carbon structure and carbon sink function for major crop production in China’s typical agriculture regions. J. Clean. Prod. 2017, 162, 702–708. [Google Scholar] [CrossRef]
- Burnett, A.C.; Rogers, A.; Rees, M.; Osborne, C.P. Carbon source-sink limitations differ between two species with contrasting growth strategies. Plant Cell Environ. 2016, 39, 2460–2472. [Google Scholar] [CrossRef]
- Ciais, P.; Bousquet, P.; Freibauer, A.; Naegler, T. Horizontal displacement of carbon associated with agriculture and its impacts on atmospheric CO2. Global Biogeochem. Cy. 2014, 21, GB2014. [Google Scholar] [CrossRef]
- Wang, L.J.; Sheng, M.Y. Phytolith occluded organic carbon in Fagopyrum (Polygonaceae) plants: Insights on the carbon sink potential of cultivated buckwheat planting. Front. Plant Sci. 2022, 3, 1014980. [Google Scholar] [CrossRef]
- Cao, X.D.; Harris, W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour. Technol. 2010, 101, 5222–5228. [Google Scholar] [CrossRef]
- Yang, X.; Wang, D.; Lan, Y.; Meng, J.; Jiang, L.; Sun, Q.; Cao, D.Y.; Sun, Y.Y.; Chen, W.F. Labile organic carbon fractions and carbon pool management index in a 3-year field study with biochar amendment. J. Soil Sediment 2018, 18, 1569–1578. [Google Scholar] [CrossRef]
- Curtin, D.; Beare, M.H.; Qiu, W.W.; Sharp, J. Does particulate organic matter fraction meet the criteria for a model soil organic matter pool. Pedosphere 2019, 29, 195–203. [Google Scholar] [CrossRef]
- Huang, X.L.; Jia, Z.X.; Jiao, X.Y.; Wang, J.L.; Huang, X.F. Long-term manure applications to increase carbon sequestration and macroaggregate-stabilized carbon. Soil Biol. Biochem. 2022, 174, 108827. [Google Scholar] [CrossRef]
- Yu, H.Y.; Ding, W.X.; Luo, J.F.; Geng, R.L.; Ghani, A.; Cai, Z.C. Effects of long-term compost and fertilizer application on stability of aggregate-associated organic carbon in an intensively cultivated sandy loam soil. Biol. Fertil. Soils 2012, 48, 325–336. [Google Scholar] [CrossRef]
- Li, G.; Chen, W.J.; Xu, S.Q.; Xiong, S.G.; Zhao, J.Y.; Liu, D.L.; Ding, G.C.; Li, J.; Wei, Y.Q. Role of fungal communities and their interaction with bacterial communities on carbon and nitrogen component transformation in composting with different phosphate additives. Environ. Sci. Pollut. R. 2023, 30, 44112–44120. [Google Scholar] [CrossRef] [PubMed]
- Six, J.; Elliott, E.T.; Paustian, K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 2000, 32, 2099–2103. [Google Scholar] [CrossRef]
- Li, B.Z.; Liang, F.; Wang, Y.J.; Cao, W.C.; Song, H.; Chen, J.S.; Guo, J.H. Magnitude and efficiency of straw return in building up soil organic carbon: A global synthesis integrating the impacts of agricultural managements and environmental conditions. Sci. Total Environ. 2023, 875, 162670. [Google Scholar] [CrossRef]
- Liu, C.; Lu, M.; Cui, J.; Li, B.; Fang, C.M. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis. Global Change Biol. 2014, 20, 1366–1381. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.F.; Jiang, J.; Wang, Y.G.; Colinet, G.; Feng, W.T. Small straw addition enhances straw decomposition and carbon stabilized in soil aggregates over time. Soil Tillage Res. 2024, 238, 106022. [Google Scholar] [CrossRef]
- Liu, J.; Fang, L.C.; Qiu, T.Y.; Chen, J.; Wang, H.; Liu, M.X.; Yi, J.; Zhang, H.L.; Wang, C.; Sardans, J.; et al. Crop residue return achieves environmental mitigation and enhances grain yield: A global meta-analysis. Agron. Sustain. Dev. 2023, 43, 78. [Google Scholar] [CrossRef]
Property | Value | Method Used |
---|---|---|
Soil pH | 8.17 | 1:2.5 soil-to-water suspension, pH meter |
Soil Organic Carbon (SOC) | 11.6 g·kg−1 | Walkley–Black method |
Total Nitrogen | 5.05 g·kg−1 | Kjeldahl digestion and titration |
Available Phosphorus | 12.45 mg·kg−1 | Olsen extraction method |
Available Potassium | 81.71 mg·kg−1 | NH4OAc extraction method |
Soil Salinity (EC) | 3.11 dS·m−1 | 1:5 soil-to-water extract, EC metre |
Soil Texture | Sandy loam | Hydrometer method |
V | T1 | T2 | T3 | T4 | T5 | T6 | T7 |
---|---|---|---|---|---|---|---|
V1 | CK | F1 | S1 | F2 | S2 | F1F2S1S2 | |
V2 | CK | F1S1 | F1S2 | F1F2 | S1S2 | F2S2 | F2S1 |
Treatment | Fresh Grass Yield | Dry Grass Yield | CGR |
---|---|---|---|
t ha−1 | t ha−1 | kg ha−1 d−1 | |
V1T1 | 4.51 d | 0.76 d | 47.52 d |
V1T2 | 7.70 ab | 1.37 a | 85.51 a |
V1T3 | 6.15 c | 1.05 bcd | 65.73 bcd |
V1T4 | 8.09 a | 1.29 ab | 80.48 ab |
V1T5 | 5.77cd | 0.95 cd | 59.29 cd |
V1T6 | 6.40 bc | 1.12 abc | 69.72 abc |
Treatment | Fresh Grass Yield | Dry Grass Yield | CGR |
---|---|---|---|
t ha−1 | t ha−1 | kg ha−1 d−1 | |
V2T1 | 2.54 c | 0.45 c | 27.96 c |
V2T2 | 5.64 b | 0.91 b | 56.90 b |
V2T3 | 8.61 a | 1.52 a | 94.82 a |
V2T4 | 6.20 b | 1.01 b | 63.23 b |
V2T5 | 6.43 b | 1.02 b | 63.83 b |
V2T6 | 4.76 b | 0.97 b | 60.51 b |
V2T7 | 6.22 b | 1.13 b | 70.56 b |
Treatment | SOC (%) | |||
---|---|---|---|---|
Before Sowing | 82 Days After Sowing | 122 Days After Sowing | 60 Days After Sowing | |
V1T1 | 8.58 a | 8.38 b | 6.63 b | 7.54 a |
V1T2 | 8.58 a | 8.58 b | 7.60 a | 6.30 b |
V1T3 | 8.58 a | 8.68 b | 7.58 a | 7.36 a |
V1T4 | 8.58 a | 8.59 b | 7.38 a | 6.69 b |
V1T5 | 8.58 a | 10.24 a | 7.11 ab | 6.57 b |
V1T6 | 8.58 a | 8.68 b | 7.47 a | 6.66 b |
Treatment | SOC (%) | |||
---|---|---|---|---|
Before Sowing | 82 Days After Sowing | 122 Days After Sowing | 160 Days After Sowing | |
V2T1 | 7.56 a | 9.58 bc | 7.34 c | 6.76 c |
V2T2 | 7.56 a | 9.19 c | 7.82 bc | 6.41 c |
V2T3 | 7.56 a | 10.13 bc | 7.84 bc | 7.86 b |
V2T4 | 7.56 a | 9.59 bc | 9.13 a | 7.61 b |
V2T5 | 7.56 a | 9.70 bc | 8.19 bc | 7.81 b |
V2T6 | 7.56 a | 11.69 a | 8.33 ab | 8.52 a |
V2T7 | 7.56 a | 10.67 ab | 8.53 ab | 8.06 ab |
Treatment | pH Value | Salinity (g kg−1) | ||
---|---|---|---|---|
Before Sowing | 160 Days After Sowing | Before Sowing | 160 Days After Sowing | |
V1T1 | 8.14 a | 7.59 d | 2.92 a | 2.78 b |
V1T2 | 8.14 a | 7.70 c | 2.92 a | 2.79 a |
V1T3 | 8.14 a | 7.76 bc | 2.92 a | 2.78 b |
V1T4 | 8.14 a | 7.89 ab | 2.92 a | 2.77 c |
V1T5 | 8.14 a | 7.85 abc | 2.92 a | 2.76 d |
V1T6 | 8.14 a | 7.94 a | 2.92 a | 2.77 c |
Treatment | pH Value | Salinity (g kg−1) | ||
---|---|---|---|---|
Before Sowing | 160 Days After Sowing | Before Sowing | 160 Days After Sowing | |
V2T1 | 8.32 a | 8.15 a | 3.10 a | 2.87 a |
V2T2 | 8.32 a | 8.21 a | 3.10 a | 2.77 d |
V2T3 | 8.32 a | 8.11 a | 3.10 a | 2.82 b |
V2T4 | 8.32 a | 8.25 a | 3.10 a | 2.76 d |
V2T5 | 8.32 a | 8.19 a | 3.10 a | 2.77 d |
V2T6 | 8.32 a | 8.21 a | 3.10 a | 2.81 c |
V2T7 | 8.32 a | 8.11 a | 3.10 a | 2.75 e |
Treatment | Oat Carbon Storage (kg ha−1) | ΔSOCi (kg ha−1) | Exogenous Carbon (kg ha−1) | Carbon Sink in Farmland Ecosystems (kg ha−1) |
---|---|---|---|---|
V1T1 | 4431.30 c | −2740.00 a | 0 | 1691.40 ab |
V1T2 | 7738.10 a | −5275.10 b | 0 | 2463.00 ab |
V1T3 | 6287.50 abc | −3105.80 a | 60 | 3181.70 a |
V1T4 | 7748.80 a | −4470.90 b | 300 | 3277.90 a |
V1T5 | 5412.00 bc | −4719.10 b | 375 | 692.90 b |
V1T6 | 6455.40 ab | −4539.00 b | 183.75 | 1916.30 ab |
Treatment | Oat Carbon Storage (kg ha−1) | ΔSOCi (kg ha−1) | Exogenous Carbon (kg ha−1) | Carbon Sink in Farmland Ecosystems (kg ha−1) |
---|---|---|---|---|
V2T1 | 2596.90 c | −1629.90 c | 0 | 966.90 c |
V2T2 | 5330.00 b | −2341.50 c | 30 | 2988.50 c |
V2T3 | 8947.30 a | 599.00 b | 150 | 9546.30 a |
V2T4 | 6151.30 b | 102.30 b | 187.5 | 6253.60 b |
V2T5 | 6131.30 b | 496.80 b | 180 | 6628.10 b |
V2T6 | 5867.80 b | 1955.90 a | 337.5 | 7823.70 ab |
V2T7 | 6732.20 b | 1015.20 ab | 217.5 | 7747.40 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Zhu, Y.; Wu, H.; Dong, G.; Zhou, G.; Donald, S.L. Effects of Fertilizers and Soil Amendments on Soil Physicochemical Properties and Carbon Sequestration of Oat (Avena sativa L.) Planted in Saline–Alkaline Land. Agronomy 2025, 15, 1582. https://doi.org/10.3390/agronomy15071582
Liu J, Zhu Y, Wu H, Dong G, Zhou G, Donald SL. Effects of Fertilizers and Soil Amendments on Soil Physicochemical Properties and Carbon Sequestration of Oat (Avena sativa L.) Planted in Saline–Alkaline Land. Agronomy. 2025; 15(7):1582. https://doi.org/10.3390/agronomy15071582
Chicago/Turabian StyleLiu, Jiao, Yiming Zhu, Hao Wu, Guichun Dong, Guisheng Zhou, and Smith L. Donald. 2025. "Effects of Fertilizers and Soil Amendments on Soil Physicochemical Properties and Carbon Sequestration of Oat (Avena sativa L.) Planted in Saline–Alkaline Land" Agronomy 15, no. 7: 1582. https://doi.org/10.3390/agronomy15071582
APA StyleLiu, J., Zhu, Y., Wu, H., Dong, G., Zhou, G., & Donald, S. L. (2025). Effects of Fertilizers and Soil Amendments on Soil Physicochemical Properties and Carbon Sequestration of Oat (Avena sativa L.) Planted in Saline–Alkaline Land. Agronomy, 15(7), 1582. https://doi.org/10.3390/agronomy15071582