Petrological Exploration of Magma Storage and Evolution Conditions at the Eastern Virunga Volcanic Province (Rwanda, East African Rift System)
Abstract
1. Introduction
2. Geological and Petrological Background
3. Sampling and Analytical Methods
Geochemical and Mineral Chemistry Analysis
4. Results
4.1. Classification and Petrography of the Studied Samples
4.1.1. Petrographic Feature
4.1.2. Whole-Rock Compositions
4.2. Mineral Chemistry
4.2.1. Olivine
4.2.2. Clinopyroxene
4.2.3. Plagioclase
4.2.4. Mica, Leucite, Apatite and Opaque Minerals
5. Discussion
5.1. Pre-Eruptive Storage Conditions
5.2. Magma Evolution Paths
5.3. Insights into the VVP Magmatic Plumbing System
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cashman, K.V.; Sparks, R.S.J.; Blundy, J.D. Vertically extensive and unstable magmatic systems: A unified view of igneous processes. Science 2017, 355, 6331. [Google Scholar] [CrossRef] [PubMed]
- Edmonds, M.; Cashman, K.V.; Holness, M.; Jackson, M. Architecture and dynamics of magma reservoirs. Phil. Trans. R. Soc. A 2019, 377, 20180298. [Google Scholar] [CrossRef] [PubMed]
- Jerram, D.A.; Dobson, K.J.; Morgan, D.J.; Pankhurst, M.J. The petrogenesis of magmatic systems: Using igneous textures to understand magmatic processes. In Volcanic and Igneous Plumbing Systems; Elsevier: Amsterdam, The Netherlands, 2018; pp. 191–229. [Google Scholar]
- Masotta, M.; Mollo, S.; Freda, C.; Gaeta, M.; Moore, G. Clinopyroxene–liquid thermometers and barometers specific to alkaline differentiated magmas. Contrib. Mineral. Petrol. 2013, 166, 1545–1561. [Google Scholar] [CrossRef]
- Putirka, K.D. Thermometers and barometers for volcanic systems. Rev. Miner. Geochem. 2008, 69, 61–120. [Google Scholar] [CrossRef]
- Bohrson, W.A.; Spera, F.J.; Heinonen, J.S.; Brown, G.A.; Scruggs, M.A.; Adams, J.V.; Takach, M.K.; Zeff, G.; Suikkanen, E. Diagnosing open-system magmatic processes using the Magma Chamber Simulator (MCS): Part I-major elements and phase equilibria. Contrib. Miner. Petrol. 2020, 175, 105. [Google Scholar] [CrossRef]
- Gualda, G.A.; Ghiorso, M.S.; Lemons, R.V.; Carley, T.L. Rhyolite-MELTS: A modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. J. Petrol. 2012, 53, 875–890. [Google Scholar] [CrossRef]
- Colle, F.; Masotta, M.; Costa, S.; Giacomoni, P.P.; Trua, T.; Marani, M. A micro-scale insight into a back-arc trans-crustal plumbing system: The case of Marsili volcano, Southern Tyrrhenian Sea. Lithos 2024, 482–483, 107675. [Google Scholar] [CrossRef]
- Colle, F.; Masotta, M.; Costa, S.; Mollo, S.; Landi, P.; Pontesilli, A.; Peres, S.; Mancini, L. Effect of undercooling on clinopyroxene crystallization in high K basalt: Implications for magma dynamics at Stromboli volcano. Lithos 2023, 456–457, 107327. [Google Scholar] [CrossRef]
- Costa, S.; Masotta, M.; Gioncada, A.; Pistolesi, M. A crystal mush perspective explains magma variability at La Fossa Volcano (Vulcano, Italy). Minerals 2021, 11, 1094. [Google Scholar] [CrossRef]
- Kamate Kaleghetso, E.; Namur, O.; Smets, B.; Vander Auwera, J.; Lubala, F.; Van Gerve, T.; Molendijk, S.M. Magmatic differentiation and plumbing system beneath Nyamulagira volcano (Virunga Volcanic Province, East African Rift). J. Volc. Geoth. Res. 2025, 458, 108264. [Google Scholar] [CrossRef]
- Molendijk, S.; Namur, O.; Kamate Kaleghetso, E.; Mason, P.R.D.; Smets, B.; Vander Auwera, J.; Neave, D.A. Plumbing system architecture and differentiation processes of the Nyiragongo Volcano, DR Congo. J. Petrol. 2024, 65, egad088. [Google Scholar] [CrossRef]
- Barette, F.; Poppe, S.; Smets, B.; Benbakkar, M.; Kervyn, M. Spatial variation of volcanic rock geochemistry in the Virunga Volcanic Province: Statistical analysis of an integrated database. J. Afr. Earth Sci. 2017, 134, 888–903. [Google Scholar] [CrossRef]
- Chakrabarti, R.; Basu, A.R.; Santo, A.P.; Tedesco, D.; Vaselli, O. Isotopic and geochemical evidence for a heterogeneous mantle plume origin of the Virunga volcanics, Western rift, East African Rift system. Chem. Geol. 2009, 259, 273e289. [Google Scholar] [CrossRef]
- Innocenzi, F.; Ronca, S.; Foley, S.; Agostini, S.; Lustrino, M. Carbonatite and ultrabasic magmatism at Toro Ankole and Virunga, western branch of the East African Rift system. Gondwana Res. 2024, 125, 317–342. [Google Scholar] [CrossRef]
- Minissale, S.; Casalini, M.; Cucciniello, C.; Balagizi, C.; Tedesco, D.; Boudoire, G.; Morra, V.; Melluso, L. The geochemistry of recent Nyamulagira and Nyiragongo potassic lavas, Virunga Volcanic Province, and implications on the enrichment processes in the mantle lithosphere of the Tanzania-Congo craton. Lithos 2022, 420–421, 106696. [Google Scholar] [CrossRef]
- Muravyeva, N.S.; Belyatsky, B.V.; Senis, V.G.; Ivanov, A.V. Sr–Nd–Pb isotope systematics and clinopyroxene-host disequilibrium in ultra-potassic magmas from Toro Ankole and Virunga, East-African Rift: Implications for magma mixing and source heterogeneity. Lithos 2014, 210–211, 260–277. [Google Scholar] [CrossRef]
- Muravyeva, N.S.; Senin, V.G.; Ivanov, A.V.; Belyatsky, B.V. Leucite basanites of Virunga (East African Rift): Some insights into petrogenesis and source composition. Lithos 2021, 384–385, 105972. [Google Scholar] [CrossRef]
- Pitcavage, E.; Furman, T.; Nelson, W.; Kalegga, P.K.; Barifaijo, E. Petrogenesis of primitive lavas from the Toro Ankole and Virunga Volcanic Provinces: Metasomatic mineralogy beneath East Africa’s Western Rift. Lithos 2021, 396–397, 106192. [Google Scholar] [CrossRef]
- Rogers, N.W.; De Mulder, M.; Hawkesworth, C.J. An enriched mantle source for potassic basanites: Evidence from Karisimbi volcano, Virunga volcanic province, Rwanda. Contrib. Mineral. Petrol. 1992, 111, 543–556. [Google Scholar] [CrossRef]
- Rogers, N.W.; James, D.; Kelley, S.P.; De Mulder, M. The generation of potassic lavas from the Eastern Virunga Province, Rwanda. J. Petrol. 1998, 39, 1223–1247. [Google Scholar] [CrossRef]
- De Mulder, M.; Hertogen, J.; Deutsch, S.; Andre, L. The role of crustal contamination in the potassic suite of the Karisimbi volcano (Virunga, African Rift Valley). Chem. Geol. 1986, 57, 117e136. [Google Scholar] [CrossRef]
- Armstrong, J.T. Quantitative elemental analysis of individual microparticles with electron beam instruments. In Electron Probe Quantitation; Springer: New York, NY, USA, 1991; pp. 261–315. [Google Scholar]
- Le Maitre, R.W. Classification of Igneous Rocks and Glossary of Terms. Recommendations of the IUGS Subcommission on the Systematics of Igneous Rocks; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- McDonough, W.F.; Sun, S.-S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Morimoto, N. Nomenclature of pyroxene. Can. Mineral. 1988, 27, 143–156. [Google Scholar]
- Bindeman, I.; Davis, A.; Drake, M. Ion microprobe study of plagioclase–basalt partition experiments at natural concentration levels of trace elements. Geochim. Cosmochim Acta 1998, 62, 1175–1193. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.; Behrens, H.; Holtz, F. Calculating biotite formula from electron microprobe analysis data using a machine learning method based on principal components regression. Lithos 2020, 356–357, 105371. [Google Scholar] [CrossRef]
- Putirka, K.; Johnson, M.; Kinzler, R.; Longhi, J.; Walker, D. Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0–30 kbar. Contrib. Mineral. Petrol. 1996, 123, 92–108. [Google Scholar] [CrossRef]
- Mollo, S.; Putirka, K.; Misiti, V.; Soligo, M.; Scarlato, P. A new test for equilibrium based on clinopyroxene–melt pairs: Clues on the solidification temperatures of Etnean alkaline melts at post-eruptive conditions. Chem. Geol. 2013, 352, 92–100. [Google Scholar] [CrossRef]
- Mollo, S.; Masotta, M. Optimizing pre-eruptive temperature estimates in thermally and chemically zoned magma chambers. Chem. Geol. 2014, 368, 97–103. [Google Scholar] [CrossRef]
- Roeder, P.L.; Emslie, R.F. Olivine-liquid equilibrium. Contrib. Mineral. Petrol. 1970, 29, 275–289. [Google Scholar] [CrossRef]
- Ágreda-López, M.; Parodi, V.; Musu, A.; Jorgenson, C.; Carfì, A.; Mastrogiovanni, F.; Caricchi, L.; Perugini, D.; Petrelli, M. Enhancing machine learning thermobarometry for clinopyroxene-bearing magmas. Comput. Geosci. 2024, 193, 105707. [Google Scholar] [CrossRef]
- Putirka, K.D.; Perfit, M.; Ryerson, F.; Jackson, M.G. Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling. Chem. Geol. 2007, 241, 177–206. [Google Scholar] [CrossRef]
- Putirka, K.D. Igneous thermometers and barometers based on plagioclase+ liquid equilibria: Tests of some existing models and new calibrations. Am. Mineral. 2005, 90, 336–346. [Google Scholar] [CrossRef]
- Andersen, D.J.; Lindsley, D.H. New (and final) models for the Ti-magnetite/ilmenite geothermometer and oxygen barometer. Am Geophys. Union 1985, 66, 416. [Google Scholar]
- Pinel, V.; Mériaux, C. Subsurface lateral magma propagation from Nyiragongo volcano in the Western Rift Zone of the East African Rift. J. Afr. Earth Sci. 2025, 226, 105569. [Google Scholar] [CrossRef]
- Bohrson, W.A.; Spera, F.J.; Ghiorso, M.S.; Brown, G.A.; Creamer, J.B.; Mayfield, A. Thermodynamic model for energy-constrained open-system evolution of crustal magma bodies undergoing simultaneous recharge, assimilation and crystallization: The magma chamber simulator. J. Petrol. 2014, 55, 1685–1717. [Google Scholar] [CrossRef]
- Heinonen, J.S.; Iles, K.A.; Heinonen, A.; Fred, R.; Virtanen, V.J.; Bohrson, W.A.; Spera, F.J. From Binary mixing to magma chamber simulator: Geochemical modeling of assimilation in magmatic systems. In Crustal Magmatic System Evolution: Anatomy, Architecture, and Physico-Chemical Processes; American Geophysical Union: Washington, DC, USA, 2021; Volume 7, pp. 151–176. [Google Scholar]
- Ji, K.H.; Stamps, D.S.; Geirsson, H.; Mashagiro, N.; Syauswa, M.; Kafudu, B.; Subira, J.; D’Oreye, N. Deep magma accumulation at Nyamulagira volcano in 2011 detected by GNSS observations. J. Afr. Earth Sci. 2017, 134, 824–830. [Google Scholar] [CrossRef]
- Wauthier, C.; Cayol, V.; Poland, M.; d’Oreye, F.N.; Hooper, A.; Samsonov, S.; Tiampo, K.; Smets, B. Nyamulagira’s magma plumbing system inferred from 15 years of InSAR. Geol. Soc. Lond. Spec. Publ. 2013, 380, 39–65. [Google Scholar] [CrossRef]
- Tuluka, G.M. Crustal structure beneath two seismic broadband stations revealed from teleseismic P-wave receiver function. J. Afr. Earth Sci. 2010, 58, 820–828. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colle, F.; Trua, T.; Giacomelli, S.; D’Orazio, M.; Valentino, R. Petrological Exploration of Magma Storage and Evolution Conditions at the Eastern Virunga Volcanic Province (Rwanda, East African Rift System). Minerals 2025, 15, 666. https://doi.org/10.3390/min15070666
Colle F, Trua T, Giacomelli S, D’Orazio M, Valentino R. Petrological Exploration of Magma Storage and Evolution Conditions at the Eastern Virunga Volcanic Province (Rwanda, East African Rift System). Minerals. 2025; 15(7):666. https://doi.org/10.3390/min15070666
Chicago/Turabian StyleColle, Fabio, Teresa Trua, Serena Giacomelli, Massimo D’Orazio, and Roberto Valentino. 2025. "Petrological Exploration of Magma Storage and Evolution Conditions at the Eastern Virunga Volcanic Province (Rwanda, East African Rift System)" Minerals 15, no. 7: 666. https://doi.org/10.3390/min15070666
APA StyleColle, F., Trua, T., Giacomelli, S., D’Orazio, M., & Valentino, R. (2025). Petrological Exploration of Magma Storage and Evolution Conditions at the Eastern Virunga Volcanic Province (Rwanda, East African Rift System). Minerals, 15(7), 666. https://doi.org/10.3390/min15070666