Petrological Studies and Geochemical Modelling of Water–Rock Interactions in the Grønnedal-Íka Alkaline Complex Generating Ikaite Deposition in Ikka Fjord, SW Greenland
Abstract
:1. Introduction
1.1. The Grønnedal-Íka Complex and the Gardar Province
1.2. Ikka Fjord and the Ikaite Columns
2. Material and Methods
2.1. Rock Samples and Analysis
2.2. Chemical Analysis of Thin Sections
2.3. Laboratory Experiments
2.4. Geochemical Modelling
3. Results
3.1. Whole Rock Composition and Mineralogy
3.2. Laboratory Experiments
3.3. Geochemical Modelling
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buchardt, B.; Seaman, P.; Stockmann, G.; Vous, M.; Wilken, U.; Düwel, L.; Kristiansen, A.; Jenner, C.; Whiticar, M.J.; Kristensen, R.M. Submarine columns of ikaite tufa. Nature 1997, 390, 129–130. [Google Scholar]
- Buchardt, B.; Israelson, C.; Seaman, P.; Stockmann, G. Ikaite tufa towers in Ikka Fjord, Southwest Greenland: Their formation by mixing of seawater and alkaline spring water. J. Sediment. Res. 2001, 71, 176–189. [Google Scholar]
- Seaman, P.; Buchardt, B. The columns of ikate tufa in Ikka Fjord, Greenland. Geosci. Monogr. Greenl. 2006, 44, 39. [Google Scholar]
- Hansen, M.O.; Buchardt, B.; Kühl, M.; Elberling, B. The fate of Submarine Ikaite Tufa Columns in Southwest Greenland Under Changing Climate Conditions. J. Sediment. Res. 2011, 81, 553–561. [Google Scholar] [CrossRef]
- Stockmann, G.J.; Seaman, P.; Balic-Zunic, T.; Peternell, M.; Sturkell, E.; Liljebladh, B.; Gyllencreutz, R. Mineral Changes to the Tufa Columns of Ikka Fjord, SW Greenland. Minerals 2022, 12, 1430. [Google Scholar] [CrossRef]
- Tollefsen, E.; Stockmann, G.; Skelton, A.; Lundqvist, L.; Sturkell, E. Secondary alteration of the Gronnedal-Ika igneous complex and the genesis of ikaite, CaCO3 6H2O, SW Greenland. Chem. Geol. 2019, 510, 18–30. [Google Scholar]
- Söderlund, U.; Isachsen, C.E.; Bylund, G.; Heaman, L.M.; Jonathan Patchett, P.; Vervoort, J.D.; Andersson, U.B. U–Pb baddeleyite ages and Hf, Nd isotope chemistry constraining repeated mafic magmatism in the Fennoscandian Shield from 1.6 to 0.9 Ga. Contrib. Mineral. Petrol. 2005, 150, 174–194. [Google Scholar]
- Ernst, R.E.; Wingate, M.T.; Buchan, K.L.; Li, Z.X. Global record of 1600-700 Ma Large Igneous Provinces (LIPs): Implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents. Precambrian Res. 2008, 160, 159–178. [Google Scholar]
- Siegel, K.; Williams-Jones, A.E.; Stevenson, R. A Nd- and O-isotope study of the REE-rich peralkaline Strange Lake granite: Implications for Mesoproterozoic A-type magmatism in the Core Zone (NE-Canada). Contrib. Mineral. Petrol. 2017, 172, 54. [Google Scholar] [CrossRef]
- Pandey, R.; Rao, N.V.C.; Dhote, P.; Pandit, D.; Choudhary, A.K.; Sahoo, S.; Lehmann, B. Rift associated ultramafic lamprophyre (damtjernite) from the middle part of the Lower Cretaceous (125 Ma) succession of Kutch, northwestern India: Tectonomagmatic implications. Geosci. Front. 2017, 9, 1883–1902. [Google Scholar] [CrossRef]
- Pandey, R.; Rao, N.V.C.; Singh, M.K.; Talukdar, D. Alkaline rocks from the Deccan Large Igneous Province: Time–space distribution, petrology, geochemistry and economic aspects. J. Earth Syst. Sci. 2022, 131, 108. [Google Scholar] [CrossRef]
- Stockmann, G.; Karlsson, A.; Lewerentz, A.; Thomsen, T.B.; Kokfelt, T.F.; Tollefsen, E.; Sturkell, E.; Lundqvist, L. New Rb–Sr and zircon U–Pb dating of the Grønnedal-Íka igneous complex, SW Greenland. In Proceedings of the Nordic Geological Winter Meeting 2018, Copenhagen, Denmark, 10–12 January 2018; p. 38. [Google Scholar]
- Beard, C.D.; Finch, A.A.; Borst, A.M.; Goodenough, K.M.; Hutchison, W.; Millar, I.L.; Andersen, T.; Williams, H.M.; Weller, O.M. A phlogopite-bearing lithospheric mantle source for Europe’s largest REE-HFSE belt: Gardar Rift, SW Greenland. Earth Planet. Sci. Lett. 2024, 60, 11. [Google Scholar]
- Upton, B.G.J.; Emeleus, C.H.; Heaman, L.M.; Goodenough, K.M.; Finch, A.A. Magmatism of the mid-Proterozoic Gardar Province, South Greenland: Chronology, petrogenesis and geological setting. Lithos 2003, 68, 43–65. [Google Scholar] [CrossRef]
- Hanzelmann, L. REE Mobility During Late-Stage Hydrothermal Alteration in the Siderite Carbonatites of the 1.3 Ga Grønnedal-Íka Alkaline Complex, Southwest Greenland. Master’s Thesis, Institute of Applied Mineralogy and Economic Geology, RWTH Aachen University, Aachen, Germany, 2022; 159p. [Google Scholar]
- Garde, A.A.; Hamilton, M.A.; Chadwick, B.; Grocott, J.; McCaffrey, K.J.W. The Ketilidian orogen of South Greenland: Geochronology, tectonics, magmatism, and fore-arc accretion during Palaeoproterozoic oblique convergence. Can. J. Earth. Sci. 2002, 39, 765–793. [Google Scholar] [CrossRef]
- Garde, A.A.; Chadwick, B.; Grocott, J.; Hamilton, M.A.; McCaffrey, K.J.W.; Swager, C.P. Mid-crustal partitioning and attachment during oblique convergence in an arc system, Palaeoproterozoic Ketilidian orogen, southern Greenland. J. Geol. Soc. 2002, 159, 247–261. [Google Scholar] [CrossRef]
- Escher, A.; Watt, W.S. (Eds.) Summary of the geology of Greenland. In Geology of Greenland; Grønlands Geologiske Undersøgelse: Copenhagen, Denmark, 1976; pp. 10–16. [Google Scholar]
- Emeleus, C.H.; Upton, B.G.J. The Gardar period in South Greenland. In Geology of Greenland; Escher, A., Watt, W.S., Eds.; Grønlands Geologiske Undersøgelse: Copenhagen, Denmark, 1976; pp. 152–181. [Google Scholar]
- Upton, B.G.J. Tectono-magmatic evolution of the younger Gardar southern rift, South Greenland. Geol. Surv. Den. Greenl. Bull. 2013, 29, 4692. [Google Scholar] [CrossRef]
- Emeleus, C.H. The Gronnedal-Ika alkaline complex, South Greenland. The structure and geological history of the complex. Bull. Grønl. Geol. Unders. 1964, 45, 78. [Google Scholar] [CrossRef]
- Bartels, A.; Nilsson, M.K.M.; Klausen, M.B.; Söderlund, U. Meso-proterozoic dykes in the Timmiarmiit area, Southeast Green- land: Evidence for a continuous Gardar dyke swarm across Greenland’s North Atlantic Craton. GFF 2016, 138, 255–275. [Google Scholar] [CrossRef]
- Ranta, E.; Stockmann, G.; Wagner, T.; Fusswinkel, T.; Sturkell, E.; Tollefsen, E.; Skelton, A. Fluid-Rock reactions in the 1.3 Ga siderite carbonatite of the Grønnedal-Íka alkaline complex, Southwest Greenland. Contrib. Mineral. Petrol. 2018, 173, 1–28. [Google Scholar] [CrossRef]
- Bedford, C.M. The Mineralogy, Geochemistry, and Petrogenesis of the Gronnedal-íka Alkaline Igneous Complex, South-West Greenland. Ph.D. Thesis, Durham University, Durham, UK, 1990. [Google Scholar]
- Woolley, A.R.; Kjærsgaard, B.A. Paragenetic types of carbonatite as indicated by the diversity and relative abundances of associated silicate rocks: Evidence from a global database. Can. Mineral. 2008, 46, 741–752. [Google Scholar] [CrossRef]
- Seaman, P.; Sturkell, E.; Gyllencreutz, R.; Stockmann, G.J.; Geirsson, H. New multibeam mapping of the unique Ikaite columns in Ikka Fjord, SW Greenland. Mar. Geol. 2022, 222, 106710. [Google Scholar] [CrossRef]
- Buchardt, B.; Stockmann, G.; Hansen, M.O.; Sveinbjörnsdóttir, Á. Isotope hydrology (2H and 18O) of Ikka fjord and its tufa columns, SW Greenland. Geol. Soc. Den. 2024, 73, 22. [Google Scholar]
- Ohmura, A.; Reeh, N. New precipitation and accumulation maps for Greenland. J. Glaciol. 1991, 37, 140–148. [Google Scholar]
- Buch, E. Havstrømme omkring Grønland. In Grønlands Fysiske Natur; Gregersen, S., Ed.; København: Rhodos, Denmark, 1995; pp. 25–32. [Google Scholar]
- Bischoff, J.L.; Fitzpatrick, J.A.; Rosenbauer, R.J. The solubility and stabilization of ikaite (CaCO3∙6H2O) from 0 °C to 25 °C: Environmental and paleoclimatic implications for thinolite tufa. J. Geol. 1993, 101, 21–33. [Google Scholar]
- Stockmann, G.; Tollefsen, E.; Skelton, A.; Brüchert, V.; Balic-Zunic, T.; Langhof, J.; Skogby, H.; Karlsson, A. Control of calcite inhibitor (phosphate) and temperature on ikaite precipitation in Ikka fjord, southwest Greenland. Appl. Geochem. 2018, 89, 11–22. [Google Scholar]
- Tollefsen, E.; Stockmann, G.; Skelton, A.; Mörth, C.-M.; Dupraz, C.; Sturkell, E. Chemical controls on ikaite formation. Mineral. Mag. 2018, 82, 1119–1129. [Google Scholar] [CrossRef]
- Trampe, E.C.; Richard, W.; Castenholz, J.; Larsen, E.; Michael Kuhl, M. Phototrophic microbes form endolithic biofilms in ikaite tufa columns (SW Greenland). Environ. Microbiol. 2017, 19, 4754–4770. [Google Scholar]
- Marland, G. The stability of CaCO3·6H2O (ikaite). Geochim. Cosmochim. Acta 1975, 39, 83–91. [Google Scholar]
- Dahl, K.; Buchardt, B. Monohydrocalcite in the Arctic Ikka fjord, SW Greenland: First reported marine occurrence. J. Sed. Res. 2006, 76, 460–471. [Google Scholar]
- Garvie, L. Seasonal formation of ikaite in slime flux jelly on an infected tree (Populus fremontii) wound from the Sonoran Desert. Sci. Nat. 2022, 109, 48. [Google Scholar] [CrossRef]
- Vickers, M.L.; Vickers, M.; Rickaby, R.E.; Wu, H.; Bernasconi, S.M.; Ullmann, C.V.; Bohrmann, G.; Spielhagen, R.F.; Kassens, H.; Schultz, B.P.; et al. The ikaite to calcite transformation: Implications for palaeoclimate studies. Geochim. Cosmochim. Acta 2022, 334, 201–216. [Google Scholar]
- Rantanen, M.; Karpechko, A.Y.; Lipponen, A.; Nordling, K.; Hyvärinen, O.; Ruosteenoja, K.; Vihma, T.; Laaksonen, A. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 2022, 3, 168. [Google Scholar]
- Jarosewich, E. Smithsonian microbeam standards. J. Res. Natl. Inst. Stand. Technol. 2002, 107, 681. [Google Scholar]
- Armstrong, J.T. Electron Probe Quantitation; Heinrich, K.F.J., Newbury, D.E., Eds.; Plenum Press: New York, NY, USA, 1991; p. 261. [Google Scholar]
- Parkhurst, D.L.; Appelo, C.A.J. User’s Guide to PHREEQC (Version 2)—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations; Report 99-4259; Water- Resources Investigations; U.S. Geological Survey: Reston, VA, USA, 1999. [Google Scholar]
- Voigt, M.; Marieni, C.; Clark, D.E.; Gíslason, S.R.; Oelkers, E.H. Evaluation and refinement of thermodynamic databases for mineral carbonation. Energy Procedia 2018, 146, 81–91. [Google Scholar] [CrossRef]
- Parkhurst, D.L.; Appelo, C.A.J. Description of input and examples for PHREEQC version 3—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geol. Surv. Tech. Methods 2013, 6, 497. [Google Scholar]
- Krupka, K.M.; Cantrell, K.J.; McGrail, B.P. Thermodynamic Data for Geochemical Modeling of Carbonate Reactions Associated with CO2 Sequestration—Literature Review; Prepared for the U.S. Department of Energy; (PNNL-19766); Pacific Northwest National Laboratory Richland: Washington, DC, USA, 2010. [Google Scholar]
- Keiding, K.; Heidam, N.Z. Observations on acidity and ions in East Greenland precipitation, Tellus, B. Chem. Phys. Meteorol. 1986, 38, 345–352. [Google Scholar] [CrossRef]
- Middlemost, E.A.K. Naming materials in the magma/igneous rocks system. Earth Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Gittins, J.; Harmer, R.E. What is ferrocarbonatite? A revised classification. J. Afr. Earth Sci. 1997, 25, 159–168. [Google Scholar]
- Heinrich, E.W. The Geology of Carbonatites; Rand McNally & Co.: Chicago, IL, USA, 1966. [Google Scholar]
- Gill, R.C.O. The Geochemistry of the Gronnedal-ika Alkaline Complex, South Greenland. Ph.D. Thesis, Durham University, Durham, UK, 1972. [Google Scholar]
- Tole, M.P.; Lasaga, A.C.; Pantano, C.; White, W.B. The kinetics of dissolution of nepheline (NaAlSiO4). Geochim. Cosmochim. Acta 1986, 50, 379–392. [Google Scholar]
- Stockmann, G.J.; Ranta, E.; Trampe, E.; Sturkell, E.; Seaman, P. Carbon mineral storage in seawater: Ikaite (CaCO3 6H2O) columns in Greenland. Energy Procedia 2018, 146, 59–67. [Google Scholar]
- Seymour, L.M.; Maragh, J.; Sabatini, P.; Di Tommaso, M.; Weaver, J.C.; Masic, A. Hot mixing: Mechanistic insights into the durability of ancient Roman concrete. Sci. Adv. 2023, 9, eadd1602. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, F.T.; Lerman, A. Carbon in the Geobiosphere: Earth’s Outer Shell; Springer: Dordrecht, the Netherlands, 2006; p. 402. [Google Scholar]
- Seaman, P.G. The Development of Ikaite in a Fjord Environment with Special Reference to Ikka Fjord. Unpublished. Ph.D. Thesis, Imperial College of Science, Technology and Medicine, University of London, London, UK, 1998; p. 263. [Google Scholar]
- Lasaga, A.C. Kinetic Theory in Earth Sciences; Princeton University Press: Princeton, NJ, USA, 1998. [Google Scholar]
- Drever, J.I. The Geochemistry of Natural Waters: Surface and Groundwater Environments; Prentice Hall: Hoboken, NJ, USA, 1997. [Google Scholar]
- White, A.F. Chemical Weathering Rates of Silicate Minerals in Soil. In Chemical Weathering Rates of Silicate Mineral; White, A.F., Brantley, S.L., Eds.; Mineralogical Society America, Reviews in Mineralogy: Washington, DC, USA, 1995; Volume 31, pp. 407–461. [Google Scholar] [CrossRef]
Mineral | Symbol | Equation | Dissolution Reaction | log K25 °C |
---|---|---|---|---|
Primary phases | ||||
Nepheline syenite | 18GS01 | SiAl0.4074Fe0.3649Mg0.0165Ca0.0426Na0.2402K0.1907Mn0.0082O3.288 | 18GS01 + 2.576H+ = 0.4074Al3+ + 0.0426Ca2+ + 0.3064Fe2+ + 0.0585Fe3+ + 1.288H2O + 0.1907K+ + 0.0165Mg2+ + 0.0082Mn2+ + 0.2402Na+ + SiO2 | undersat. c |
Calcio-carbonatite | 18GS02 | Fe0.009Ca1Mn0.003C1.055O3.122 | 18GS02 + 0.969H+ + 0.043H2O = Ca2+ + 0.009Fe2+ + 1.055HCO3− + 0.003Mn2+ | undersat. c |
Ferruginous calcio-carbonatite | 19SA29 | SiAl0.04Fe1.78Mg0.05Ca4.22Na0.14K0.01Mn0.18C3.97O16.4 | 19SA29 + 8.95H+ = 3.97HCO3− + SiO2 + 0.04Al3+ + 1.59Fe2+ + 0.19Fe3+ + 0.05Mg2+ + 4.22Ca2+ + 0.14Na+ + 0.01K+ + 0.18Mn2+ + 2.49H2O | undersat. c |
Secondary phases | ||||
Al(OH)3(am) | Al(am) | |||
Calcite | Cal | CaCO3 | cal + H+ = Ca2+ + HCO3− | 1.85 a |
Celadonite | Cel | KMgAlSi4O10(OH)2 | cel + 6 H+ = Al3+ + K+ + Mg2+ + 4H2O + 4SiO2 | 7.46 a |
Chalcedony | Cha | SiO2 | cha = SiO2 | −3.73 a |
Fe(OH)3 | Fe(OH)3 | Fe(OH)3 | Fe(OH)3 + 3H+ = Fe3+ + 3H2O | 5.66 a |
Gibbsite | Gbs | Al(OH)3 | gib + 3H+ = Al3+ + 3H2O | 7.76 a |
Goethite | Gth | FeOOH | goe + 3H+ = Fe3+ + 2H2O | 0.53 a |
Illite | Ilt | K0.6Mg0.25Al1.8Al0.5Si3.5O10(OH)2 | il +8H+ = + 0.25 Mg2+ + 0.60K+ + 2.30Al3+ + 3.50SiO2 + 5H2O | 9.03 b |
Mn(OH)2(am) | Mn(am) | Mn(OH)2 | Mn(OH)2 + 2H+ = Mn2+ + 2H2O | 15.31 a |
Montmorillonite-Ca | Mnt-Ca | Ca.175Mg.35Al1.65Si4O10(OH)2 | mon-ca + 6H+ = 0.175Ca2+ + 0.35Mg2+ + 1.65Al3+ + 4H2O + 4SiO2 | 2.50 a |
Montmorillonite-K | Mnt-K | K.35Mg.35Al1.65Si4O10(OH)2 | mon-k + 6H+ = 0.35K+ + 0.35Mg2+ + 1.65Al3+ + 4H2O + 4SiO2 | 2.14 a |
Montmorillonite-Mg | Mnt-Mg | Mg.525Al1.65Si4O10(OH)2 | mon-mg + 6H+ = 0.525Mg2+ + 1.65Al3+ + 4H2O + 4SiO2 | 2.39 a |
Montmorillonite-Na | Mnt-Na | Na.35Mg.35Al1.65Si4O10(OH)2 | mon-na + 6H+ = 0.35Mg2+ + 0.35Na+ + 1.65Al3+ + 4H2O + 4SiO2 | 2.48 a |
Nontronite-Ca | Non-Ca | Ca.175Fe2Al.35Si3.65H2O12 | mon-ca + 7.4H+ = 0.175Ca2+ + 0.35Al3+ + 2Fe3+ + 3.65SiO2 + 4.7H2O | −11.58 a |
Nontronite-K | Non-K | K.35Fe2Al.35Si3.65H2O12 | mon-k + 7.4H+ = 0.35Al3+ + 0.35K+ + 2Fe3+ + 3.65SiO2 + 4.7H2O | −11.86 a |
Nontronite-Mg | Non-Mg | Mg.175Fe2Al.35Si3.65H2O12 | mon-mg + 7.4H+ = 0.175Mg2+ + 0.35Al+3 + 2Fe3+ + 3.65SiO2 + 4.7H2O | −11.62 a |
Nontronite-Na | Non-Na | Na.35Fe2Al.35Si3.65H2O12 | mon-na + 7.4H+ = 0.35Al3+ + 0.35Na+ + 2Fe3+ + 3.65SiO2 + 4.7H2O | −11.53 a |
Saponite-Fe-Ca | Sap-Fe-Ca | Ca.175Fe3Al.35Si3.65O10(OH)2 | sap-fe-ca + 7.4H+ = 0.175Ca2+ + 0.35Al3+ + 3Fe2+ + 3.65SiO2 + 4.7H2O | 20.36 a |
Saponite-Fe-Fe | Sap-Fe-Fe | Fe3.175Al.35Si3.65O10(OH)2 | sap-fe-fe + 7.4 H+ = 0.35Al3+ + 3.175Fe2+ + 3.65SiO2 + 4.7H2O | 18.94 a |
Saponite-Fe-K | Sap-Fe-K | K.35Fe3Al.35Si3.65O10(OH)2 | sap-fe-k + 7.4H+ = 0.35K+ + 0.35Al3+ + 3Fe2+ + 3.65SiO2 + 4.7H2O | 18.79 a |
Saponite-Fe-Mg | Sap-Fe-Mg | Mg.175Fe3Al.35Si3.65O10(OH)2 | sap-fe-mg + 7.4H+ = 0.175Mg2+ + 0.35Al3+ + 3Fe2+ + 3.65SiO2 + 4.7H2O | 19.53 a |
Saponite-Fe-Na | Sap-Fe-Na | Na.35Fe3Al.35Si3.65O10(OH)2 | sap-fe-na + 7.4H+ = 0.35Na+ + 0.35Al3+ + 3Fe2+ + 3.65SiO2 | 19.80 a |
Kalsilite | Kls | KAlSiO4 | kal + 4H+ = Al3+ + K+ + SiO2 + 2H2O | 10.90 a |
Ikaite | Ika | CaCO3 ∙ 6H2O | ika + H+ = Ca2+ + 6H2O + HCO3− | 2.87 d |
Type of Water | Area | Locality | Temp | pH | H+ | Na+ | K+ | Ca2+ | Mg2+ | Cl− | NH4− | NO3− | SO4− | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Average rainwater composition from E Greenland [45]. | Mestersvig | AGA site at Mestersvig airfield | 5 °C | 5.6 | 0.01 | 1.05 × 10−3 | 1.05 × 10−3 | 4.37 × 10−3 | 4 × 10−3 | 1.13 × 10−2 | 8.29 × 10−3 | 9.44 × 10−3 | 1.054 × 10−2 | |||
Rock composition | SiO2 | Al2O3 | Fe2O3 | MgO | CaO | Na2O | K2O | TiO2 | MnO | P2O5 | Loi | Total | ||||
Calcio-carbonatite 18GS02 | Ikka fjord | Grønnedal–Íka | N.D. | N.D. | 1.17 | N.D. | 54.91 | N.D. | N.D. | 0.001 | 0.178 | N.D. | 43.6 | 99.86 | ||
Nepheline Syenite 18GS01 | Ikka fjord | Grønnedal–Íka | 53.21 | 19.14 | 9.07 | 0.68 | 1.48 | 8.55 | 5.713 | 0.374 | 0.262 | 0.134 | 1.36 | 99.97 |
Nepheline Syenite (18GS01) | ||||||||
---|---|---|---|---|---|---|---|---|
Or (28%) | Ab (24%) | Nph (25%) | Aeg-Aug (6%) | Bt | Rbk (2%) | Frct (2%) | Ap (1%) | |
SiO2 | 64.17–65.72 | 68.09–69.11 | 43.02–45.07 | 49.94–52.09 | 34.20–35.50 | 51.33–55.61 | 50.73 | 0–0.58 |
TiO2 | 0–0.03 | 0–0.02 | 0–0.02 | 0.17–0.61 | 1.84–2.91 | 0.17–0.2 | 0.14 | |
Al2O3 | 18.44–18.96 | 19.54–20.28 | 32.62–33.65 | 0.84–2.05 | 11.85–13.12 | 0.45 | 1.23 | |
Cr2O3 | 0–0.02 | |||||||
FeO | 0.10–0.31 | 0.08–0.49 | 0.54–0.94 | 6.72–9.20 | 8.39–10.59 | 20.01–20.43 | 28.41 | |
Fe2O3 | 20.43–23.30 | 24.16–28.06 | 17.48–18.08 | |||||
MnO | 0–0.02 | 0–0.04 | 0.53–0.94 | 1.20–1.38 | 0.09–0.6 | 0.6 | ||
MgO | 0–0.02 | 0–0.02 | 0–0.03 | 0.55–1.52 | 1.96–5.55 | 1.77–1.79 | 0.7 | |
CaO | 0–0.01 | 0–0.25 | 0–0.05 | 4.59–7.31 | 0–0.08 | 0.40–0.44 | 6.93 | |
BaO | 0–0.21 | 0–0.02 | ||||||
P2O5 | 40.35–45.41 | |||||||
Na2O | 0.37–1.26 | 10.33–11.46 | 15.04–15.60 | 8.94–10.44 | 0–0.27 | 6.63–6.67 | 9.28 | 0.23–0.74 |
K2O | 15.19–16.72 | 0.04–0.18 | 5.54–6.62 | 8.83–9.36 | 0.07–0.08 | 0.01 | ||
SrO | 0–0.05 | |||||||
La2O3 | 0–1.56 | |||||||
CeO2 | 0.85–2.44 | |||||||
F | 0–0.28 | 5.26–9.33 | ||||||
Cl | 0–0.01 | 0.002 | ||||||
Carbonatite (19SA29) | Carbonatite (18GS02) | |||||||
Cal (64%) | Ank (10%) | Rbk (8%) | Cal (99%) | |||||
SiO2 | 50.65–51.86 | |||||||
TiO2 | 0.10–1.05 | |||||||
Al2O3 | 0.34–0.75 | |||||||
FeO | 0.57–3.87 | 18.26–19.23 | 19.21–21.18 | 0.74–1.38 | ||||
Fe2O3 | 16.50–18.33 | |||||||
MnO | 0.93–5.59 | 0.73–1.22 | 0.02–0.11 | 0.01–0.48 | ||||
MgO | 0.09–0.18 | 6.06–7.70 | 1.49–2.32 | 0–0.12 | ||||
CaO | 42.02–52.54 | 23.79–27.72 | 0.06–0.66 | 52.01–54.14 | ||||
Na2O | 6.32–6.79 | |||||||
K2O | 0.07–0.19 | |||||||
Cr2O3 | 0–0.02 | |||||||
NiO | 0–0.04 | |||||||
SrO | 0–0.13 | 0.34–0.53 | 0.27–0.98 | |||||
BaO | 0–0.13 | 0.01–0.05 | 0–0.07 | |||||
CO2 | 43.70–51.91 | 44.61–48.50 | 44–45.90 |
Type of Water | Sea | Stream | Spring | Column 3 | Column 2 | Column 1 | Modelled Average Column Water |
---|---|---|---|---|---|---|---|
Area | Fjord | E-Coast | Intrusion | Column Fjord | Column Fjord | Column Fjord | Fjord Average |
Locality | Snævring | Camp | Camp | Atoll | Atoll | ||
Temp | 1.3 | 8 | 5 | 3.4 | 3.1 | 4.1 | |
pH | 7.9 | 7.72 | 8.25 | 10.16 | 10.36 | 10.34 | 10.5 |
Alkalinity meq/L | 2.1 | b.d. | 2.4 | 114 | 179 | 174 | 155 |
H+ | |||||||
Na+ | 437 | 0.15 | 0.11 | 170 | 198 | 252 | 179 |
K+ | 10.3 | 0.016 | 0.01 | 2.3 | 1.87 | 2.07 | 1.7 |
Ca2+ | 8.83 | 0.055 | 0.988 | 0.09 | 0.17 | 0.24 | 0.2 |
Mg2+ | 45.7 | 0.029 | 0.123 | 2.67 | 1.6 | 2.71 | 0 |
Sr2+ | 0.1 | 0.002 | 0.03 | 0.005 | 0.007 | 0.007 | 0.005 |
Cl− | 499 | 0.15 | 0.048 | 59 | 21.2 | 33.8 | 23 |
SO42− | 26.1 | 0.05 | 0.031 | 4.04 | 2.78 | 3.59 | 2.8 |
Br− | 0.8 | b.d. | b.d. | 0.41 | 0.43 | 0.42 | 0.38 |
PO43− | b.d. | b.d. | b.d. | 0.093 | 0.26 | 0.24 | 0.17 |
SiO2 | 0.002 | 0.23 | 0.051 | b.d. | b.d. | b.d. | 0 |
NH4− | |||||||
NO3− | |||||||
SO4− |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aðalsteinsdóttir, S.M.; Stockmann, G.J.; Sturkell, E.; Bali, E.; Guðfinnsson, G.H.; Stefánsson, A. Petrological Studies and Geochemical Modelling of Water–Rock Interactions in the Grønnedal-Íka Alkaline Complex Generating Ikaite Deposition in Ikka Fjord, SW Greenland. Minerals 2025, 15, 373. https://doi.org/10.3390/min15040373
Aðalsteinsdóttir SM, Stockmann GJ, Sturkell E, Bali E, Guðfinnsson GH, Stefánsson A. Petrological Studies and Geochemical Modelling of Water–Rock Interactions in the Grønnedal-Íka Alkaline Complex Generating Ikaite Deposition in Ikka Fjord, SW Greenland. Minerals. 2025; 15(4):373. https://doi.org/10.3390/min15040373
Chicago/Turabian StyleAðalsteinsdóttir, Sigríður María, Gabrielle J. Stockmann, Erik Sturkell, Enikő Bali, Guðmundur H. Guðfinnsson, and Andri Stefánsson. 2025. "Petrological Studies and Geochemical Modelling of Water–Rock Interactions in the Grønnedal-Íka Alkaline Complex Generating Ikaite Deposition in Ikka Fjord, SW Greenland" Minerals 15, no. 4: 373. https://doi.org/10.3390/min15040373
APA StyleAðalsteinsdóttir, S. M., Stockmann, G. J., Sturkell, E., Bali, E., Guðfinnsson, G. H., & Stefánsson, A. (2025). Petrological Studies and Geochemical Modelling of Water–Rock Interactions in the Grønnedal-Íka Alkaline Complex Generating Ikaite Deposition in Ikka Fjord, SW Greenland. Minerals, 15(4), 373. https://doi.org/10.3390/min15040373