Topic Editors

College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, China
College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, China
Dr. Qiao Su
Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography,Ministry of Natural Resources, Qingdao, China
School of Geography and Remote Sensing, Guangzhou University, Guangzhou, China

Human Impact on Groundwater Environment, 2nd Edition

Abstract submission deadline
31 May 2026
Manuscript submission deadline
31 July 2026
Viewed by
4740

Topic Information

Dear Colleagues,

This Topic will gather novel and innovative works of general interest to the journal’s audience related to the environmental implications of ever-growing human activities, with a particular emphasis on the changes that these are inducing in groundwater. Global demand for water is projected to outstrip supply by 40% in 2030 and 55% in 2050 as a result of climate change, a rising global population, economic growth, rapid urbanization, and increased water–energy–food nexus pressures. Humans are thus now facing the critical challenge of preserving our groundwater resources from biological and chemical contamination induced by its own point and diffuse sources. Addressing this challenge will require a holistic approach that addresses new issues and emerging contaminants, as well as multiple embedded risks, to ultimately conduct a comprehensive environmental and human health risk assessment.  Compared to environmental issues, there is a greater focus on hydrogeochemical monitoring and modeling. The sustainable management of groundwater resources is consistent not only with protecting groundwater but also with protecting the natural ecosystems that depend on groundwater. Groundwater is a habitat for extremely small animals and supports life in pores, cracks, and caves. In addition, groundwater can provide water for rivers and sustain endemic flora and fauna in riverside areas. This Topic will not only focus on human impacts on groundwater but will also include the environment, considering both hydrogeological and complex ecosystems.

Consequently, the contributions to this Topic will cover varied topics related to human impacts on groundwater resources, including but not limited to emerging topics dealing with water resource vulnerability and human impacts, including emerging and chemical contaminants; advances in analytical techniques used to monitor and identify sources and processes controlling human contaminants in water resources; advances in hydrological processes and hydrodynamic models for investigating water vulnerability to human impact; analysis of urban growth consequences for water resources and water management; remote sensing applications for water vulnerability assessment; and linkages between water vulnerability, scarcity, security, and sustainability.

In this Topic, we will fill research gaps on applications of hydrochemistry (including measurements of radioactive and stable isotope ratios, nutrients, trace elements, and organic components) in environmental research by requesting manuscripts that constitute original contributions on hydrogeology, nutrient balances, pollution, and environmental changes, as well as modeling or empirical studies aimed at improving our mechanistic understanding of short- and long-term chemical variations in global hydrological systems. The submission of inter- and multidisciplinary original research and review papers is particularly encouraged.

Prof. Dr. Zongjun Gao
Dr. Jiutan Liu
Dr. Qiao Su
Dr. Tengfei Fu
Dr. Dakang Wang
Topic Editors

Keywords

  • groundwater resources
  • human impact
  • contaminants
  • vulnerability
  • hydrogeology
  • environmental health

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Earth
earth
3.4 5.9 2020 19.4 Days CHF 1400 Submit
Hydrology
hydrology
3.2 5.9 2014 15.7 Days CHF 1800 Submit
Sustainability
sustainability
3.3 7.7 2009 19.3 Days CHF 2400 Submit
Water
water
3.0 6.0 2009 19.1 Days CHF 2600 Submit
Journal of Marine Science and Engineering
jmse
2.8 5.0 2013 15.6 Days CHF 2600 Submit
Agriculture
agriculture
3.6 6.3 2011 18 Days CHF 2600 Submit

Preprints.org is a multidisciplinary platform offering a preprint service designed to facilitate the early sharing of your research. It supports and empowers your research journey from the very beginning.

MDPI Topics is collaborating with Preprints.org and has established a direct connection between MDPI journals and the platform. Authors are encouraged to take advantage of this opportunity by posting their preprints at Preprints.org prior to publication:

  1. Share your research immediately: disseminate your ideas prior to publication and establish priority for your work.
  2. Safeguard your intellectual contribution: Protect your ideas with a time-stamped preprint that serves as proof of your research timeline.
  3. Boost visibility and impact: Increase the reach and influence of your research by making it accessible to a global audience.
  4. Gain early feedback: Receive valuable input and insights from peers before submitting to a journal.
  5. Ensure broad indexing: Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (8 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
19 pages, 4641 KiB  
Article
The Hydrochemical Dynamics and Water Quality Evolution of the Rizhao Reservoir and Its Tributary Systems
by Qiyuan Feng, Youcheng Lv, Jianguo Feng, Weidong Lei, Yuqi Zhang, Mingyu Gao, Linghui Zhang, Baoqing Zhao, Dongliang Zhao and Kexin Lou
Water 2025, 17(15), 2224; https://doi.org/10.3390/w17152224 - 25 Jul 2025
Viewed by 223
Abstract
Rizhao Reservoir, Shandong Province, China, as a key regional water supply hub, provides water for domestic, industrial, and agricultural uses in and around Rizhao City by intercepting runoff, which plays a central role in guaranteeing water supply security and supporting regional development. This [...] Read more.
Rizhao Reservoir, Shandong Province, China, as a key regional water supply hub, provides water for domestic, industrial, and agricultural uses in and around Rizhao City by intercepting runoff, which plays a central role in guaranteeing water supply security and supporting regional development. This study systematically collected 66 surface water samples to elucidate the hydrochemical characteristics within the reservoir area, identify the principal influencing factors, and clarify the sources of dissolved ions, aiming to enhance the understanding of the prevailing water quality conditions. A systematic analysis of hydrochemical facies, solute provenance, and governing processes in the study area’s surface water was conducted, employing an integrated mathematical and statistical approach, comprising Piper trilinear diagrams, correlation analysis, and ionic ratios. Meanwhile, the entropy weight-based water quality index (EWQI) and irrigation water quality evaluation methods were employed to assess the surface water quality in the study area quantitatively. Analytical results demonstrate that the surface water system within the study area is classified as freshwater with circumneutral to slightly alkaline properties, predominantly characterized by Ca-HCO3 and Ca-Mg-SO4-Cl hydrochemical facies. The evolution of solute composition is principally governed by rock–water interactions, whereas anthropogenic influences and cation exchange processes exert comparatively minor control. Dissolved ions mostly originate from silicate rock weathering, carbonate rock dissolution, and sulfate mineral dissolution processes. Potability assessment via the entropy-weighted water quality index (EWQI) classifies surface waters in the study area as Grade I (Excellent), indicating compliance with drinking water criteria under defined boundary conditions. Irrigation suitability analysis confirms minimal secondary soil salinization risk during controlled agricultural application, with all samples meeting standards for direct irrigation use. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

17 pages, 5533 KiB  
Article
Spatial Distribution and Genesis of Fluoride in Groundwater, Qingshui River Plain, China
by Mengnan Zhang, Jiang Wei, Xiaoyan Wang, Tao Ma, Fucheng Li, Jiutan Liu and Zongjun Gao
Water 2025, 17(14), 2134; https://doi.org/10.3390/w17142134 - 17 Jul 2025
Viewed by 204
Abstract
Groundwater in the Qingshui River Plain of southern Ningxia is one of the main water sources for local domestic and agricultural use. However, due to the geological background of the area, 33.94% of the groundwater samples had fluoride concentrations that exceeded the WHO [...] Read more.
Groundwater in the Qingshui River Plain of southern Ningxia is one of the main water sources for local domestic and agricultural use. However, due to the geological background of the area, 33.94% of the groundwater samples had fluoride concentrations that exceeded the WHO drinking water standards. To examine the spatial patterns and formation processes of fluoride in groundwater, researchers gathered 79 rock samples, 2618 soil samples, 21 sediment samples, 138 groundwater samples, and 82 surface water samples across the southern Qingshui River Plain. The collected data were analyzed using statistical approaches and hydrogeochemical diagrams. The findings reveal that fluoride levels in groundwater exhibit a gradual increase from the eastern, western, and southern peripheral sloping plains toward the central valley plain. Vertically, higher fluoride concentrations are found within 100 m of depth. Over a ten-year period, fluoride concentrations have shown minimal variation. Fluoride-rich rocks, unconsolidated sediments, and soils are the primary sources of fluoride in groundwater. The primary mechanisms governing high-fluoride groundwater formation are rock weathering and evaporative concentration, whereas cation exchange adsorption promotes fluoride (F) mobilization into the aquifer. Additional sources of fluoride ions include leaching of fluoride-rich sediments during atmospheric precipitation infiltration and recharge from fluoride-rich surface water. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

21 pages, 2628 KiB  
Article
Water-Richness Evaluation of Sandstone Aquifer Based on Set Pair Analysis Variable Fuzzy Set Coupling Method: A Case Study on Bayangaole Mine, China
by Kaihua Liang, Yueyue Li, Yuanlin Bai, Weijie Zhang, Chenghao Han, Daolei Xie, Shengjian Liang and Bowen Xi
Water 2025, 17(12), 1826; https://doi.org/10.3390/w17121826 - 19 Jun 2025
Viewed by 325
Abstract
The Jurassic aquifer in Northwest China is the key aquifer for mine water filling, which is significant due to its loose structure, large porosity, strong rock permeability, and fracture development characteristics. In addition, the water richness in space is extremely uneven, and many [...] Read more.
The Jurassic aquifer in Northwest China is the key aquifer for mine water filling, which is significant due to its loose structure, large porosity, strong rock permeability, and fracture development characteristics. In addition, the water richness in space is extremely uneven, and many coal mine roof water inrush events are closely related to it. A case of evaluation of water-richness of the roof sandstone in the 3-1 coal seam of the Bayangaole minefield was analyzed in depth, and the evaluation index system is established based on lithology and structural characteristics. Specifically, the evaluation indexes are under the influence of the influencing factors of lithology, the density of fault intersection endpoints, and the density of fault scale and the strength of folds as the influencing factors of structure. On this basis, the set pair analysis-variable fuzzy set coupling evaluation method is introduced to form a targeted water-rich evaluation model of a roof sandstone aquifer. By using the coupling method of set pair analysis and variable fuzzy set, a targeted evaluation model is formed to realize the organic integration of indicators. Through the comprehensive analysis of the relative zoning of water abundance and the data from the borehole pumping (drainage) test, the distribution of water abundance grade in the study area is clarified. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

18 pages, 4318 KiB  
Article
The Genesis and Hydrochemical Formation Mechanism of Karst Springs in the Central Region of Shandong Province, China
by Yuanqing Liu, Le Zhou, Xuejun Ma, Dongguang Wen, Wei Li and Zheming Shi
Water 2025, 17(12), 1805; https://doi.org/10.3390/w17121805 - 17 Jun 2025
Viewed by 329
Abstract
With the intensification of human activities, the water resource environment in the karst mountainous area of central Shandong has undergone significant changes, directly manifested in the cessation of karst spring flows and the occurrence of karst collapses within the spring basin in the [...] Read more.
With the intensification of human activities, the water resource environment in the karst mountainous area of central Shandong has undergone significant changes, directly manifested in the cessation of karst spring flows and the occurrence of karst collapses within the spring basin in the Laiwu Basin. To support the scientific development and management of karst water, this study utilizes comprehensive analysis and deuterium-oxygen isotope test data from surveys and sampling of 20 typical karst springs conducted between 2016 and 2018. By integrating mathematical statistics, correlation analysis, and ion component ratio methods, the study analyzes the genesis, hydrochemical ion component sources, and controlling factors of typical karst springs in the Laiwu Basin. The results indicate that the genesis of karst springs in the Laiwu Basin is controlled by three factors: faults, rock masses, and lithology, and can be classified into four types: water resistance controlled by lithology, by faults, by basement, and by rock mass. The karst springs are generally weakly alkaline freshwater, with the main ion components being HCO3 and Ca2+, accounting for approximately 55.02% and 71.52% of the anion and cation components, respectively; about 50% of the sampling points have a hydrochemical type of HCO3·SO4-Ca·Mg. Stable isotope (δ18O and δD) results show that atmospheric precipitation is the primary recharge source for karst springs in the Laiwu Basin. There are varying degrees of evaporative fractionation and water–rock interaction during the groundwater flow process, resulting in significantly higher deuterium excess (d-excess) in the sampling points on the southern side of the basin compared to the northern side, indicating clear differentiation. The hydrochemical composition of the karst groundwater system is predominantly governed by water–rock interactions during flow processes and anthropogenic influences. Carbonate dissolution (primarily calcite) serves as the principal source of HCO3, SO42−, Ca2+, and Mg2+, while evaporite dissolution and reverse cation exchange contribute to the slight enrichment of Ca2+ and Mg2+ alongside depletion of Na+ and K+ in spring waters. Saturation indices (SI) reveal that spring waters are saturated with respect to gypsum, aragonite, calcite, and dolomite, but undersaturated for halite. The mixing of urban domestic sewage, agricultural planting activities, and the use of manure also contributes to the formation of Cl and NO3 ions in karst springs. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

18 pages, 4422 KiB  
Article
Hydrogeochemical Signatures and Spatiotemporal Variation of Groundwater Quality in the Upper and Lower Reaches of Rizhao Reservoir
by Youcheng Lv, Xiaodong Li, Jie Yuan, Hong Tian, Tongzheng Wei, Min Wang, Yuqiang Dai, Jianguo Feng, Yuqi Zhang and Peng Yang
Water 2025, 17(11), 1659; https://doi.org/10.3390/w17111659 - 29 May 2025
Cited by 1 | Viewed by 396
Abstract
Groundwater is crucial for human survival and social development. In this study, ArcGIS 10.8, Origin 2024, and Excel were employed to investigate the hydrochemical properties of groundwater in the Rizhao reservoir (RZR) through statistical analysis, Durov plots, ion ratio analysis, and the entropy [...] Read more.
Groundwater is crucial for human survival and social development. In this study, ArcGIS 10.8, Origin 2024, and Excel were employed to investigate the hydrochemical properties of groundwater in the Rizhao reservoir (RZR) through statistical analysis, Durov plots, ion ratio analysis, and the entropy weight water quality index (EWQI). The analysis is based on monitoring data from six sites located both upstream and downstream of RZR, focusing on dynamic changes in groundwater quality and major ion concentrations. The findings suggest that the groundwater in RZR exhibits weak alkalinity and is categorized as hard freshwater. The predominant anion and cation are HCO3 and Ca2+, which together determine that the dominant water chemistry type in RZR is HCO3-Ca type. Groundwater ions predominantly stem from the dissolution of silicate and evaporite rocks. In comparison to the dry season, the fluctuations in groundwater parameters are more pronounced during the wet season. Between 2020 and 2022, the concentrations of most ions exhibited an upward trend. Notably, nitrate (NO3) experienced significant fluctuations and relatively high concentrations, peaking in the wet season of 2023. The primary source of nitrate in RZR is agricultural activities. Overall, the quality of groundwater in RZR is good and suitable for human consumption. Nevertheless, the EWQI values are increasing at most monitoring sites, with the most significant rise observed at site R02. Moreover, while the upstream monitoring point exhibits better water quality, its EWQI value has increased significantly, and ion concentrations display substantial fluctuations. Local authorities are advised to adopt active measures to manage groundwater quality in RZR to ensure its sustainable use. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

20 pages, 10754 KiB  
Article
Late Pleistocene Climate–Weathering Dynamics in Bohai Bay: High-Resolution Sedimentary Proxies and Their Global Paleoclimatic Synchronicity
by Yanxiang Lei, Xinyi Liu, Yanhui Zhang, Lei He, Zengcai Zhao, Liujuan Xie and Siyuan Ye
J. Mar. Sci. Eng. 2025, 13(5), 881; https://doi.org/10.3390/jmse13050881 - 29 Apr 2025
Viewed by 445
Abstract
Understanding the climate–weathering coupling mechanisms remains pivotal for interpreting global glacial–interglacial cycles, yet advancements have been constrained by the limited high-resolution sedimentary archives. The newly acquired BXZK2017-2 borehole (30.5 m core) from Bohai Bay provides an exceptional sedimentary sequence to investigate the Late [...] Read more.
Understanding the climate–weathering coupling mechanisms remains pivotal for interpreting global glacial–interglacial cycles, yet advancements have been constrained by the limited high-resolution sedimentary archives. The newly acquired BXZK2017-2 borehole (30.5 m core) from Bohai Bay provides an exceptional sedimentary sequence to investigate the Late Quaternary climate–weathering interactions. Through an integrated high-resolution chronostratigraphic framework (AMS 14C and OSL dating) coupled with multi-proxy sedimentological analyses (major element geochemistry and granulometric parameters), we reconstructed the chemical–weathering dynamics in the Bohai coastal region since the Late Pleistocene. Our findings revealed four distinct climate-weathering phases that correlate with the regional paleoenvironmental evolution and global climate perturbations: (1) enhanced weathering during mid-MIS3 to ~37.5 cal kyr BP (Chemical Index of Alteration (CIA): 55.9–62.2), corresponding to regional warming and strengthened summer monsoon circulation; (2) weathering minimum in late MIS3 through early–mid-MIS2 (37.5–14.8 cal kyr BP, CIA < 55), marking the peak aridity before the Last Glacial Maximum; (3) maximum weathering intensity from mid-MIS2 to early MIS1 (14.8–3.34 cal kyr BP, CIA: 65–68), documenting the postglacial humidification driven by the intensified East Asian Summer Monsoon; (4) renewed weathering decline during the Neoglacial (3.34 cal kyr BP-present, CIA: 59–63), coinciding with the late Holocene cooling events. Remarkably, this study identifies a striking synchronicity between the CIA in marine drill cores and δ18O records derived from Greenland ice cores. Our results indicate that chemical weathering proxies from marginal sea sediments can serve as robust recorders of post-Late Pleistocene climate variability, establishing a new proxy framework for global paleoclimate comparative research. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

16 pages, 662 KiB  
Article
Effectiveness of Voluntary Nutrient Management Measures to Reduce Nitrate Leaching on Dairy Farms Using Soil N Surplus as an Indicator
by J. Verloop, C. van den Brink and J. Gielen
Water 2025, 17(3), 455; https://doi.org/10.3390/w17030455 - 6 Feb 2025
Viewed by 847
Abstract
A pilot study with 18 dairy farms in recharge areas of five vulnerable drinking water abstractions in the Dutch province of Overijssel aimed to reduce nitrate leaching risks to the upper meter of groundwater through improved farm management. The pilot employed a voluntary, [...] Read more.
A pilot study with 18 dairy farms in recharge areas of five vulnerable drinking water abstractions in the Dutch province of Overijssel aimed to reduce nitrate leaching risks to the upper meter of groundwater through improved farm management. The pilot employed a voluntary, mutual gain approach, promoting measures that enhanced both nutrient efficiency and groundwater quality. Over the research period (2011–2017), nitrogen surpluses on the soil balance declined significantly from 153 to 96 kg N per ha per year, achieving the target of 100 kg N per ha per year. Despite this decline, average nitrate concentrations in the upper meter of groundwater fluctuated annually, showing no significant reduction in grassland but a noticeable decrease in maize. Economic evaluation showed that relative fodder profitability (RFP) increased over time, suggesting positive financial effects of implemented measures, as acknowledged by participating farmers. However, the adoption of measures perceived as complex or less financially rewarding remained limited, highlighting the challenges of relying solely on voluntary implementation. The absence of farm-specific feedback on nitrate leaching emerged as a critical limitation, emphasizing the need for additional monitoring tools, such as residual soil nitrogen assessments, to provide actionable insights at the farm or field level. These findings underscore the potential for further reducing nitrate leaching through enhanced feedback systems, precise execution of measures, and collaborative efforts integrating farmer expertise and scientific knowledge. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

17 pages, 7346 KiB  
Article
Comprehensive Hydrochemical Analysis, Controlling Mechanisms, and Water Quality Assessment of Surface and Groundwater in a Typical Intensive Agricultural Area, Northern China
by Zongjun Gao, Tingting Huang, Jinkai Chen, Hong Tian, Menghan Tan, Yiru Niu and Kexin Lou
Water 2025, 17(2), 276; https://doi.org/10.3390/w17020276 - 19 Jan 2025
Cited by 3 | Viewed by 1305
Abstract
Groundwater is a significant source of water, and evaluating its hydrochemical attributes, quality, and associated health risks holds paramount importance in guaranteeing safe water access for the population and fostering sustainable socio-economic progress. Situated within a semi-arid region, the Dianbu area (DBA) features [...] Read more.
Groundwater is a significant source of water, and evaluating its hydrochemical attributes, quality, and associated health risks holds paramount importance in guaranteeing safe water access for the population and fostering sustainable socio-economic progress. Situated within a semi-arid region, the Dianbu area (DBA) features numerous greenhouses interspersed amongst open farmlands. An examination revealed a discernible decline in the overall water chemistry environment in this area. This study extensively examined the fundamental water chemistry characteristics of groundwater and surface water samples through a statistical analysis, Piper’s trilinear diagram, ion ratios, and other analytical methods. The assessment of irrigation water quality was conducted using the entropy weight water quality index (EWQI), sodium adsorption ratio (SAR), percentage of soluble sodium (Na%), among other relevant indicators. The findings demonstrate multiple key aspects: 1. Water cations are chiefly composed of Ca2+ and Na+, while groundwater anions are notably NO3 and SO42− dominant, defining the water type as NO3-SO4-Ca. Conversely, surface water primarily displays HCO3 and SO42− anions, aligning it with an HCO3-SO4-Ca water type. 2. The extensive agricultural activities in the region, coupled with the excessive utilization of pesticides, chemical fertilizers, as well as the discharge of domestic sewage, contribute to heightened NO3 concentrations in groundwater. 3. The water quality assessments indicate that approximately 53% of agricultural water quality meets irrigation standards based on EWQI, with SAR results suggesting around 65.52% suitability for irrigation and Na% findings indicating approximately 55.88% viability for this purpose. Proper water selection tailored to specific conditions is advised to mitigate potential soil salinization risks associated with long-term irrational irrigation practices. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

Back to TopTop