Metallogenic Age and Tectonic Setting of the Haigou Gold Deposit in Southeast Jilin Province, NE China: Constraints from Magmatic Chronology and Geochemistry
Abstract
:1. Introduction
2. Geological Background and Deposit Geology
2.1. Geological Background
2.2. Deposit Geology
3. Sample and Analytical Methods
3.1. LA-ICP-MS Zircon U–Pb Dating
3.2. Major and Trace Element Concentrations
4. Analytical Results
4.1. Zircon U–Pb Age
4.2. Major and Trace Element
5. Discussion
5.1. Age of Magmatic Hydrothermal Events and Gold-Bearing Quartz Veins Mineralization
5.2. Tectonic Setting and Associated Mineralization
5.3. Genesis and Metallogenic Significance of Ore Deposit
6. Conclusions
- (1)
- Quartz vein-type gold mineralization is closely related to the central monzonite granite of the Haigou complex and the pyroxene diorite porphyrite veins of the same tectonic period. Quartz vein-type gold mineralization occurs mostly in monzonite granite, and pyroxene diorite porphyrite veins occur mostly in unified tectonic fractures. Pyroxene diorite porphyrite veins are consistent with quartz vein-type gold mineralization and are located parallel to the quartz vein-type gold mineralization footwall. The ages of monzonitic granite and pyroxene diorite porphyrite veins are 317.1 ± 3.5 Ma and 308.8 ± 3.0 Ma, respectively, which are spatially, temporally, and genetically related to quartz vein-type gold mineralization, suggesting that gold mineralization occurred in the Late Carboniferous Epoch.
- (2)
- Monzonitic granite, closely related to quartz vein-type gold mineralization, exhibits a trend of type I enrichment mantle evolution, and the magma source area is complex, possibly a crust-mantle mixed source. The Proterozoic shell source material is the main source, which may be the product of partial melting of the lower crust material and may have more mantle material added. Monzonitic magmatism not only provides a heat source for gold mineralization but may also transport deep fluids with gold.
- (3)
- The geochemical characteristics of monzonitic granite and pyroxene diorite porphyrite dike rocks show that they are metaluminous high-potassium calc-alkaline rocks, both of which are enriched in light rare earth elements (LREE) and large ion-lithophile elements (LILE), and deficient in heavy rare earth elements (HREE) and high field strength elements (HFSE). This suggests that they formed in an active continental margin arc environment caused by the subduction of the Paleo-Asiatic plate during the Late Carboniferous.
- (4)
- The metallogenic dynamic background of the Haigou gold deposit is the mantle upsurge under the continuous subduction of the lower Paleo-Asian Ocean plate in the late Paleozoic North China Craton, and the fragmentation and reduction of the mantle lithosphere led to strong tectonic, magmatic, and hydrothermal activities, which resulted in the formation of a large number of crust and mantle-derived granites and basic dyke rocks, accompanied by gold and polymetallic mineralization.
- (5)
- Late Carboniferous monzonite granite and pyroxene diorite porphyrite veins are closely related to magmatic-hydrothermal quartz vein gold mineralization and are important prospecting indicators of similar gold-bearing quartz vein gold deposits in this area.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, F.Y.; Sun, D.Y.; Ge, W.C.; Zhang, Y.B.; Grant, M.L.; Wilde, S.A.; Jahn, B.M. Geochronology of the Phanerozoic granitoids in northeastern China. J. Asian Earth Sci. 2011, 41, 1–30. [Google Scholar] [CrossRef]
- Zeng, Q.; Liu, J.; Qin, K.; Fan, H.; Chu, S.; Wang, Y.; Zhou, L. Types, characteristics, and time-space distribution of molybdenum deposits in China. Int. Geol. Rev. 2013, 55, 1311–1358. [Google Scholar] [CrossRef]
- Yang, Q.; Shang, Q.Q.; Ren, Y.S.; Yang, Z.J. Age and tectonic setting of layered lead–zinc ore bodies in the Xiaohongshilazi deposit: Constraints from geochronology and geochemistry of the volcanic rocks in central Jilin Province, NE China. Minerals 2023, 13, 1371. [Google Scholar] [CrossRef]
- Li, L. Research on Ore-Forming Fluids of Gold Deposits in Jiapigou-Haigou Gold Belt, Jilin Province and Deep-seated Metallogenic Assessment, Jilin Province. Ph.D. Thesis, Jilin University, Changchun, China, 2016. (In Chinese with English abstract). [Google Scholar]
- Wang, H.; Ren, Y.S.; Zhao, H.L.; Ju, N.; Qu, W.J. Re–Os dating of molybdenite from the Liushengdian Molybdenum deposit in Antu Area of Jilin Province and its geological significance. Acta Geosci. Sin. 2011, 32, 707–715, (In Chinese with English abstract). [Google Scholar]
- Deng, J.; Yuan, W.M.; Carranza, E.J.M.; Yang, L.; Wang, C.; Yang, L.; Hao, N. Geochronology and thermochronometry of the Jiapigou gold belt, northeastern China: New evidence for multiple episodes of mineralization. J. Asian Earth Sci. 2014, 89, 10–27. [Google Scholar] [CrossRef]
- Qiu, C. Metallogenic Epoch and Geodynamic Background of the Haigou Gold Deposit, Jilin Province. Master’s Thesis, Jilin University, Changchun, China, 2017. (In Chinese with English abstract). [Google Scholar]
- Fan, Z.H. Geological Characteristics and Metallogenetic Model of the Haigou Gold Deposit, Jilin Province. Master’s Thesis, Jilin University, Changchun, China, 2012. (In Chinese with English abstract). [Google Scholar]
- Zhou, L.L.; Zeng, Q.D.; Liu, J.M.; Friis, H.; Zhang, Z.L.; Duan, X.X. Ore genesis and fluid evolution of the Daheishan giant porphyry molybdenum deposit, NE China. J. Asian Earth Sci. 2015, 97, 486–505. [Google Scholar] [CrossRef]
- Wang, Z.G.; Wang, K.Y.; Wan, D.; Yassa, K.; Yang, T.N.; Liang, Y.H. Metallogenic age and hydrothermal evolution of the Jidetun Mo deposit in central Jilin Province, northeast China: Evidence from fluid inclusions, isotope systematics, and geochronology. Ore Geol. Rev. 2017, 89, 731–751. [Google Scholar] [CrossRef]
- Cao, H.H.; Xu, W.L.; Pei, F.P.; Wang, Z.W.; Wang, F.; Wang, Z.J. Zircon U–Pb geochronology and petrogenesis of the Late Paleozoic–Early Mesozoic intrusive rocks in the eastern segment of the northern margin of the North China Block. Lithos 2013, 170–171, 191–207. [Google Scholar] [CrossRef]
- Chen, D.F.; Sun, S.Q. Mineralogical Characteristics of Native Gold in Haigou Gold Mine, Jilin Province. Geol. Rev. 1992, 38, 467–473. [Google Scholar]
- Chen, D.F.; Sun, S.Q. Main Characteristics of Metallic Minerals in the Haigou Gold Deposit, Jilin Province. J. Shijiazhuang Univ. Econ. 1994, 65–73. (In Chinese) [Google Scholar] [CrossRef]
- Zeng, Q.D.; Dai, X.Y.; Jin, P.Z. Characteristics of Ore—Controlling Structures of the Haigou Gold Deposit in Antu County, Jilin Province. Jilin Geol. 1996, 2, 36–44. (In Chinese) [Google Scholar]
- Liu, J.H. Characteristics of Wall—Rock Alteration in the Haigou Gold Mining Area of Jilin Province. Jilin Geol. 2002, 21, 15–21. (In Chinese) [Google Scholar]
- Liu, Y.Q. Isotope Geochemistry and Metallogenic Regularity of the Haigou Gold Deposit in Jilin Province. Miner. Depos. 1991, 10, 131–142. (In Chinese) [Google Scholar]
- Zeng, Q.D.; Shen, Y.C.; Meng, Q.L. Characteristics of Dikes in the Haigou Gold Mining Area and Their Relationship with Gold Mineralization. Geol. Rev. 1999, 8, 70–75. [Google Scholar]
- Shen, Y.C.; Zeng, Q.D. The Localization Age of Gold Deposits in the Jiapigou-Haigou Metallogenic Belt in Jilin Province. Gold Sci. Technol. 1999, 7, 9–16. (In Chinese) [Google Scholar]
- Sun, Z.S.; Feng, Y.M. Determination of the Main Metallogenic Era of the Jiapigou Gold Deposit in Jilin Province and the Prospecting Direction. Acta Geosci. Sin. 1997, 18, 367–372. [Google Scholar]
- Yu, J.J.; Guo, J.; Cui, P.L. Ore-forming geologic settings and 40Ar/39Ar laser probe dating of fluid inclusions in quartzs from Haigou gold deposit, Yanbian City, Northeastern China. J. Jilin Univ. (EarthScience Ed.) 2010, 40, 835–844. (In Chinese) [Google Scholar]
- Zhang, S.; Wang, Y.B.; Chu, S.X. Zircon U-Pb Ages, Sr-Nd-Hf Isotopic Compositions and Dynamic Background of the Haigou Rock Mass in the Eastern Segment of the Northern Margin of the North China Craton. Acta Geosci. Sin. 2012, 28, 544–556. [Google Scholar]
- Song, G. Properties and Mineralizing Significance of CO2-Rich Fluid in Haigou Gold Deposit, Jilin Province. Master’s Thesis, Jilin University, Changchun, China, 2016. (In Chinese with English abstract). [Google Scholar]
- Li, Y.Q. Geochemical Characteristics of Ore-forming Fluids in the Haigou Gold Deposit, Jilin Province. Acta Geosci. Sin. 1994, 68, 48–61, (In Chinese with English abstract). [Google Scholar]
- Wang, Z.G.; Niu, J.H.; Zhu, W.F. Characteristics of Ore-forming Fluids and Metallogenic Mechanism of the Haigou Gold Mine in Antu, Jilin Province. Glob. Geol. 2011, 30, 313–322. [Google Scholar]
- Zhang, S.; Zeng, Q.D.; Liu, J.M.; Wang, Z.C.; Wang, Y.B.; Ren, D.K.; Gao, J.H. Characteristics and Geological Significance of Fluid Inclusions in the Quartz Vein-type Gold Deposit in Haigou, Jilin Province. Acta Geosci. Sin. 2011, 27, 1287–1298. [Google Scholar]
- Feng, M.; Cao, C.R.; Chen, L.; Dong, X.W. Geological Characteristics and Stress Field Analysis of the Haigou Gold Mine in Jilin Province. Geol. Rev. 2005, 14, 268–271. [Google Scholar]
- Feng, M.; Lü, J.S. Discussion on the Types of Ore-controlling Structures and the Metallogenic Dynamic Mechanism of the Haigou Gold Mine in Yanbian. Glob. Geol. 2007, 26, 275–281. [Google Scholar]
- Sun, Z.S.; Feng, Y.M. A New Idea for the Metallogenic Prediction of the Haigou Gold Deposit in Jilin Province—The Ore-controlling Structural Level. Jilin Geol. 1998, 17, 43–50. (In Chinese) [Google Scholar]
- Zhang, D. Study on the Regularities of Tectonic Ore-control in the Haigou Gold Deposit in Jilin Province. Master’s Thesis, Northeastern University, Shenyang, China, 2008. (In Chinese with English abstract). [Google Scholar]
- Feng, S.Z. Geological Characteristics and Metallogenic Model of the Haigou Gold Deposit in Jilin Province. Geol. Explor. 1999, 35, 10–13. (In Chinese) [Google Scholar]
- Fan, W.L. Metallogenic Model and Orebody Target Prediction of the Haigou Gold Deposit, Jilin Province. Master’s Thesis, Jilin University, Changchun, China, 2013. (In Chinese with English abstract). [Google Scholar]
- Chang, Y.; Zhang, Y.; Sun, J.G.; Chai, P.; Li, L.; Yang, F. The Metallogenic Thermodynamic Source of the Haigou Gold Deposit: Evidence from the Zircon CL Images and U-Pb Dating of the Associated Diorite Porphyry. J. Mineral. Petrol. 2013, 33, 35–42. (In Chinese) [Google Scholar]
- Li, Z.M.; Zhang, C.J.; Liao, Z.T.; Qin, J.Z. Geological and Geochemical Characteristics of the Haigou Gold Mine and Discussion on Its Metallogenic Mechanism. Geol. Resour. 2005, 14, 111–117. (In Chinese) [Google Scholar]
- Dai, X.Y.; Zeng, Q.D.; Jin, F.Z. Geological Characteristics of the Haigou Granite Body in Antu County, Jilin Province and Its Relationship with Gold Deposits. Jilin Geol. 1996, 15, 30–37. (In Chinese) [Google Scholar]
- Deng, J.; Sun, Z.S.; Yang, L.Q.; Chen, Y.M.; Lin, H.P. Tectonic-Geochemical Characteristics of the Jiapigou Gold Belt in Jilin Province. J. Univ. Geosci. 2000, 6, 405–411. (In Chinese) [Google Scholar]
- Sun, Z.S.; Deng, J.; Zhai, Y.S.; Feng, B.Z. Collision, Superposition and Gold Deposit Formation in the Jiapigou Fault Belt Dynamic System. Geol. Explor. 2001, 37, 23–27. (In Chinese) [Google Scholar]
- Li, B.L.; Chen, G.J.; Song, Z.W. On the Metallogenic Age of the Jiapigou Gold Deposit in Jilin Province. Glob. Geol. 2004, 23, 354–359. [Google Scholar]
- Dai, J.Z.; Wang, K.Y.; Cheng, X.M. Geochemical Characteristics of Ore-Forming Fluids in the Jiapigou Gold Belt, Jilin Province. Acta Petrol. Sin. 2007, 23, 2198–2206. [Google Scholar]
- Shao, J. Mantle Fluids and Their Gold Metallogenic Role: A Case Study of Mantle Fluids and Mineralization in the Jiapigou Gold Field. Geol. Precious Met. 1999, 8, 115–118. [Google Scholar]
- Şengör, A.M.C.; Natal’in, B.A.; Burtman, V.S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 1993, 364, 299–307. [Google Scholar] [CrossRef]
- Zeng, Q.; Liu, J.; Chu, S.; Wang, Y.; Sun, Y.; Duan, X.; Zhou, L. Mesozoic molybdenum deposits in the East Xingmeng orogenic belt, northeast China: Characteristics and tectonic setting. Int. Geol. Rev. 2012, 54, 1843–1869. [Google Scholar] [CrossRef]
- Xu, W.L.; Pei, F.P.; Wang, F.; Meng, E.; Ji, W.Q.; Yang, D.B.; Wang, W. Spatial-temporal relationships of Mesozoic volcanic rocks in NE China: Constraints on tectonic overprinting and transformations between multiple tectonic systems. J. Asian Earth Sci. 2013, 74, 167–193. [Google Scholar] [CrossRef]
- Kröner, A.; Compston, W.; Zhang, G.W.; Guo, A.L.; Todt, W. Age and tectonic setting of Late Archean greenstone–gneiss terrain in Henan Province, China, as revealed by single-grain zircon dating. Geology 1988, 16, 211–215. [Google Scholar] [CrossRef]
- Zhao, G.C.; Wilde, S.A.; Cawood, P.A.; Sun, M. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Res. 2001, 107, 45–73. [Google Scholar] [CrossRef]
- Zhai, M.G.; Santosh, M. The early Precambrian odyssey of the North China Craton: A synoptic overview. Gondwana Res. 2011, 20, 6–25. [Google Scholar] [CrossRef]
- Zhai, M.G.; Santosh, M. Metallogeny of the North China Craton: Link with secular changes in the evolving Earth. Gondwana Res. 2013, 24, 275–297. [Google Scholar] [CrossRef]
- Zhu, R.X.; Yang, J.H.; Wu, F.Y. Timing of destruction of the North China Craton. Lithos 2012, 149, 51–60. [Google Scholar] [CrossRef]
- Zhu, R.X.; Zhang, H.F.; Zhu, G.; Meng, Q.R.; Fan, H.R.; Yang, J.H.; Wu, F.Y.; Zhang, Z.Y.; Zheng, T.Y. Craton destruction and related resources. Int. J. Earth Sci. 2017, 106, 2233–2257. [Google Scholar] [CrossRef]
- Yang, J.H.; Wu, F.Y.; Wilde, S.A. A review of the geodynamic setting of large-scale Late Mesozoic gold mineralization in the North China Craton: An association with lithospheric thinning. Ore Geol. Rev. 2003, 23, 125–152. [Google Scholar] [CrossRef]
- Zhang, S.H.; Zhao, Y.; Song, B.; Hu, J.M.; Liu, S.W.; Yang, Y.H.; Chen, F.K.; Liu, X.M.; Liu, J. Contrasting Late Carboniferous and Late Permian–Middle Triassic intrusive suites from the northern margin of the North China craton: Geochronology, petrogenesis, and tectonic implications. Geol. Soc. Am. Mem. 2009, 121, 181–200. [Google Scholar] [CrossRef]
- Zhang, X.H.; Yuan, L.L.; Xue, F.H.; Zhang, Y.B. Contrasting Triassic ferroan granitoids from northwestern Liaoning, North China: Magmatic monitor of Mesozoic decratonization and a craton–orogen boundary. Lithos 2012, 144, 12–23. [Google Scholar] [CrossRef]
- Zhou, J.B.; Wilde, S.A. The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt. Gondwana Res. 2013, 23, 1365–1377. [Google Scholar] [CrossRef]
- Wang, Z.J. Late Paleozoic–Triassic Tectonic Evolution of Eastern Segment of the Southern Margin of the Xing’an–Mongolia Orogenic Belt: Evidence from Detrital Zircon U–Pb Geochronology and Igneous Rock Associations. Ph.D. Thesis, Jilin University, Changchun, China, 2016. (In Chinese with English abstract). [Google Scholar]
- Sengör, A.M.C.; Natal’in, B.A. Paleotectoni cs of Asia: Fragments of a synthesis. In The Tectonic Evolution of Asia; Yin, A., Harrison, M., Eds.; Cambridge University Press: London, UK, 1996; pp. 486–640. [Google Scholar]
- Chen, B.; Jahn, B.M.; Tian, W. Evolution of the Solonker suture zone: Constraints from zircon U–Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction and collision-related magmas and forearc sediments. J. Asian Earth Sci. 2009, 34, 245–257. [Google Scholar] [CrossRef]
- Zeng, Q.D.; He, H.Y.; Zhu, R.X.; Zhang, S.; Wang, Y.; Su, F. Origin of ore-forming fluids of the Haigou gold deposit in the eastern Central Asian Orogenic belt, NE China: Constraints from HO-He-Ar isotopes. J. Asian Earth Sci. 2017, 144, 384–397. [Google Scholar] [CrossRef]
- Zhai, D.; Williams-Jones, A.E.; Liu, J.; Selby, D.; Li, C.; Huang, X.-W.; Qi, L.; Guo, D. Evaluating the use of the molybdenite Re-Os chronometer in dating gold mineralization: Evidence from the Haigou deposit, northeastern China. Econ. Geol. 2019, 114, 897–915. [Google Scholar] [CrossRef]
- Liu, H.T.; Ke, X.J.; Wang, A.P.; An, C.T.; Zhang, W.J. Shear Vein System in Jiapigou Gold Belt of Eastern Segment of Morthern Margin of North China Block. J. Geomech. 2002, 8, 57–71. [Google Scholar]
- Chen, Y.L.; Li, H.; Zheng, C.Y.; Nurkanati, M.; Khan, R. Genesis and ore prospecting model of Haigou gold deposit in Jilin Province: Evidence from LA-ICP-MS trace element and sulfur isotopic analysis of pyrite. J. Cent. South Univ. (Sci. Technol.) 2021, 52, 2990–3002, (In Chinese with English abstract). [Google Scholar]
- Guo, D.H. Magmatism and Mineralization of the Haigou Gold Deposit, Jilin. Master’s. Thesis, China University of Geosciences, Beijing, China, 2017. (In Chinese with English abstract). [Google Scholar]
- Wiedenbeck, M.; Alle, P.; Corfu, F.; Griffin, W.L.; Meier, M. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace-element and REE Analyses. Geostand. Newsl. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Goolaerts, A.; Mattielli, N.; de Jong, J.; Weis, D.; Scoates, J.S. Hf and Lu isotopic reference values for the zircon standard 91500 by MC-ICP-MS. Chem Geol. 2004, 206, 1–9. [Google Scholar] [CrossRef]
- Woodhead, J.; Hergt, J.; Shelley, M.; Eggins, S.; Kemp, R. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chem. Geol. 2004, 209, 121–135. [Google Scholar] [CrossRef]
- Hou, K.J.; Li, Y.H.; Tian, Y.R. In Situ U-Pb Zircon Dating Using Laser Ablation-multi Ion Counting-ICP-MS. Miner. Depos. 2009, 28, 481–492, (In Chinese with English abstract). [Google Scholar]
- Andersen, T.; Griffin, W.L.; Pearson, N.J. Crustal Evolution in the SW Part of the Baltic Shield: The Hf Isotope Evidence. J. Petrol. 2002, 43, 1725–1747. [Google Scholar] [CrossRef]
- Ludwig, K.R. User’s Manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center Special Publication: Berkeley, CA, USA, 2003; Volume 4, pp. 1–70. [Google Scholar]
- Yang, Z.J.; Wang, W.; Zhao, Y.; Zhou, Y.H.; Liu, C.C.; Zhang, J.; Sun, S.L. Geochemistry and zircon U-Pb-Hf isotopes of Paleoproterozoic granitic rocks in Wangjiapuzi area, eastern Liaoning Province, and their geological significance. Geol. Bull. China 2019, 38, 539–554. (In Chinese) [Google Scholar]
- Belousova, E.A.; Griffin, W.L.; O’Reilly, S.Y. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol. 2002, 143, 602–622. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Schaltegger, U. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Qiu, K.F.; Marsh, E.; Yu, H.C.; Pfaff, K.; Gulbransen, C.; Gou, Z.Y.; Li, N. Fluid and metal sources of the Wenquan porphyry molybdenum deposit, Western Qinling, NW China. Ore Geol. Rev. 2017, 86, 459–473. [Google Scholar] [CrossRef]
- Middlemost, E.A.K. Naming materials in the magma/igneous rock system. Earth Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Peccerillo, A.; Taylor, A.R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Miner. Petrol. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- Boynton, W.V. Geochemistry of the rare earth elements: Meteorite studies. In Rare earth Element Geochemistry; Henderson, P., Ed.; Elsevier: Amsterdam, The Netherlands, 1984; pp. 63–114. [Google Scholar]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- White, R.S.; McKenzie, D. Magmatism at Rift Zones: The Generation of Volcanic Continental Margins and Flood Basalts. J. Geophys. Res. 1989, 94, 7685–7729. [Google Scholar] [CrossRef]
- Lu, S.Y.; Ren, Y.S.; Yang, Q.; Hao, Y.J.; Zhao, X. Petrogenesis and tectonic implication of the Hongtaiping high-mg diorite in the Wangqing area, NE China: Constraints from geochronology, geochemistry and Hf isotopes. Minerals 2022, 12, 1002. [Google Scholar] [CrossRef]
- Collins, W.; Beams, S.; White, A.; Chappell, B. Nature and Origin of A-type Granites with Particular Reference to Southeastern Australia. Contrib. Mineral. Petrol. 1982, 80, 189–200. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef]
- Pearce, J.A.; Alabaster, T.; Shelton, A.W.; Searle, M.P. The Oman ophiolite as a Cretaceous arc-basin complex: Evidence and implications. Philos. Trans. R. Soc. A 1981, 300, 299–317. [Google Scholar]
- Wang, Y.L.; Zhang, C.J.; Xiu, S.Z. Th/Hf-Ta/Hf idenfication of tectonic setting of basalts. Acta Geosci. Sin. 2001, 17, 413–421. [Google Scholar]
Sample No. | Lithology | Location | Texture/Structure | Mineral Composition |
---|---|---|---|---|
HG-TW1 | monzonite granite | 8 middle section of Xiaohaigou mining area | Medium-fine grain granitic texture/ Massive structure | The mineral composition is mainly composed of plagioclase, potassium feldspar, quartz, biotite, and hornblende. Plagioclase, idiomorphic to semi-idiomorphic structure, with a particle size of 2–4 mm and a content of 30%; Potassium feldspar, idiomorphic to semi-idiomorphic structure, particle size in 2–4 mm, the content accounts for 35%; Quartz, heteromorphic granular structure, particle size in 1–3 mm, the content accounts for 25%; Biotite, sheet structure, slice diameter in 1–3 mm, content accounted for 8%; Hornblende, semi-idiomorphic plate columnar structure, particle size in 1–3 mm, content accounts for 2%; The local feldspar shows obvious kaolin alteration, and the amphibole shows biotite alteration. |
HG-TW2 | pyroxene diorite porphyrite veins | 8 middle section of Xiaohaigou mining area | Porphyritic texture massive structure | Phenocrysts account for 20% of the rock and consist of plagioclase (1–3 mm, partly altered to kaolinite). Matrix is primarily microscopy cryptocrystalline texture and is dominated by plagioclase (0.1–0.3 mm) and minor amphibole (~0.2 mm) |
Sample No. | Element Content (ppm) | Th/U | Isotope Ratio (± 2σ) | Age (Ma ± 2σ) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
232Th | 238U | 207Pb/206Pb | 207Pb/235U | 206Pb/238U | 207Pb/206Pb | 207Pb/235U | 206Pb/238U | ||||||||
Ratios | 2σ | Ratios | 2σ | Ratios | 2σ | Age | 2σ | Age | 2σ | Age | 2σ | ||||
HG-TW1 Monzonitic granite | |||||||||||||||
HG-TW1-1 | 141 | 906 | 0.16 | 0.05241 | 0.00191 | 0.36435 | 0.01342 | 0.05042 | 0.0012 | 303 | 43 | 315 | 10 | 317 | 7 |
HG-TW1-2 | 147 | 159 | 0.92 | 0.05435 | 0.00507 | 0.37841 | 0.03441 | 0.05049 | 0.00171 | 386 | 144 | 326 | 25 | 318 | 10 |
HG-TW1-3 | 95 | 141 | 0.67 | 0.05218 | 0.00525 | 0.36225 | 0.03556 | 0.05035 | 0.00176 | 293 | 158 | 314 | 27 | 317 | 11 |
HG-TW1-4 | 112 | 203 | 0.55 | 0.05353 | 0.00347 | 0.37166 | 0.0237 | 0.05035 | 0.00143 | 351 | 93 | 321 | 18 | 317 | 9 |
HG-TW1-5 | 127 | 198 | 0.64 | 0.05243 | 0.0022 | 0.3684 | 0.01548 | 0.05096 | 0.00125 | 304 | 53 | 318 | 11 | 320 | 8 |
HG-TW1-6 | 154 | 217 | 0.71 | 0.05333 | 0.00702 | 0.36459 | 0.04652 | 0.04958 | 0.0021 | 343 | 210 | 316 | 35 | 312 | 13 |
HG-TW1-7 | 156 | 200 | 0.78 | 0.05257 | 0.00372 | 0.3661 | 0.02541 | 0.05051 | 0.00148 | 310 | 105 | 317 | 19 | 318 | 9 |
HG-TW1-8 | 205 | 202 | 1.01 | 0.05348 | 0.00191 | 0.38009 | 0.01386 | 0.05154 | 0.00124 | 349 | 42 | 327 | 10 | 324 | 8 |
HG-TW1-9 | 120 | 184 | 0.65 | 0.05274 | 0.00208 | 0.36629 | 0.01467 | 0.05037 | 0.00123 | 318 | 49 | 317 | 11 | 317 | 8 |
HG-TW1-10 | 131 | 167 | 0.78 | 0.05335 | 0.00235 | 0.37153 | 0.01633 | 0.05051 | 0.00125 | 344 | 56 | 321 | 12 | 318 | 8 |
HG-TW1-11 | 141 | 221 | 0.64 | 0.05338 | 0.00185 | 0.37154 | 0.01322 | 0.05049 | 0.00121 | 345 | 40 | 321 | 10 | 318 | 7 |
HG-TW1-12 | 92 | 153 | 0.60 | 0.05368 | 0.00215 | 0.37012 | 0.01497 | 0.05001 | 0.00123 | 358 | 49 | 320 | 11 | 315 | 8 |
HG-TW1-13 | 305 | 269 | 1.13 | 0.05301 | 0.00227 | 0.36058 | 0.01552 | 0.04934 | 0.00122 | 329 | 54 | 313 | 12 | 310 | 7 |
HG-TW1-14 | 65 | 103 | 0.63 | 0.05295 | 0.00346 | 0.36818 | 0.02364 | 0.05044 | 0.00142 | 327 | 95 | 318 | 18 | 317 | 9 |
HG-TW1-15 | 131 | 203 | 0.64 | 0.05326 | 0.00262 | 0.37323 | 0.01828 | 0.05083 | 0.0013 | 340 | 65 | 322 | 14 | 320 | 8 |
HG-TW1-16 | 76 | 127 | 0.60 | 0.05319 | 0.00725 | 0.36781 | 0.04865 | 0.05015 | 0.00216 | 337 | 218 | 318 | 36 | 315 | 13 |
HG-TW1-17 | 165 | 370 | 0.45 | 0.05245 | 0.00447 | 0.36214 | 0.03015 | 0.05008 | 0.0016 | 305 | 131 | 314 | 22 | 315 | 10 |
HG-TW1-18 | 211 | 203 | 1.04 | 0.05238 | 0.00224 | 0.36588 | 0.01566 | 0.05067 | 0.00125 | 302 | 54 | 317 | 12 | 319 | 8 |
HG-TW1-19 | 78 | 129 | 0.61 | 0.05235 | 0.00407 | 0.36278 | 0.02755 | 0.05026 | 0.00153 | 301 | 118 | 314 | 21 | 316 | 9 |
HG-TW1-20 | 178 | 188 | 0.95 | 0.05282 | 0.00219 | 0.36537 | 0.01524 | 0.05017 | 0.00123 | 321 | 52 | 316 | 11 | 316 | 8 |
HG-TW1-21 | 134 | 192 | 0.70 | 0.052 | 0.002 | 0.35878 | 0.01396 | 0.05004 | 0.00121 | 285 | 47 | 311 | 10 | 315 | 7 |
HG-TW1-22 | 134 | 207 | 0.65 | 0.05367 | 0.00223 | 0.37566 | 0.0157 | 0.05077 | 0.00125 | 357 | 52 | 324 | 12 | 319 | 8 |
HG-TW2 Pyroxene diorite porphyrite | |||||||||||||||
HG-TW2-1 | 249 | 617 | 0.40 | 0.05288 | 0.00346 | 0.35976 | 0.02305 | 0.04933 | 0.00138 | 324 | 95 | 312 | 17 | 310 | 8 |
HG-TW2-2 | 194 | 352 | 0.55 | 0.05377 | 0.00221 | 0.36453 | 0.01524 | 0.04916 | 0.00123 | 361 | 51 | 316 | 11 | 309 | 8 |
HG-TW2-3 | 166 | 317 | 0.52 | 0.05317 | 0.00438 | 0.35477 | 0.02858 | 0.04838 | 0.00153 | 336 | 125 | 308 | 21 | 305 | 9 |
HG-TW2-4 | 202 | 343 | 0.59 | 0.05259 | 0.00228 | 0.35618 | 0.01562 | 0.04911 | 0.00123 | 311 | 56 | 309 | 12 | 309 | 8 |
HG-TW2-5 | 93 | 226 | 0.41 | 0.05381 | 0.00389 | 0.36342 | 0.02579 | 0.04898 | 0.00146 | 363 | 106 | 315 | 19 | 308 | 9 |
HG-TW2-6 | 102 | 271 | 0.38 | 0.05475 | 0.00436 | 0.37161 | 0.02897 | 0.04922 | 0.00153 | 402 | 119 | 321 | 21 | 310 | 9 |
HG-TW2-7 | 267 | 431 | 0.62 | 0.05345 | 0.00195 | 0.36309 | 0.01359 | 0.04927 | 0.0012 | 348 | 43 | 315 | 10 | 310 | 7 |
HG-TW2-8 | 235 | 535 | 0.44 | 0.05644 | 0.00251 | 0.34814 | 0.01547 | 0.04475 | 0.00114 | 470 | 55 | 303 | 12 | 282 | 7 |
HG-TW2-9 | 161 | 414 | 0.39 | 0.05204 | 0.00185 | 0.35446 | 0.01292 | 0.0494 | 0.00119 | 287 | 42 | 308 | 10 | 311 | 7 |
HG-TW2-10 | 307 | 431 | 0.71 | 0.05392 | 0.00352 | 0.357 | 0.02293 | 0.04802 | 0.00137 | 368 | 94 | 310 | 17 | 302 | 8 |
HG-TW2-11 | 538 | 1160 | 0.46 | 0.0524 | 0.00235 | 0.35436 | 0.01598 | 0.04905 | 0.00124 | 303 | 58 | 308 | 12 | 309 | 8 |
HG-TW2-12 | 404 | 651 | 0.62 | 0.05292 | 0.00185 | 0.35881 | 0.0127 | 0.04918 | 0.00116 | 325 | 41 | 311 | 9 | 309 | 7 |
HG-TW2-13 | 333 | 685 | 0.49 | 0.05303 | 0.00149 | 0.35804 | 0.01042 | 0.04896 | 0.00111 | 330 | 31 | 311 | 8 | 308 | 7 |
HG-TW2-14 | 173 | 418 | 0.41 | 0.0525 | 0.00158 | 0.35973 | 0.01113 | 0.04969 | 0.00114 | 307 | 33 | 312 | 8 | 313 | 7 |
HG-TW2-15 | 245 | 385 | 0.64 | 0.05363 | 0.00305 | 0.35696 | 0.02008 | 0.04828 | 0.0013 | 356 | 79 | 310 | 15 | 304 | 8 |
HG-TW2-16 | 152 | 302 | 0.50 | 0.05287 | 0.00356 | 0.35787 | 0.02363 | 0.0491 | 0.00141 | 323 | 98 | 311 | 18 | 309 | 9 |
HG-TW2-17 | 224 | 461 | 0.48 | 0.05299 | 0.00258 | 0.36065 | 0.01748 | 0.04936 | 0.00126 | 328 | 65 | 313 | 13 | 311 | 8 |
HG-TW2-18 | 131 | 285 | 0.46 | 0.05275 | 0.00202 | 0.35655 | 0.01384 | 0.04903 | 0.00119 | 318 | 47 | 310 | 10 | 309 | 7 |
HG-TW2-19 | 172 | 142 | 1.21 | 0.164 | 0.0035 | 9.08555 | 0.21247 | 0.40153 | 0.00908 | 2285 | 102 | 2207 | 46 | 2124 | 48 |
HG-TW2-20 | 493 | 604 | 0.82 | 0.05313 | 0.00199 | 0.35602 | 0.01353 | 0.0486 | 0.00117 | 334 | 45 | 309 | 10 | 306 | 7 |
HG-TW2-21 | 196 | 363 | 0.54 | 0.05277 | 0.0018 | 0.35868 | 0.01252 | 0.0493 | 0.00117 | 319 | 40 | 311 | 9 | 310 | 7 |
HG-TW2-22 | 247 | 502 | 0.49 | 0.05263 | 0.00193 | 0.35601 | 0.01324 | 0.04907 | 0.00117 | 313 | 44 | 309 | 10 | 309 | 7 |
HG-TW2-23 | 188 | 486 | 0.39 | 0.05309 | 0.00201 | 0.36047 | 0.01382 | 0.04925 | 0.00118 | 333 | 46 | 313 | 10 | 310 | 7 |
HG-TW2-24 | 214 | 410 | 0.52 | 0.05231 | 0.00252 | 0.35685 | 0.0171 | 0.04948 | 0.00125 | 299 | 64 | 310 | 13 | 311 | 8 |
HG-TW2-25 | 208 | 426 | 0.49 | 0.05315 | 0.00175 | 0.35877 | 0.01204 | 0.04895 | 0.00114 | 335 | 38 | 311 | 9 | 308 | 7 |
HG-TW2-26 | 248 | 455 | 0.54 | 0.05283 | 0.00229 | 0.35749 | 0.01546 | 0.04908 | 0.00121 | 322 | 55 | 310 | 12 | 309 | 7 |
HG-TW2-27 | 241 | 475 | 0.51 | 0.16136 | 0.00331 | 8.10505 | 0.18236 | 0.3639 | 0.00805 | 2436 | 65 | 2219 | 27 | 1992 | 39 |
Sample No. | HG-TY1 | HG-TY2 | HG-TY3 | HG-TY4 | HG-TY5 | HG-TY6 | HG-TY7 | HG-TY8 | HG-TY9 | HG-TY10 |
---|---|---|---|---|---|---|---|---|---|---|
Monzonitic Granite | Pyroxene Diorite Porphyrite | |||||||||
Major element (wt. %) | ||||||||||
SiO2 | 70.66 | 70.47 | 70.52 | 70.98 | 71.01 | 53.80 | 54.09 | 53.48 | 52.90 | 53.45 |
TiO2 | 0.11 | 0.15 | 0.13 | 0.14 | 0.11 | 0.58 | 0.56 | 0.59 | 0.58 | 0.60 |
Al2O3 | 14.98 | 15.02 | 14.81 | 14.56 | 14.72 | 14.84 | 14.54 | 14.71 | 14.99 | 15.30 |
TFe2O3 | 1.17 | 1.08 | 1.71 | 1.93 | 1.33 | 7.29 | 7.39 | 7.49 | 7.75 | 7.75 |
MnO | 0.03 | 0.03 | 0.03 | 0.02 | 0.04 | 0.14 | 0.14 | 0.15 | 0.14 | 0.14 |
MgO | 0.33 | 0.29 | 0.19 | 0.21 | 0.17 | 8.13 | 8.46 | 8.63 | 9.27 | 8.99 |
CaO | 1.53 | 1.89 | 1.35 | 1.49 | 1.35 | 8.32 | 8.31 | 7.15 | 7.95 | 6.63 |
Na2O | 5.76 | 5.65 | 5.68 | 5.54 | 5.74 | 2.69 | 2.66 | 3.02 | 2.64 | 3.04 |
K2O | 3.98 | 4.11 | 4.15 | 4.19 | 4.43 | 2.20 | 1.89 | 2.26 | 1.94 | 1.97 |
P2O5 | 0.06 | 0.05 | 0.04 | 0.03 | 0.03 | 0.14 | 0.14 | 0.14 | 0.14 | 0.15 |
LOl | 1.32 | 1.21 | 1.33 | 0.85 | 1.01 | 1.46 | 1.38 | 2.02 | 1.28 | 1.51 |
Total | 99.93 | 99.95 | 99.94 | 99.94 | 99.94 | 99.59 | 99.55 | 99.63 | 99.57 | 99.52 |
Na2O+K2O | 9.74 | 9.76 | 9.83 | 9.73 | 10.17 | 4.89 | 4.55 | 5.28 | 4.58 | 5.01 |
Na2O/K2O | 1.45 | 1.37 | 1.37 | 1.32 | 1.30 | 1.22 | 1.40 | 1.33 | 1.36 | 1.55 |
A/CNK | 0.91 | 0.88 | 0.91 | 0.89 | 0.89 | 0.69 | 0.69 | 0.73 | 0.73 | 0.81 |
A/NK | 1.09 | 1.09 | 1.07 | 1.07 | 1.03 | 2.18 | 2.27 | 1.98 | 2.33 | 2.14 |
Mg# | 19.47 | 18.71 | 8.70 | 8.53 | 9.87 | 48.86 | 49.52 | 49.70 | 50.64 | 49.87 |
σ | 3.43 | 3.47 | 3.51 | 3.38 | 3.69 | 2.21 | 1.87 | 2.66 | 2.12 | 2.40 |
Trace element (ppm) | ||||||||||
Li | 10.65 | 7.67 | 9.61 | 13.99 | 11.02 | 13.78 | 14.88 | 18.70 | 13.22 | 20.49 |
Be | 2.39 | 2.14 | 2.39 | 3.66 | 2.50 | 1.43 | 1.46 | 1.58 | 1.42 | 1.72 |
Sc | 4.27 | 4.76 | 4.80 | 6.13 | 5.02 | 16.83 | 17.70 | 16.61 | 16.63 | 19.45 |
V | 50.74 | 62.72 | 68.93 | 86.11 | 72.87 | 127.80 | 131.90 | 136.12 | 125.64 | 149.63 |
Cr | 16.55 | 14.66 | 14.27 | 17.56 | 14.32 | 399.61 | 422.81 | 371.57 | 394.77 | 453.94 |
Co | 7.36 | 9.27 | 8.99 | 9.42 | 7.68 | 38.16 | 42.02 | 37.73 | 38.77 | 45.57 |
Ni | 7.72 | 6.48 | 5.71 | 5.93 | 6.54 | 221.52 | 241.79 | 190.56 | 223.76 | 234.77 |
Cu | 8.90 | 8.66 | 7.96 | 9.91 | 7.00 | 17.60 | 12.05 | 27.45 | 10.36 | 27.63 |
Zn | 52.68 | 53.45 | 56.29 | 67.53 | 56.73 | 67.51 | 70.48 | 90.88 | 68.07 | 96.83 |
Ga | 15.43 | 16.34 | 17.41 | 24.37 | 17.26 | 14.91 | 15.13 | 15.69 | 14.55 | 17.53 |
Ge | 0.93 | 0.90 | 0.97 | 1.41 | 0.99 | 1.09 | 1.13 | 1.25 | 1.10 | 1.36 |
Rb | 60.17 | 50.52 | 61.40 | 83.10 | 63.99 | 43.89 | 40.01 | 83.00 | 44.49 | 95.22 |
Sr | 2033.46 | 2635.50 | 2396.04 | 2623.93 | 1847.74 | 874.28 | 877.77 | 710.25 | 700.03 | 700.12 |
Y | 16.79 | 22.44 | 26.90 | 34.07 | 20.68 | 12.71 | 12.93 | 12.98 | 11.85 | 13.93 |
Zr | 20.38 | 22.74 | 44.31 | 30.96 | 24.61 | 124.70 | 131.10 | 134.57 | 123.47 | 153.21 |
Nb | 17.23 | 27.40 | 32.58 | 39.22 | 29.52 | 3.90 | 3.14 | 3.28 | 2.67 | 3.50 |
Mo | 0.16 | 0.24 | 0.25 | 0.31 | 0.18 | 0.32 | 0.26 | 0.93 | 2.70 | 0.83 |
Cd | 0.06 | 0.08 | 0.07 | 0.08 | 0.05 | 0.08 | 0.09 | 0.09 | 0.10 | 0.09 |
In | 0.02 | 0.03 | 0.03 | 0.04 | 0.03 | 0.04 | 0.04 | 0.04 | 0.03 | 0.04 |
Cs | 1.64 | 1.34 | 1.57 | 2.50 | 1.90 | 2.64 | 2.38 | 5.53 | 3.57 | 6.59 |
Ba | 4052.74 | 5692.39 | 5662.47 | 4370.57 | 4518.53 | 934.81 | 846.77 | 1093.28 | 754.99 | 1031.28 |
La | 78.97 | 86.36 | 91.19 | 186.02 | 77.14 | 17.87 | 17.01 | 16.62 | 14.52 | 17.09 |
Ce | 114.82 | 131.85 | 140.33 | 269.07 | 123.57 | 32.96 | 31.91 | 31.31 | 27.72 | 32.76 |
Pr | 12.41 | 14.29 | 16.07 | 27.96 | 14.41 | 4.28 | 4.17 | 4.06 | 3.70 | 4.30 |
Nd | 41.56 | 49.15 | 55.59 | 89.91 | 50.13 | 16.82 | 16.70 | 16.59 | 14.82 | 17.54 |
Sm | 5.75 | 7.00 | 7.95 | 11.76 | 7.35 | 3.07 | 3.08 | 2.98 | 2.72 | 3.21 |
Eu | 2.75 | 3.16 | 3.46 | 4.54 | 3.03 | 1.09 | 1.07 | 1.05 | 0.96 | 1.16 |
Gd | 5.77 | 7.07 | 7.92 | 12.28 | 7.19 | 2.85 | 2.89 | 2.85 | 2.67 | 3.08 |
Tb | 0.73 | 0.96 | 1.12 | 1.58 | 0.96 | 0.47 | 0.46 | 0.45 | 0.42 | 0.50 |
Dy | 3.48 | 4.66 | 5.60 | 7.31 | 4.64 | 2.63 | 2.52 | 2.55 | 2.41 | 2.80 |
Ho | 0.63 | 0.84 | 0.98 | 1.30 | 0.83 | 0.49 | 0.48 | 0.49 | 0.45 | 0.54 |
Er | 1.79 | 2.36 | 2.80 | 3.68 | 2.33 | 1.33 | 1.32 | 1.33 | 1.27 | 1.49 |
Tm | 0.26 | 0.35 | 0.41 | 0.53 | 0.34 | 0.20 | 0.20 | 0.21 | 0.19 | 0.22 |
Yb | 1.46 | 1.95 | 2.27 | 3.02 | 1.90 | 1.14 | 1.19 | 1.14 | 1.08 | 1.26 |
Lu | 0.25 | 0.32 | 0.40 | 0.51 | 0.32 | 0.20 | 0.20 | 0.20 | 0.19 | 0.22 |
Hf | 1.07 | 1.23 | 1.43 | 1.68 | 1.38 | 4.44 | 4.48 | 5.30 | 4.83 | 6.06 |
Ta | 1.18 | 1.83 | 2.18 | 2.62 | 1.97 | 0.23 | 0.19 | 0.20 | 0.17 | 0.21 |
Pb | 33.01 | 28.20 | 39.50 | 58.09 | 42.11 | 11.89 | 11.03 | 14.40 | 10.39 | 14.90 |
Th | 8.76 | 11.61 | 10.47 | 28.67 | 8.29 | 5.78 | 6.06 | 5.75 | 5.48 | 6.25 |
U | 1.30 | 1.40 | 1.84 | 2.59 | 1.53 | 1.73 | 1.73 | 1.85 | 1.60 | 1.95 |
ΣREE | 270.63 | 310.32 | 336.07 | 619.48 | 294.12 | 85.40 | 83.20 | 81.83 | 73.13 | 86.18 |
LREE | 256.26 | 291.81 | 314.59 | 589.27 | 275.64 | 76.10 | 73.95 | 72.61 | 64.45 | 76.07 |
HREE | 14.38 | 18.50 | 21.49 | 30.21 | 18.49 | 9.30 | 9.26 | 9.22 | 8.68 | 10.11 |
LREE/HREE | 17.83 | 15.77 | 14.64 | 19.51 | 14.91 | 8.18 | 7.99 | 7.87 | 7.43 | 7.53 |
δEu | 1.46 | 1.38 | 1.33 | 1.15 | 1.27 | 1.13 | 1.10 | 1.10 | 1.09 | 1.13 |
δCe | 0.90 | 0.92 | 0.90 | 0.91 | 0.91 | 0.92 | 0.93 | 0.93 | 0.93 | 0.94 |
(La/Yb)N | 38.78 | 31.71 | 28.80 | 44.14 | 29.19 | 11.21 | 10.27 | 10.41 | 9.67 | 9.71 |
Th/Nb | 0.51 | 0.42 | 0.32 | 0.28 | 0.28 | 1.48 | 1.93 | 1.75 | 2.05 | 1.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Zhao, Y.; Zhang, C.; Ren, C.; Yang, Q.; Zhang, L. Metallogenic Age and Tectonic Setting of the Haigou Gold Deposit in Southeast Jilin Province, NE China: Constraints from Magmatic Chronology and Geochemistry. Minerals 2025, 15, 582. https://doi.org/10.3390/min15060582
Yang Z, Zhao Y, Zhang C, Ren C, Yang Q, Zhang L. Metallogenic Age and Tectonic Setting of the Haigou Gold Deposit in Southeast Jilin Province, NE China: Constraints from Magmatic Chronology and Geochemistry. Minerals. 2025; 15(6):582. https://doi.org/10.3390/min15060582
Chicago/Turabian StyleYang, Zhongjie, Yuandong Zhao, Cangjiang Zhang, Chuantao Ren, Qun Yang, and Long Zhang. 2025. "Metallogenic Age and Tectonic Setting of the Haigou Gold Deposit in Southeast Jilin Province, NE China: Constraints from Magmatic Chronology and Geochemistry" Minerals 15, no. 6: 582. https://doi.org/10.3390/min15060582
APA StyleYang, Z., Zhao, Y., Zhang, C., Ren, C., Yang, Q., & Zhang, L. (2025). Metallogenic Age and Tectonic Setting of the Haigou Gold Deposit in Southeast Jilin Province, NE China: Constraints from Magmatic Chronology and Geochemistry. Minerals, 15(6), 582. https://doi.org/10.3390/min15060582