Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (20,382)

Search Parameters:
Keywords = T3258C

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 8522 KiB  
Article
Plant Extracts as Modulators of the Wound Healing Process—Preliminary Study
by Anna Herman, Aleksandra Leska, Patrycja Wińska and Andrzej Przemysław Herman
Int. J. Mol. Sci. 2025, 26(15), 7490; https://doi.org/10.3390/ijms26157490 (registering DOI) - 2 Aug 2025
Abstract
The treatment of chronic wounds is one of the most complex therapeutic problems of modern medicine. It leads to patients’ protracted recovery, generating high treatment costs. Herbal products may be useful in the treatment of chronic wounds via a wide range of pharmacological [...] Read more.
The treatment of chronic wounds is one of the most complex therapeutic problems of modern medicine. It leads to patients’ protracted recovery, generating high treatment costs. Herbal products may be useful in the treatment of chronic wounds via a wide range of pharmacological properties and multidirectional effects on the wound healing phases. The study aims to determine the ability of selected plant extracts to modulate the processes involved in wound healing. The antimicrobial (MIC, MBC, MFC) and antioxidant (ABTS, DPPH) activities, cytotoxicity (MTT test), scratch wound test, and collagen assay were tested. R. canina (MBC 0.39 mg/mL) and V. venifera (MBC 3.13 mg/mL) extracts had bactericidal activities against P. aeruginosa and S. aureus, respectively. The V. vinifera extract showed the highest antioxidant activity in both ABTS (EC50 0.078 mg/mL) and DPPH (EC50 0.005 mg/mL) methods. The percentage of wound closure observed for C. cardunculus, R. rosea, and R. canina extracts with HaCaT, and V. vinifera extract with Hs27 cells was set as 100%. V. vinifera extract (50 μg/mL) stimulated collagen synthesis 5.16 times more strongly than ascorbic acid. Our preliminary study showed that some plant extracts may be promising modulators of the wound healing process, although further in-depth studies are necessary to determine their effectiveness in the in vivo model. Full article
Show Figures

Figure 1

23 pages, 3916 KiB  
Article
Leveraging Wearable Sensors for the Identification and Prediction of Defensive Pessimism Personality Traits
by You Zhou, Dongfen Li, Bowen Deng and Weiqian Liang
Micromachines 2025, 16(8), 906; https://doi.org/10.3390/mi16080906 (registering DOI) - 2 Aug 2025
Abstract
Defensive pessimism, an important emotion regulation and motivation strategy, has increasingly attracted scholarly attention in psychology. Recently, sensor-based methods have begun to supplement or replace traditional questionnaire surveys in personality research. However, current approaches for collecting vital signs data face several challenges, including [...] Read more.
Defensive pessimism, an important emotion regulation and motivation strategy, has increasingly attracted scholarly attention in psychology. Recently, sensor-based methods have begun to supplement or replace traditional questionnaire surveys in personality research. However, current approaches for collecting vital signs data face several challenges, including limited monitoring durations, significant data deviations, and susceptibility to external interference. This paper proposes a novel approach using a NiCr/NiSi alloy film temperature sensor, which has a K-type structure and flexible piezoelectric pressure sensor to identify and predict defensive pessimism personality traits. Experimental results indicate that the Seebeck coefficients for K-, T-, and E-type thermocouples are approximately 41 μV/°C, 39 μV/°C, and 57 μV/°C, respectively, which align closely with national standards and exhibit good consistency across multiple experimental groups. Moreover, radial artery frequency experiments demonstrate a strong linear relationship between pulse rate and the intensity of external stimuli, where stronger stimuli correspond to faster pulse rates. Simulation experiments further reveal a high correlation between radial artery pulse frequency and skin temperature, and a regression model based on the physiological sensor data shows a good fit (p < 0.05). These findings verify the feasibility of using temperature and flexible piezoelectric pressure sensors to identify and predict defensive pessimism personality characteristics. Full article
Show Figures

Figure 1

13 pages, 462 KiB  
Article
Genetic Landscape of Congenital Cataracts in a Swiss Cohort: Addressing Diagnostic Oversights in Nance–Horan Syndrome
by Flora Delas, Jiradet Gloggnitzer, Alessandro Maspoli, Lisa Kurmann, Beatrice E. Frueh, Ivanka Dacheva, Darius Hildebrand, Wolfgang Berger and Christina Gerth-Kahlert
Biomedicines 2025, 13(8), 1883; https://doi.org/10.3390/biomedicines13081883 (registering DOI) - 2 Aug 2025
Abstract
Congenital cataracts (CCs) are a leading cause of preventable childhood blindness, with genetic factors playing a crucial role in their etiology. Nance–Horan syndrome (NHS) is a rare X-linked dominant disorder associated with CCs but is often underdiagnosed due to variable expressivity, particularly in [...] Read more.
Congenital cataracts (CCs) are a leading cause of preventable childhood blindness, with genetic factors playing a crucial role in their etiology. Nance–Horan syndrome (NHS) is a rare X-linked dominant disorder associated with CCs but is often underdiagnosed due to variable expressivity, particularly in female carriers. Objective: This study aimed to explore the genetic landscape of CCs in a Swiss cohort, focusing on two novel NHS and one novel GJA8 variants and their phenotypic presentation. Methods: Whole-exome sequencing (WES) was conducted on 20 unrelated Swiss families diagnosed with CCs. Variants were analyzed for pathogenicity using genetic databases, and segregation analysis was performed. Clinical data, including cataract phenotype and associated systemic anomalies, were assessed to establish genotype–phenotype correlations. Results: Potentially pathogenic DNA sequence variants were identified in 10 families, including three novel variants, one in GJA8 (c.584T>C) and two NHS variants (c.250_252insA and c.484del). Additional previously reported variants were detected in CRYBA1, CRYGC, CRYAA, MIP, EPHA2, and MAF, reflecting genetic heterogeneity in the cohort. Notably, NHS variants displayed significant phenotypic variability, suggesting dose-dependent effects and X-chromosome inactivation in female carriers. Conclusions: NHS remains underdiagnosed due to its variable expressivity and the late manifestation of systemic features, often leading to misclassification as isolated CC. This study highlights the importance of genetic testing in unexplained CC cases to improve early detection of syndromic forms. The identification of novel NHS and GJA8 variants provides new insights into the genetic complexity of CCs, emphasizing the need for further research on genotype–phenotype correlations. Full article
(This article belongs to the Special Issue Ophthalmic Genetics: Unraveling the Genomics of Eye Disorders)
Show Figures

Figure 1

16 pages, 2366 KiB  
Article
ZnO-Assisted Synthesis of Rouaite (Cu2(OH)3NO3) Long Hexagonal Multilayered Nanoplates Towards Catalytic Wet Peroxide Oxidation Application
by Guang Yao Zhou, Jun Guo and Ji Hong Wu
Crystals 2025, 15(8), 710; https://doi.org/10.3390/cryst15080710 (registering DOI) - 2 Aug 2025
Abstract
Rouaite (Cu2(OH)3NO3) long hexagonal multilayered nanoplates with high purity and high crystallinity were prepared from acidic reaction solution (pH = 4.4–4.8) with the assistance of ZnO. The ZnO-assisted strategy is remarkably different from the conventional synthetic protocol [...] Read more.
Rouaite (Cu2(OH)3NO3) long hexagonal multilayered nanoplates with high purity and high crystallinity were prepared from acidic reaction solution (pH = 4.4–4.8) with the assistance of ZnO. The ZnO-assisted strategy is remarkably different from the conventional synthetic protocol that was regularly carried out in alkaline solution (pH > 11). The rouaite multilayer nanoplates displayed exceptionally high catalytic activity in the catalytic wet peroxide oxidation (CWPO) of Congo red (CR). The catalytic efficiency for CR decolorization achieved an impressive 96.3% in 50 min under near-neutral (pH = 6.76) and ambient conditions (T = 20 °C, p = 1 atm), without increasing the temperature and/or decreasing the pH value to acidic region (pH = 2–3) as is commonly employed in CWPO process for improved degradation efficiency. Full article
Show Figures

Figure 1

13 pages, 1296 KiB  
Article
Impact of Autoclaving on the Dimensional Stability of 3D-Printed Surgical Guides for Aesthetic Crown Lengthening
by Albert González-Barnadas, Anna Ribas-Garcia, Adrià Jorba-García, Rui Figueiredo, Eduard Valmaseda-Castellón and Octavi Camps-Font
J. Funct. Biomater. 2025, 16(8), 284; https://doi.org/10.3390/jfb16080284 (registering DOI) - 2 Aug 2025
Abstract
The aim of this study was to evaluate the impact of autoclaving on the dimensional stability of surgical guides (SGs) for aesthetic crown lengthening (ACL) using different resins/printing methods. Fifty SGs for ACL were printed using five different resin/printer combinations (FL, SR, ND, [...] Read more.
The aim of this study was to evaluate the impact of autoclaving on the dimensional stability of surgical guides (SGs) for aesthetic crown lengthening (ACL) using different resins/printing methods. Fifty SGs for ACL were printed using five different resin/printer combinations (FL, SR, ND, KS and VC). All the SGs were scanned before (T0) and after (T1) sterilization. Autoclaving was conducted at 134 °C during 4 min. The STL files of each SG at T0 and T1 were compared with the original design (TR). Dimensional stability was measured using trueness and precision. Deviations from TR to T1 were calculated in the three space axes and by measuring the area between three reference landmarks. At T0, the FL group showed the best trueness and precision, while the SR group performed significantly worse than the other groups. At T1, all the groups except VC exhibited significant dimensional alterations compared with T0. Also, VC showed the best trueness and precision values. All the groups had a significant deviation in at least one space axis, while only the SR group exhibited significant variations from T1 to TR in the area between the reference landmarks. Most of the evaluated resin/3D printer combinations suffered significant dimensional alterations after autoclaving. Full article
(This article belongs to the Special Issue Biomaterials in Dentistry: Current Status and Advances)
Show Figures

Figure 1

21 pages, 6621 KiB  
Article
Ecological Restoration Reshapes Ecosystem Service Interactions: A 30-Year Study from China’s Southern Red-Soil Critical Zone
by Gaigai Zhang, Lijun Yang, Jianjun Zhang, Chongjun Tang, Yuanyuan Li and Cong Wang
Forests 2025, 16(8), 1263; https://doi.org/10.3390/f16081263 (registering DOI) - 2 Aug 2025
Abstract
Situated in the southern hilly-mountain belt of China’s “Three Zones and Four Belts Strategy”, Gannan region is a critical ecological shelter belt for the Ganjiang River. Decades of intensive mineral extraction and irrational agricultural development have rendered it into an ecologically fragile area. [...] Read more.
Situated in the southern hilly-mountain belt of China’s “Three Zones and Four Belts Strategy”, Gannan region is a critical ecological shelter belt for the Ganjiang River. Decades of intensive mineral extraction and irrational agricultural development have rendered it into an ecologically fragile area. Consequently, multiple restoration initiatives have been implemented in the region over recent decades. However, it remains unclear how relationships among ecosystem services have evolved under these interventions and how future ecosystem management should be optimized based on these changes. Thus, in this study, we simulated and assessed the spatiotemporal dynamics of five key ESs in Gannan region from 1990 to 2020. Through integrated correlation, clustering, and redundancy analyses, we quantified ES interactions, tracked the evolution of ecosystem service bundles (ESBs), and identified their socio-ecological drivers. Despite a 31% decline in water yield, ecological restoration initiatives drove substantial improvements in key regulating services: carbon storage increased by 6.9 × 1012 gC while soil conservation rose by 4.8 × 108 t. Concurrently, regional habitat quality surged by 45% in mean scores, and food production increased by 2.1 × 105 t. Critically, synergistic relationships between habitat quality, soil retention, and carbon storage were progressively strengthened, whereas trade-offs between food production and habitat quality intensified. Further analysis revealed that four distinct ESBs—the Agricultural Production Bundle (APB), Urban Development Bundle (UDB), Eco-Agriculture Transition Bundle (ETB), and Ecological Protection Bundle (EPB)—were shaped by slope, forest cover ratio, population density, and GDP. Notably, 38% of the ETB transformed into the EPB, with frequent spatial interactions observed between the APB and UDB. These findings underscore that future ecological restoration and conservation efforts should implement coordinated, multi-service management mechanisms. Full article
Show Figures

Figure 1

13 pages, 674 KiB  
Article
In Vivo Safety and Efficacy of Thiosemicarbazones in Experimental Mice Infected with Toxoplasma gondii Oocysts
by Manuela Semeraro, Ghalia Boubaker, Mirco Scaccaglia, Dennis Imhof, Maria Cristina Ferreira de Sousa, Kai Pascal Alexander Hänggeli, Anitha Löwe, Marco Genchi, Laura Helen Kramer, Alice Vismarra, Giorgio Pelosi, Franco Bisceglie, Luis Miguel Ortega-Mora, Joachim Müller and Andrew Hemphill
Biomedicines 2025, 13(8), 1879; https://doi.org/10.3390/biomedicines13081879 (registering DOI) - 1 Aug 2025
Abstract
Background: Toxoplasma gondii is a globally widespread parasite responsible for toxoplasmosis, a zoonotic disease with significant impact on both human and animal health. The current lack of safe and effective treatments underscores the need for new drugs. Earlier, thiosemicarbazones (TSCs) and their [...] Read more.
Background: Toxoplasma gondii is a globally widespread parasite responsible for toxoplasmosis, a zoonotic disease with significant impact on both human and animal health. The current lack of safe and effective treatments underscores the need for new drugs. Earlier, thiosemicarbazones (TSCs) and their metal complexes have shown promising activities against T. gondii. This study evaluated a gold (III) complex C3 and its TSC ligand C4 for safety in host immune cells and zebrafish embryos, followed by efficacy assessment in a murine model for chronic toxoplasmosis. Methods: The effects on viability and proliferation of murine splenocytes were determined using Alamar Blue assay and BrdU ELISA, and potential effects of the drugs on zebrafish (Danio rerio) embryos were detected through daily light microscopical inspection within the first 96 h of embryo development. The parasite burden in treated versus non-treated mice was measured by quantitative real-time PCR in the brain, eyes and the heart. Results: Neither compound showed immunosuppressive effects on the host immune cells but displayed dose-dependent toxicity on early zebrafish embryo development, suggesting that these compounds should not be applied in pregnant animals. In the murine model of chronic toxoplasmosis, C4 treatment significantly reduced the parasite load in the heart but not in the brain or eyes, while C3 did not have any impact on the parasite load. Conclusions: These results highlight the potential of C4 for further exploration but also the limitations of current approaches in effectively reducing parasite burden in vivo. Full article
(This article belongs to the Section Microbiology in Human Health and Disease)
12 pages, 2035 KiB  
Article
A Stable Metal Chalcogenide Cluster-Based Framework Decorated with Transition Metal Complexes for an Efficient Electrocatalytic O2 Reduction Reaction
by Xiang Wang, Juan Li and Tao Wu
Nanomaterials 2025, 15(15), 1186; https://doi.org/10.3390/nano15151186 (registering DOI) - 1 Aug 2025
Abstract
Highly efficient and stable non-Pt-based electrocatalysts for oxygen reduction reactions (ORRs) are highly desirable in energy conversion and storage systems. Herein, we report a hydrothermally synthesized metal chalcogenide cluster-based framework (NCF-3-Mn), which is decorated with transition metal complexes ([Mn(TEPA)]2+, TEPA = [...] Read more.
Highly efficient and stable non-Pt-based electrocatalysts for oxygen reduction reactions (ORRs) are highly desirable in energy conversion and storage systems. Herein, we report a hydrothermally synthesized metal chalcogenide cluster-based framework (NCF-3-Mn), which is decorated with transition metal complexes ([Mn(TEPA)]2+, TEPA = tetraethylenepentamine), for an electrocatalytic O2 reduction reaction (ORR). Benefitting from the abundant Mn-S bonds and Mn-N-C structures in NCF-3-Mn, it was found that NCF-3-Mn displayed a high onset potential (0.90 V) and an efficient four-electron transfer reaction pathway, which are much better than those of its analogue framework (T2-GaSbS). Moreover, NCF-3-Mn also exhibited a considerable long-term stability and methanol resistance toward ORRs. This work will present new opportunities for exploring the utilization of chalcogenide frameworks as novel non-Pt electrocatalysts for ORRs. Full article
(This article belongs to the Collection Micro/Nanoscale Open Framework Materials (OFMs))
16 pages, 3043 KiB  
Article
Experimental Investigations on Sustainable Dual-Biomass-Based Composite Phase Change Materials for Energy-Efficient Building Applications
by Zhiwei Sun, Wei Wen, Jiayu Wu, Jingjing Shao, Wei Cai, Xiaodong Wen, Chaoen Li, Haijin Guo, Yin Tang, Meng Wang, Dongjing Liu and Yang He
Materials 2025, 18(15), 3632; https://doi.org/10.3390/ma18153632 (registering DOI) - 1 Aug 2025
Abstract
The incorporation of phase change material (PCM) can enhance wall thermal performance and indoor thermal comfort, but practical applications still face challenges related to high costs and potential leakage issues. In this study, a novel dual-biomass-based shape-stabilized PCM (Bio-SSPCM) was proposed, wherein waste [...] Read more.
The incorporation of phase change material (PCM) can enhance wall thermal performance and indoor thermal comfort, but practical applications still face challenges related to high costs and potential leakage issues. In this study, a novel dual-biomass-based shape-stabilized PCM (Bio-SSPCM) was proposed, wherein waste cooking fat and waste reed straw were, respectively, incorporated as the PCM substance and supporting material. The waste fat (lard) consisted of both saturated and unsaturated fatty acid glycerides, exhibiting a melting point about 21.2–41.1 °C and a melting enthalpy value of 40 J/g. Reed straw was carbonized to form a sustainable porous biochar supporting matrix, which was used for the vacuum adsorption of waste fat. The results demonstrate that the as-prepared dual-Bio-SSPCM exhibited excellent thermal performance, characterized by a latent heat capacity of 25.4 J/g. With the addition of 4 wt% of expanded graphite (EG), the thermal conductivity of the composite PCM reached 1.132 W/(m·K), which was 5.4 times higher than that of the primary lard. The thermal properties of the Bio-SSPCM were characterized using an analog T-history method. The results demonstrated that the dual-Bio-SSPCM exhibited exceptional and rapid heat storage and exothermic capabilities. The dual-Bio-SSPCM, prepared from waste cooking fat and reed straw, can be considered as environmentally friendly construction material for energy storage in line with the principles of the circular economy. Full article
(This article belongs to the Special Issue Eco-Friendly Intelligent Infrastructures Materials)
15 pages, 245 KiB  
Article
Exploring Single-Nucleotide Polymorphisms in Primary and Secondary Male Infertility
by Fatina W. Dahadhah, Mohanad Odeh, Heba A. Ali, Jihad A. M. Alzyoud and Manal Issam Abu Alarjah
Med. Sci. 2025, 13(3), 109; https://doi.org/10.3390/medsci13030109 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: Infertility, defined as the failure to achieve pregnancy after one year of regular unprotected intercourse, represents a significant global health challenge, with male factors contributing to approximately 50% of cases. In this epidemiological context, both primary male infertility (the inability to conceive [...] Read more.
Background/Objectives: Infertility, defined as the failure to achieve pregnancy after one year of regular unprotected intercourse, represents a significant global health challenge, with male factors contributing to approximately 50% of cases. In this epidemiological context, both primary male infertility (the inability to conceive a first child) and secondary male infertility (which occurs when a man who has already fathered a child faces difficulty conceiving again) remain poorly understood at the genetic level. This study explored the role of single-nucleotide polymorphisms (SNPs) in mitochondrial genes (MT-ND3, MT-ND4L, and MT-ND4) in primary and secondary male infertility. Methods: This study analyzed the genotype distributions of SNPs in 68 infertile males (49 with primary infertility and 19 with secondary infertility) using Sanger sequencing. Results: Key findings revealed that studied SNPs were significantly associated with infertility type. Specifically, rs2857285 (T>C,G) in the ND4 gene showed a significant correlation (p = 0.023) with the TT genotype, which is prominent in primary infertility. Another SNP, rs28358279 (T>A,C) in the ND4L gene, also demonstrated a significant correlation (p = 0.046) with the TT genotype, being more common in primary infertility. In addition, rs869096886 (A>G) in the ND4 gene had a borderline correlation (p = 0.051), indicating a possible association between this SNP and reproductive duration. Conclusions: This study emphasizes the potential relevance of mitochondrial malfunction in male infertility, specifically the effects of studied SNPs on sperm survival and function over time. These findings suggest that certain mitochondrial SNPs might be potential biomarkers for infertility risk. Larger studies are needed to confirm these associations and examine the functional effects of these SNPs. Combining genetic analysis with environmental and lifestyle factors could enhance our understanding of male infertility and improve diagnostic and therapeutic strategies. Full article
29 pages, 3012 KiB  
Article
Investigating Multi-Omic Signatures of Ethnicity and Dysglycaemia in Asian Chinese and European Caucasian Adults: Cross-Sectional Analysis of the TOFI_Asia Study at 4-Year Follow-Up
by Saif Faraj, Aidan Joblin-Mills, Ivana R. Sequeira-Bisson, Kok Hong Leiu, Tommy Tung, Jessica A. Wallbank, Karl Fraser, Jennifer L. Miles-Chan, Sally D. Poppitt and Michael W. Taylor
Metabolites 2025, 15(8), 522; https://doi.org/10.3390/metabo15080522 (registering DOI) - 1 Aug 2025
Abstract
Background: Type 2 diabetes (T2D) is a global health epidemic with rising prevalence within Asian populations, particularly amongst individuals with high visceral adiposity and ectopic organ fat, the so-called Thin-Outside, Fat-Inside phenotype. Metabolomic and microbiome shifts may herald T2D onset, presenting potential biomarkers [...] Read more.
Background: Type 2 diabetes (T2D) is a global health epidemic with rising prevalence within Asian populations, particularly amongst individuals with high visceral adiposity and ectopic organ fat, the so-called Thin-Outside, Fat-Inside phenotype. Metabolomic and microbiome shifts may herald T2D onset, presenting potential biomarkers and mechanistic insight into metabolic dysregulation. However, multi-omics datasets across ethnicities remain limited. Methods: We performed cross-sectional multi-omics analyses on 171 adults (99 Asian Chinese, 72 European Caucasian) from the New Zealand-based TOFI_Asia cohort at 4-years follow-up. Paired plasma and faecal samples were analysed using untargeted metabolomic profiling (polar/lipid fractions) and shotgun metagenomic sequencing, respectively. Sparse multi-block partial least squares regression and discriminant analysis (DIABLO) unveiled signatures associated with ethnicity, glycaemic status, and sex. Results: Ethnicity-based DIABLO modelling achieved a balanced error rate of 0.22, correctly classifying 76.54% of test samples. Polar metabolites had the highest discriminatory power (AUC = 0.96), with trigonelline enriched in European Caucasians and carnitine in Asian Chinese. Lipid profiles highlighted ethnicity-specific signatures: Asian Chinese showed enrichment of polyunsaturated triglycerides (TG.16:0_18:2_22:6, TG.18:1_18:2_22:6) and ether-linked phospholipids, while European Caucasians exhibited higher levels of saturated species (TG.16:0_16:0_14:1, TG.15:0_15:0_17:1). The bacteria Bifidobacterium pseudocatenulatum, Erysipelatoclostridium ramosum, and Enterocloster bolteae characterised Asian Chinese participants, while Oscillibacter sp. and Clostridium innocuum characterised European Caucasians. Cross-omic correlations highlighted negative correlations of Phocaeicola vulgatus with amino acids (r = −0.84 to −0.76), while E. ramosum and C. innocuum positively correlated with long-chain triglycerides (r = 0.55–0.62). Conclusions: Ethnicity drove robust multi-omic differentiation, revealing distinctive metabolic and microbial profiles potentially underlying the differential T2D risk between Asian Chinese and European Caucasians. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

16 pages, 604 KiB  
Article
Once-Weekly Semaglutide Improves Body Composition in Spanish Obese Adults with Type 2 Diabetes: A 48-Week Prospective Real-Life Study
by Irene Caballero-Mateos, Cristóbal Morales-Portillo and Beatriz González Aguilera
J. Clin. Med. 2025, 14(15), 5434; https://doi.org/10.3390/jcm14155434 (registering DOI) - 1 Aug 2025
Abstract
Objective: The objective of this study was to assess changes in body composition, with a specific focus on fat mass (FM) and fat-free mass (FFM), in obese adults with type 2 diabetes (T2D) treated with once-weekly (OW) subcutaneous (s.c.) semaglutide. Methods: This was [...] Read more.
Objective: The objective of this study was to assess changes in body composition, with a specific focus on fat mass (FM) and fat-free mass (FFM), in obese adults with type 2 diabetes (T2D) treated with once-weekly (OW) subcutaneous (s.c.) semaglutide. Methods: This was a single-center, 12-month, real-world, ambispective study (6-month prospective and 6-month retrospective). Body composition parameters were assessed via segmental multifrequency bioelectrical impedance analysis (SMF-BIA). Results: A total of 117 patients with DM2, with a median age of 56 years, a median HbA1c level of 9.4%, and a median body weight of 102.5 kg, were included in the study. The median body weight, body fat mass, and visceral fat significantly decreased at 6 months, with values of −9.3, −7.5, and −1.8 kg, respectively. There were further reductions from 6 to 12 months, albeit at a slower rate. The median skeletal muscle mass significantly decreased at 6 months (−1.2 kg), although no further significant reductions were observed at 12 months. Conclusions: OW s.c. semaglutide for 12 months significantly improved body composition parameters, mainly at the expense of fat mass loss, with the preservation of skeletal muscle mass. These changes are clinically meaningful, since they impact general metabolic health and are associated with improvements in metabolic control and clinical parameters associated with renal and CV risks, as well as presumable improvements in quality of life. Full article
(This article belongs to the Section Endocrinology & Metabolism)
Show Figures

Figure 1

23 pages, 888 KiB  
Article
Correlations Between Coffee Intake, Glycemic Control, Cardiovascular Risk, and Sleep in Type 2 Diabetes and Hypertension: A 12-Month Observational Study
by Tatiana Palotta Minari, José Fernando Vilela-Martin, Juan Carlos Yugar-Toledo and Luciana Pellegrini Pisani
Biomedicines 2025, 13(8), 1875; https://doi.org/10.3390/biomedicines13081875 (registering DOI) - 1 Aug 2025
Abstract
Background: The consumption of coffee has been widely debated regarding its effects on health. This study aims to analyze the correlations between daily coffee intake and sleep, blood pressure, anthropometric measurements, and biochemical markers in individuals with type 2 diabetes (T2D) and hypertension [...] Read more.
Background: The consumption of coffee has been widely debated regarding its effects on health. This study aims to analyze the correlations between daily coffee intake and sleep, blood pressure, anthropometric measurements, and biochemical markers in individuals with type 2 diabetes (T2D) and hypertension over a 12-month period. Methods: An observational study was conducted with 40 participants with T2D and hypertension, comprising 20 females and 20 males. Participants were monitored for their daily coffee consumption over a 12-month period, being assessed every 3 months. Linear regression was utilized to assess interactions and relationships between variables, providing insights into potential predictive associations. Additionally, correlation analysis was performed using Pearson’s and Spearman’s tests to evaluate the strength and direction of linear and non-linear relationships. Statistical significance was set at p < 0.05. Results: Significant changes were observed in fasting blood glucose (FBG), glycated hemoglobin (HbA1c), body weight, body mass index, sleep duration, nocturnal awakenings, and waist-to-hip ratio (p < 0.05) over the 12-month study in both sexes. No significant differences were noted in the remaining parameters (p > 0.05). The coffee consumed by the participants was of the “traditional type” and contained sugar (2g per cup) for 100% of the participants. An intake of 4.17 ± 0.360 cups per day was found at baseline and 5.41 ± 0.316 cups at 12 months (p > 0.05). Regarding correlation analysis, a higher coffee intake was significantly associated with shorter sleep duration in women (r = −0.731; p = 0.037). Conversely, greater coffee consumption correlated with lower LDL cholesterol (LDL-C) levels in women (r = −0.820; p = 0.044). Additionally, a longer sleep duration was linked to lower FBG (r = -0.841; p = 0.031), HbA1c (r = -0.831; p = 0.037), and LDL-C levels in women (r = -0.713; p = 0.050). No significant correlations were observed for the other parameters in both sexes (p > 0.05). Conclusions: In women, coffee consumption may negatively affect sleep duration while potentially offering beneficial effects on LDL-C levels, even when sweetened with sugar. Additionally, a longer sleep duration in women appears to be associated with improvements in FBG, HbA1c, and LDL-C. These correlations emphasize the importance of a balanced approach to coffee consumption, weighing both its potential health benefits and drawbacks in postmenopausal women. However, since this study does not establish causality, further randomized clinical trials are warranted to investigate the underlying mechanisms and long-term implications—particularly in the context of T2D and hypertension. Full article
(This article belongs to the Special Issue Diabetes: Comorbidities, Therapeutics and Insights (3rd Edition))
12 pages, 1252 KiB  
Article
Low Dietary Folate Increases Developmental Delays in the Litters of Mthfr677TT Mice
by Karen E. Christensen, Marie-Lou Faquette, Vafa Keser, Alaina M. Reagan, Aaron T. Gebert, Teodoro Bottiglieri, Gareth R. Howell and Rima Rozen
Nutrients 2025, 17(15), 2536; https://doi.org/10.3390/nu17152536 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: Low folate intake before and during pregnancy increases the risk of neural tube defects and other adverse outcomes. Gene variants such as MTHFR 677C>T (rs1801133) may increase risks associated with suboptimal folate intake. Our objective was to use BALB/cJ Mthfr677C>T [...] Read more.
Background/Objectives: Low folate intake before and during pregnancy increases the risk of neural tube defects and other adverse outcomes. Gene variants such as MTHFR 677C>T (rs1801133) may increase risks associated with suboptimal folate intake. Our objective was to use BALB/cJ Mthfr677C>T mice to evaluate the effects of the TT genotype and low folate diets on embryonic development and MTHFR protein expression in pregnant mice. Methods: Female 677CC (mCC) and 677TT (mTT) mice were fed control (2 mg folic acid/kg (2D)), 1 mg folic acid/kg (1D) and 0.3 mg folic acid/kg (0.3D) diets before and during pregnancy. Embryos and maternal tissues were collected at embryonic day 10.5. Embryos were examined for developmental delays and defects. Methyltetrahydrofolate (methylTHF) and total homocysteine (tHcy) were measured in maternal plasma, and MTHFR protein expression was evaluated in maternal liver. Results: MethylTHF decreased due to the experimental diets and mTT genotype. tHcy increased due to 0.3D and mTT genotype; mTT 0.3D mice had significantly higher tHcy than the other groups. MTHFR expression was lower in mTT liver than mCC. MTHFR protein expression increased due to low folate diets in mCC mice, whereas in mTT mice, MTHFR expression increased only due to 1D. Developmental delays were increased in the litters of mTT mice fed 1D and 0.3D. Conclusions: The Mthfr677C>T mouse models the effects of the MTHFR 677TT genotype in humans and provides a folate-responsive model for examination of the effects of folate intake and the MTHFR 677C>T variant during gestation. Full article
(This article belongs to the Section Micronutrients and Human Health)
Show Figures

Figure 1

25 pages, 17212 KiB  
Article
Three-Dimensional Printing of Personalized Carbamazepine Tablets Using Hydrophilic Polymers: An Investigation of Correlation Between Dissolution Kinetics and Printing Parameters
by Lianghao Huang, Xingyue Zhang, Qichen Huang, Minqing Zhu, Tiantian Yang and Jiaxiang Zhang
Polymers 2025, 17(15), 2126; https://doi.org/10.3390/polym17152126 (registering DOI) - 1 Aug 2025
Abstract
Background: Precision medicine refers to the formulation of personalized drug regimens according to the individual characteristics of patients to achieve optimal efficacy and minimize adverse reactions. Additive manufacturing (AM), also known as three-dimensional (3D) printing, has emerged as an optimal solution for precision [...] Read more.
Background: Precision medicine refers to the formulation of personalized drug regimens according to the individual characteristics of patients to achieve optimal efficacy and minimize adverse reactions. Additive manufacturing (AM), also known as three-dimensional (3D) printing, has emerged as an optimal solution for precision drug delivery, enabling customizable and the fabrication of multifunctional structures with precise control over morphology and release behavior in pharmaceutics. However, the influence of 3D printing parameters on the printed tablets, especially regarding in vitro and in vivo performance, remains poorly understood, limiting the optimization of manufacturing processes for controlled-release profiles. Objective: To establish the fabrication process of 3D-printed controlled-release tablets via comprehensively understanding the printing parameters using fused deposition modeling (FDM) combined with hot-melt extrusion (HME) technologies. HPMC-AS/HPC-EF was used as the drug delivery matrix and carbamazepine (CBZ) was used as a model drug to investigate the in vitro drug delivery performance of the printed tablets. Methodology: Thermogravimetric analysis (TGA) was employed to assess the thermal compatibility of CBZ with HPMC-AS/HPC-EF excipients up to 230 °C, surpassing typical processing temperatures (160–200 °C). The formation of stable amorphous solid dispersions (ASDs) was validated using differential scanning calorimetry (DSC), hot-stage polarized light microscopy (PLM), and powder X-ray diffraction (PXRD). A 15-group full factorial design was then used to evaluate the effects of the fan speed (20–100%), platform temperature (40–80 °C), and printing speed (20–100 mm/s) on the tablet properties. Response surface modeling (RSM) with inverse square-root transformation was applied to analyze the dissolution kinetics, specifically t50% (time for 50% drug release) and Q4h (drug released at 4 h). Results: TGA confirmed the thermal compatibility of CBZ with HPMC-AS/HPC-EF, enabling stable ASD formation validated by DSC, PLM, and PXRD. The full factorial design revealed that printing speed was the dominant parameter governing dissolution behavior, with high speeds accelerating release and low speeds prolonging release through porosity-modulated diffusion control. RSM quadratic models showed optimal fits for t50% (R2 = 0.9936) and Q4h (R2 = 0.9019), highlighting the predictability of release kinetics via process parameter tuning. This work demonstrates the adaptability of polymer composite AM for tailoring drug release profiles, balancing mechanical integrity, release kinetics, and manufacturing scalability to advance multifunctional 3D-printed drug delivery devices in pharmaceutics. Full article
Show Figures

Figure 1

Back to TopTop