Exploring Single-Nucleotide Polymorphisms in Primary and Secondary Male Infertility
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Collection and Preparation of Semen Samples
2.3. Extraction of Mitochondrial DNA
2.4. PCR Assay of Mitochondrial Genes
2.5. MT-DNA Sequencing
2.6. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Ala | Alanine |
Arg | Arginine |
Asn | Asparagine |
ATP | Adenosine triphosphate |
AZF | Azoospermia Factor Region |
Bp | Base pair |
CFTR | Cystic fibrosis transmembrane conductance regulator |
Cys | Cysteine |
DNA | Deoxyribonucleic Acid |
F | Forward primer |
Gln | Glutamine |
Glu | Glutamic acid |
Gly | Glycine |
I | Internal primer |
Ile | Isoleucine |
Leu | Leucine |
Lys | Lysine |
Met | Methionine |
mtDNA | Mitochondrial Deoxyribonucleic Acid |
Mt-ND3 | Mitochondrial NADH dehydrogenase subunit 3 |
Mt-ND4L | Mitochondrial NADH dehydrogenase subunit 4 L |
Mt-ND4 | Mitochondrial NADH dehydrogenase subunit 4 |
NADH | Nicotinamide adenine dinucleotide hydride |
NR5A1 | Nuclear receptor subfamily 5 group A member 1 |
PCR | Polymerase chain reaction |
Pro | Proline |
R | Reverse primer |
ROS | Reactive oxygen species |
SCLB | Somatic cell lysis buffer |
Ser | Serine |
SNP | Single nucleotide polymorphism |
TBE | Tris-borate-EDTA |
Thr | Threonine |
Trp | Tryptophan |
Tyr | Tyrosine |
UV | Ultraviolet |
V | Volt |
Val | Valine |
WHO | World Health Organization |
References
- Barratt, C.L.; Björndahl, L.; De Jonge, C.J.; Lamb, D.J.; Martini, F.O.; McLachlan, R.; Oates, R.D.; van der Poel, S.; John, B.S.; Sigman, M. The diagnosis of male infertility: An analysis of the evidence to support the development of global WHO guidance—Challenges and future research opportunities. Hum. Reprod. Update 2017, 23, 660–680. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Baskaran, S.; Parekh, N.; Cho, C.-L.; Henkel, R.; Vij, S.; Arafa, M.; Selvam, M.K.P.; Shah, R. Male infertility. Lancet 2021, 397, 319–333. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Sharma, A. Male infertility; Evidences, risk factors, causes, diagnosis and management in human. Ann. Clin. Lab. Res. 2017, 5, 188. [Google Scholar] [CrossRef]
- Oud, M.S.; Volozonoka, L.; Smits, R.M.; Vissers, L.E.; Ramos, L.; Veltman, J.A. A systematic review and standardized clinical validity assessment of male infertility genes. Hum. Reprod. 2019, 34, 932–941. [Google Scholar] [CrossRef]
- Katib, A.A.; Al, K.; Motair, W.; Bawa, A.M. Secondary infertility and the aging male, overview. Cent. Eur. J. Urol. 2014, 67, 184. [Google Scholar] [CrossRef]
- Tournaye, H.; Krausz, C.; Oates, R.D. Concepts in diagnosis and therapy for male reproductive impairment. Lancet Diabetes Endocrinol. 2017, 5, 554–564. [Google Scholar] [CrossRef]
- Nowicka-Bauer, K.; Lepczynski, A.; Ozgo, M.; Kamieniczna, M.; Fraczek, M.; Stanski, L.; Olszewska, M.; Malcher, A.; Skrzypczak, W.; Kurpisz, M. Sperm mitochondrial dysfunction and oxidative stress as possible reasons for isolated asthenozoospermia. J. Physiol. Pharmacol. 2018, 69, 403–417. [Google Scholar]
- Tüttelmann, F.; Ruckert, C.; Röpke, A. Disorders of spermatogenesis: Perspectives for novel genetic diagnostics after 20 years of unchanged routine. Med. Genet. 2018, 30, 12–20. [Google Scholar] [CrossRef]
- Darley-Usmar, V. The powerhouse takes control of the cell; the role of mitochondria in signal transduction. Free. Radic. Biol. Med. 2004, 37, 753–754. [Google Scholar] [CrossRef]
- Shamsi, M.B.; Kumar, R.; Bhatt, A.; Bamezai, R.; Kumar, R.; Gupta, N.P.; Das, T.; Dada, R. Mitochondrial DNA mutations in etiopathogenesis of male infertility. Indian J. Urol. 2008, 24, 150–154. [Google Scholar] [CrossRef]
- Alexeyev, M.; Shokolenko, I.; Wilson, G.; LeDoux, S. The maintenance of mitochondrial DNA integrity—Critical analysis and update. Cold Spring Harb. Perspect. Biol. 2013, 5, a012641. [Google Scholar] [CrossRef]
- Baklouti-Gargouri, S.; Ghorbel, M.; Mahmoud, A.B.; Mkaouar-Rebai, E.; Cherif, M.; Chakroun, N.; Sellami, A.; Fakhfakh, F.; Ammar-Keskes, L. Mitochondrial DNA mutations and polymorphisms in asthenospermic infertile men. Mol. Biol. Rep. 2013, 40, 4705–4712. [Google Scholar] [CrossRef]
- Holyoake, A.; McHugh, P.; Wu, M.; O’Carroll, S.; Benny, P.; Sin, I.; Sin, F. High incidence of single nucleotide substitutions in the mitochondrial genome is associated with poor semen parameters in men. Int. J. Androl. 2001, 24, 175–182. [Google Scholar] [CrossRef]
- St John, J.C.; Sakkas, D.; Barratt, C.L. A role for mitochondrial DNA and sperm survival. J. Androl. 2000, 21, 189–199. [Google Scholar] [CrossRef]
- Spiropoulos, J.; Turnbull, D.M.; Chinnery, P.F. Can mitochondrial DNA mutations cause sperm dysfunction? MHR Basic Sci. Reprod. Med. 2002, 8, 719–721. [Google Scholar] [CrossRef]
- Smeitink, J.; van den Heuvel, L.; DiMauro, S. The genetics and pathology of oxidative phosphorylation. Nat. Rev. Genet. 2001, 2, 342–352. [Google Scholar] [CrossRef] [PubMed]
- Karimian, M.; Babaei, F. Large-scale mtDNA deletions as genetic biomarkers for susceptibility to male infertility: A systematic review and meta-analysis. Int. J. Biol. Macromol. 2020, 158, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Kao, S.-H.; Chao, H.-T.; Wei, Y.-H. Multiple deletions of mitochondrial DNA are associated with the decline of motility and fertility of human spermatozoa. Mol. Hum. Reprod. 1998, 4, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Bahrehmand Namaghi, I.; Vaziri, H. Sperm mitochondrial DNA deletion in Iranian infertiles with asthenozoospermia. Andrologia 2017, 49, e12627. [Google Scholar] [CrossRef]
- Ambulkar, P.S.; Chuadhari, A.R.; Pal, A.K. Association of large scale 4977-bp “common” deletions in sperm mitochondrial DNA with asthenozoospermia and oligoasthenoteratozoospermia. J. Hum. Reprod. Sci. 2016, 9, 35–40. [Google Scholar] [CrossRef]
- Ni, F.; Zhou, Y.; Zhang, W.-X.; Wang, X.-M.; Song, X.-M.; Jiang, H. Mitochondrial variations in the MT-ND4 and MT-TL1 genes are associated with male infertility. Syst. Biol. Reprod. Med. 2017, 63, 2–6. [Google Scholar] [CrossRef]
- Wei, B.; Xu, Z.; Ruan, J.; Zhu, M.; Jin, K.; Zhou, D.; Xu, Z.; Hu, Q.; Wang, Q.; Wang, Z. MTHFR 677C> T and 1298A> C polymorphisms and male infertility risk: A meta-analysis. Mol. Biol. Rep. 2012, 39, 1997–2002. [Google Scholar] [CrossRef]
- Cuppens, H.; Cassiman, J.J. CFTR mutations and polymorphisms in male infertility. Int. J. Androl. 2004, 27, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Ferlin, A.; Raicu, F.; Gatta, V.; Zuccarello, D.; Palka, G.; Foresta, C. Male infertility: Role of genetic background. Reprod. Biomed. Online 2007, 14, 734–745. [Google Scholar] [CrossRef] [PubMed]
- Casarini, L.; Santi, D.; Marino, M. Impact of gene polymorphisms of gonadotropins and their receptors on human reproductive success. Reproduction 2015, 150, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Tajima, A.; Kiguchi, M.; Kogusuri, S.; Fujii, A.; Sato, T.; Nozawa, S.; Yoshiike, M.; Mieno, M.; Kojo, K. Genome-wide association study of semen volume, sperm concentration, testis size, and plasma inhibin B levels. J. Hum. Genet. 2020, 65, 683–691. [Google Scholar] [CrossRef]
- Lee, I.-W.; Kuo, P.-H.; Su, M.-T.; Kuan, L.-C.; Hsu, C.-C.; Kuo, P.-L. Quantitative trait analysis suggests polymorphisms of estrogen-related genes regulate human sperm concentrations and motility. Hum. Reprod. 2011, 26, 1585–1596. [Google Scholar] [CrossRef]
- Vertika, S.; Singh, K.K.; Rajender, S. Mitochondria, spermatogenesis, and male infertility—An update. Mitochondrion 2020, 54, 26–40. [Google Scholar] [CrossRef]
- Vahedi Raad, M.; Firouzabadi, A.M.; Niaki, M.T.; Henkel, R.; Fesahat, F. The impact of mitochondrial impairments on sperm function and male fertility: A systematic review. Reprod. Biol. Endocrinol. 2024, 22, 83. [Google Scholar] [CrossRef]
- Park, Y.-J.; Pang, M.-G. Mitochondrial functionality in male fertility: From spermatogenesis to fertilization. Antioxidants 2021, 10, 98. [Google Scholar] [CrossRef]
- Costa, J.; Braga, P.C.; Rebelo, I.; Oliveira, P.F.; Alves, M.G. Mitochondria quality control and male fertility. Biology 2023, 12, 827. [Google Scholar] [CrossRef] [PubMed]
- Meng, K.; Liu, Q.; Qin, Y.; Qin, W.; Zhu, Z.; Sun, L.; Jiang, M.; Adu-Amankwaah, J.; Gao, F.; Tan, R. Mechanism of mitochondrial oxidative phosphorylation disorder in male infertility. Chin. Med. J. 2025, 138, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Falvo, S.; Grillo, G.; Latino, D.; Baccari, G.C.; Di Fiore, M.M.; Venditti, M.; Petito, G.; Santillo, A. Potential role of mitochondria and endoplasmic reticulum in the response elicited by D-aspartate in TM4 Sertoli cells. Front. Cell Dev. Biol. 2024, 12, 1438231. [Google Scholar] [CrossRef]
- Lend, A.K.; Belousova, A.; Haller-Kikkatalo, K.; Punab, M.; Poolamets, O.; Peters, M.; Salumets, A. Follicle-stimulating hormone receptor gene haplotypes and male infertility in estonian population and meta-analysis. Syst. Biol. Reprod. Med. 2010, 56, 84–90. [Google Scholar] [CrossRef]
- Yong, E.; Loy, C.; Sim, K. Androgen receptor gene and male infertility. Hum. Reprod. Update 2003, 9, 1–7. [Google Scholar] [CrossRef]
- Xin, Z.; Han, N.; Jin, H. Correlation analysis of age and MTHFR C677T polymorphism with sperm motility and sperm DNA integrity. Cell. Mol. Biol. 2023, 69, 110–115. [Google Scholar] [CrossRef]
- Liang, H.; Chen, W.; Liu, X.; Han, Y.; Khan, A.; Wang, C.; Khan, M.Z. Genetic polymorphisms in genes associated with mammalian semen quality traits: A review. Agriculture 2024, 14, 2137. [Google Scholar] [CrossRef]
- Loutradis, D.; Theofanakis, C.; Anagnostou, E.; Mavrogianni, D.; Partsinevelos, G.A. Genetic profile of SNP (s) and ovulation induction. Curr. Pharm. Biotechnol. 2012, 13, 417–425. [Google Scholar] [CrossRef]
- McHugh, M.L. The chi-square test of independence. Biochem. Medica 2013, 23, 143–149. [Google Scholar] [CrossRef]
- Agresti, A. Categorical Data Analysis, 3rd ed.; Wiley: Hoboken, NJ, USA, 2013; 752p, ISBN 978-0-470-46363-5. [Google Scholar]
- Bewick, V.; Cheek, L.; Ball, J. Statistics review 8: Qualitative data—Tests of association. Crit. Care 2003, 8, 46. [Google Scholar] [CrossRef]
- Agresti, A.; Kateri, M. Categorical data analysis. In International Encyclopedia of Statistical Science; Lovric, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 206–208. [Google Scholar]
- Johnson, A.; Lewis, J.; Alberts, B. Molecular Biology of the Cell; Garland Science: New York, NY, USA, 2002. [Google Scholar]
- Sousa, D.A.; Porto, W.F.; Silva, M.Z.; Da Silva, T.R.; Franco, O.L. Influence of cysteine and tryptophan substitution on DNA-binding activity on maize α-hairpinin antimicrobial peptide. Molecules 2016, 21, 1062. [Google Scholar] [CrossRef] [PubMed]
- Gunes, S.; Hekim, G.N.T.; Arslan, M.A.; Asci, R. Effects of aging on the male reproductive system. J. Assist. Reprod. Genet. 2016, 33, 441–454. [Google Scholar] [CrossRef] [PubMed]
- Earp, M.A.; Brooks-Wilson, A.; Cook, L.; Le, N. Inherited common variants in mitochondrial DNA and invasive serous epithelial ovarian cancer risk. BMC Res. Notes 2013, 6, 425. [Google Scholar] [CrossRef] [PubMed]
- Abrantes, P.; Rosa, A.; Francisco, V.; Sousa, I.; Xavier, J.M.; Oliveira, S.A. Mitochondrial genome association study with peripheral arterial disease and venous thromboembolism. Atherosclerosis 2016, 252, 97–105. [Google Scholar] [CrossRef]
- Pan, L.; Liu, Q.; Li, J.; Wu, W.; Wang, X.; Zhao, D.; Ma, J. Association of the VDAC3 gene polymorphism with sperm count in Han-Chinese population with idiopathic male infertility. Oncotarget 2017, 8, 45242. [Google Scholar] [CrossRef]
- Yan, C.; Duanmu, X.; Zeng, L.; Liu, B.; Song, Z. Mitochondrial DNA: Distribution, mutations, and elimination. Cells 2019, 8, 379. [Google Scholar] [CrossRef]
- Cañadas-Garre, M.; Maqueda, J.J.; Baños-Jaime, B.; Hill, C.; Skelly, R.; Cappa, R.; Brennan, E.; Doyle, R.; Godson, C.; Maxwell, A.P. Mitochondrial related variants associated with cardiovascular traits. Front. Physiol. 2024, 15, 1395371. [Google Scholar] [CrossRef]
- Pezzotti, A.; Kraft, P.; Hankinson, S.E.; Hunter, D.J.; Buring, J.; Cox, D.G. The mitochondrial A10398G polymorphism, interaction with alcohol consumption, and breast cancer risk. PLoS ONE 2009, 4, e5356. [Google Scholar] [CrossRef]
- Krausz, C.; Riera-Escamilla, A.; Moreno-Mendoza, D.; Holleman, K.; Cioppi, F.; Algaba, F.; Pybus, M.; Friedrich, C.; Wyrwoll, M.J.; Casamonti, E. Genetic dissection of spermatogenic arrest through exome analysis: Clinical implications for the management of azoospermic men. Genet. Med. 2020, 22, 1956–1966. [Google Scholar] [CrossRef]
- Al-Turki, H.A. Prevalence of primary and secondary infertility from tertiary center in eastern Saudi Arabia. Middle East Fertil. Soc. J. 2015, 20, 237–240. [Google Scholar] [CrossRef]
SNPs (ND4) | Genotype | Infertility | Total | p Value | |
---|---|---|---|---|---|
Primary | Secondary | ||||
rs2853495 | AA | 29 (62%) | 14 (74%) | 43 (65%) | 0.355 |
GG | 18 (38%) | 5 (26%) | 23 (35%) | ||
rs2857284 | CC | 13 (28%) | 4 (21%) | 17 (26%) | 0.708 |
TC | 1 (2%) | 1 (5%) | 2 (3%) | ||
TT | 33 (70%) | 14 (74%) | 47 (71%) | ||
rs2853496 | AA | 5 (11%) | 3 (16%) | 8 (12%) | 0.260 |
AC | 0 (0%) | 1 (5%) | 1 (2%) | ||
GA | 3 (6%) | 0 (0%) | 3 (4%) | ||
GG | 39 (81%) | 15 (79%) | 54 (82%) | ||
rs2853497 | AA | 1 (2%) | 1 (5%) | 2 (3%) | 0.255 |
GA | 1 (2%) | 2 (11%) | 3 (5%) | ||
GG | 45 (96%) | 16 (84%) | 61 (92%) | ||
rs3087901 | CC | 4 (9%) | 1 (5%) | 5 (8%) | 0.652 |
TT | 43 (91%) | 18 (95%) | 61 (92%) | ||
rs2853493 | AA | 45 (96%) | 19 (100%) | 64 (97%) | 0.361 |
GG | 2 (4%) | 0 (0%) | 2 (3%) | ||
rs2853490 | AA | 1 (2%) | 1 (5%) | 2 (3%) | 0.501 |
GG | 46 (98%) | 18 (95%) | 64 (97%) | ||
rs3088053 | AA | 45 (96%) | 17 (89%) | 62 (94%) | 0.334 |
GG | 2 (4%) | 2 (11%) | 4 (6%) | ||
rs2853491 | CC | 46 (98%) | 18 (95%) | 64 (97%) | 0.501 |
TT | 1 (2%) | 1 (5%) | 2 (3%) | ||
rs2857285 | CC | 0 (0%) | 2 (11%) | 2 (3%) | 0.023 |
TT | 47 (100%) | 17 (89%) | 64 (97%) | ||
rs28358282 | TC | 0 (0%) | 1 (5%) | 1 (2%) | 0.113 |
TT | 47 (100%) | 18 (95%) | 65 (98%) | ||
rs28594904 | AA | 1 (2%) | 0 (0%) | 1 (2%) | 0.522 |
GG | 46 (98%) | 19 (100%) | 65 (98%) | ||
rs28669780 | AA | 1 (2%) | 0 (0%) | 1 (2%) | 0.522 |
CC | 46 (98%) | 19 (100%) | 65 (98%) | ||
rs28415973 | CC | 0 (0%) | 1 (5%) | 1 (2%) | 0.113 |
TT | 47 (100%) | 18 (95%) | 65 (98%) | ||
rs28471078 | CC | 1 (2%) | 0 (0%) | 1 (2%) | 0.522 |
TT | 46 (98%) | 19 (100%) | 65 (98%) | ||
rs55714831 | CC | 46 (98%) | 19 (100%) | 65 (98%) | 0.522 |
CT | 1 (2%) | 0 (0%) | 1 (2%) | ||
rs28358283 | AA | 46 (98%) | 19 (100%) | 65 (98%) | 0.522 |
GG | 1 (2%) | 0 (0%) | 1 (2%) | ||
rs75214962 | CC | 47 (100%) | 18 (95%) | 65 (98%) | 0.113 |
TT | 0 (0%) | 1 (5%) | 1 (2%) | ||
rs28529320 | TT | 47 (100%) | 19 (100%) | 66 (100%) | NA |
rs2853494 | AA | 47 (100%) | 19 (100%) | 66 (100%) | NA |
rs28609979 | TT | 47 (100%) | 19 (100%) | 66 (100%) | NA |
28358286 | CC | 47 (100%) | 19 (100%) | 66 (100%) | NA |
rs28359168 | AA | 47 (100%) | 19 (100%) | 66 (100%) | NA |
28384199 | CC | 46 (98%) | 19 (100%) | 65 (98%) | 0.522 |
GG | 1 (2%) | 0 (0%) | 1 (2%) | ||
rs3915952 Merged to rs869096886 | AA | 39 (83%) | 11 (58%) | 50 (75%) | 0.051 |
AG | 1 (2%) | 0 (0%) | 1 (2%) | ||
GG | 7 (15%) | 8 (42%) | 15 (23%) |
SNP (ND4L) | Genotype | Infertility | Total | p Value | |
---|---|---|---|---|---|
Primary | Secondary | ||||
rs28358280 | AA | 45 (100%) | 17 (94%) | 62 (98%) | 0.111 |
GG | 0 (0%) | 1 (6%) | 1 (2%) | ||
rs28358281 | AA | 2 (4%) | 2 (11%) | 4 (6%) | 0.474 |
GA | 1 (2%) | 1 (6%) | 2 (3%) | ||
GG | 42 (94%) | 15 (83%) | 57 (90%) | ||
rs28358279 | CC | 1 (2%) | 3 (17%) | 4 (6%) | 0.046 |
TT | 44 (98%) | 15 (83%) | 59 (94%) | ||
rs2853487 | AA | 1 (2%) | 1 (6%) | 2 (3%) | 0.495 |
GG | 44 (98%) | 17 (94%) | 61 (97%) | ||
rs2853488 | GA | 1 (2%) | 1 (6%) | 2 (3%) | 0.495 |
GG | 44 (98%) | 17 (94%) | 61 (97%) | ||
rs2854121 (has merged into rs193302933) | CC | 45 (100%) | 18 (100%) | 63 (100%) | NA |
rs28532881 | CC | 45 (100%) | 18 (100%) | 63 (100%) | NA |
SNPs (ND3) | Genotype | Infertility | Total | p Value | |
---|---|---|---|---|---|
Primary | Secondary | ||||
rs2853826 | AA | 27 (55%) | 10 (53%) | 37 (54%) | 0.270 |
AG | 0 (0%) | 1 (5%) | 1 (2%) | ||
GG | 22 (45%) | 8 (42%) | 30 (44%) | ||
rs28435660 | AA | 1 (2%) | 2 (11%) | 3 (4%) | 0.151 |
GA | 4 (8%) | 0 (0%) | 4 (6%) | ||
GG | 44 (90%) | 17 (89%) | 61 (90%) | ||
rs28358275 (has merged into rs193302927) | CC | 2 (4%) | 2 (11%) | 4 (6%) | 0.451 |
TC | 1 (2%) | 1 (5%) | 2 (3%) | ||
TT | 46 (94%) | 16 (84%) | 62 (91%) | ||
rs28358278 | CC | 46 (94%) | 19 (100%) | 65 (96%) | 0.270 |
TT | 3 (6%) | 0 (0%) | 3 (4%) | ||
rs41467651 | AA | 2 (4%) | 0 (0%) | 2 (3%) | 0.187 |
GA | 0 (0%) | 1 (5%) | 1 (1%) | ||
GG | 47 (96%) | 18 (95%) | 65 (96%) | ||
rs3899188 | CC | 1 (2%) | 0 (0%) | 1 (1%) | 0.530 |
TT | 48 (98%) | 19 (100%) | 67 (99%) | ||
rs28358277 | AA | 1 (2%) | 0 (0%) | 1 (1%) | 0.225 |
GA | 0 (0%) | 1 (5%) | 1 (1%) | ||
GG | 48 (98%) | 18 (95%) | 66 (98%) | ||
rs28673954 | TC | 0 (0%) | 1 (5%) | 1 (1%) | 0.106 |
TT | 49 (100%) | 18 (95%) | 67 (99%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahadhah, F.W.; Odeh, M.; Ali, H.A.; Alzyoud, J.A.M.; Abu Alarjah, M.I. Exploring Single-Nucleotide Polymorphisms in Primary and Secondary Male Infertility. Med. Sci. 2025, 13, 109. https://doi.org/10.3390/medsci13030109
Dahadhah FW, Odeh M, Ali HA, Alzyoud JAM, Abu Alarjah MI. Exploring Single-Nucleotide Polymorphisms in Primary and Secondary Male Infertility. Medical Sciences. 2025; 13(3):109. https://doi.org/10.3390/medsci13030109
Chicago/Turabian StyleDahadhah, Fatina W., Mohanad Odeh, Heba A. Ali, Jihad A. M. Alzyoud, and Manal Issam Abu Alarjah. 2025. "Exploring Single-Nucleotide Polymorphisms in Primary and Secondary Male Infertility" Medical Sciences 13, no. 3: 109. https://doi.org/10.3390/medsci13030109
APA StyleDahadhah, F. W., Odeh, M., Ali, H. A., Alzyoud, J. A. M., & Abu Alarjah, M. I. (2025). Exploring Single-Nucleotide Polymorphisms in Primary and Secondary Male Infertility. Medical Sciences, 13(3), 109. https://doi.org/10.3390/medsci13030109