ZnO-Assisted Synthesis of Rouaite (Cu2(OH)3NO3) Long Hexagonal Multilayered Nanoplates Towards Catalytic Wet Peroxide Oxidation Application
Abstract
1. Introduction
2. Experimental Details
2.1. Chemicals and Materials
2.2. Preparation of Rouaite Long Hexagonal Multilayered Nanoplates
2.3. Instrumentation and Characterizations
2.4. Catalytic Assessments
3. Results and Discussion
3.1. Synthesis and Characterization of Rouaite Long Hexagonal Multilayered Nanoplates
3.2. Catalytic Wet Peroxide Oxidation of Congo Red over Rouaite Nanoplates
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Y.L.; Ai, J.F.; Chen, Z.C.; Wang, H.L.; Zhu, Z.H.; Liang, F.P.; Zou, H.H. Multiple Strategies Enhance the ROS of Metal–Organic Frameworks for Energy-Efficient Photocatalytic Water Purification and Sterilization. ACS Mater. Lett. 2023, 5, 1317–1331. [Google Scholar] [CrossRef]
- Ahmad, I.; Aftab, M.A.; Fatima, A.; Mekkey, S.D.; Melhi, S.; Ikram, S. A comprehensive review on the advancement of transition metals incorporated on functional magnetic nanocomposites for the catalytic reduction and photocatalytic degradation of organic pollutants. Coord. Chem. Rev. 2024, 514, 215904. [Google Scholar] [CrossRef]
- Schwarzenbach, R.P.; Escher, B.I.; Fenner, K.; Hofstetter, T.B.; Johnson, C.A.; von Gunten, U.; Wehrli, B. The Challenge of Micropollutants in Aquatic Systems. Science 2006, 313, 1072–1077. [Google Scholar] [CrossRef]
- Chung, K.T. Azo Dyes and Human Health: A Review. J. Environ. Sci. Health Part C 2016, 34, 233–261. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Han, X.G.; Men, X.; Oh, G.; Choi, S.I.; Lee, O.H. Improvement of analytical method for three azo dyes in processed milk and cheese using HPLC-PDA. Food Chem. X 2023, 18, 100713. [Google Scholar] [CrossRef]
- Joshy, D.; Chakko, S.; Ismail, Y.A.; Periyat, P. Surface basicity mediated rapid and selective adsorptive removal of Congo red over nanocrystalline mesoporous CeO2. Nanoscale Adv. 2021, 3, 6704–6718. [Google Scholar] [CrossRef]
- Castillo-Cervantes, J.N.; Gómora-Herrera, D.R.; Navarrete-Bolaños, J.; Likhanova, N.V.; Olivares-Xometl, O.; Lijanova, I.V. A complete in-situ analysis of UV–vis and 2D-FTIR spectra of the molecular interaction between RO16 (azo dye) and synthesized ammonium-based ionic liquids. Sep. Purif. Technol. 2021, 254, 117652. [Google Scholar] [CrossRef]
- Gu, S.G.; Ma, Y.; Zhang, T.; Yang, Y.T.; Xu, Y.L.; Li, J. MXene Nanosheet Tailored Bioinspired Modification of a Nanofiltration Membrane for Dye/Salt Separation. ACS EST Water 2023, 3, 1756–1766. [Google Scholar] [CrossRef]
- Jia, Y.H.; Ding, L.; Ren, P.Y.; Zhong, M.Y.; Ma, J.Y.; Fan, X.R. Performances and Mechanism of Methyl Orange and Congo Red Adsorbed on the Magnetic Ion-Exchange Resin. J. Chem. Eng. Data 2020, 65, 725–736. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W.S.; Thomaidis, N.S.; Xu, J. Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review. J. Hazard. Mater. 2017, 323, 274–298. [Google Scholar] [CrossRef]
- Yang, Z.Z.; Zhang, C.; Zeng, G.M.; Tan, X.F.; Wang, H.; Huang, D.L.; Yang, K.H.; Wei, J.J.; Ma, C.; Nie, K. Design and engineering of layered double hydroxide based catalysts for water depollution by advanced oxidation processes: A review. J. Mater. Chem. A 2020, 8, 4141–4173. [Google Scholar] [CrossRef]
- Zhong, H.; Qin, Q.; Wang, Z.; Zhang, H.; Qiu, Y.; Yin, D.; Liu, X.; Zhu, Z. Insight into Peroxymonosulfate Activation Catalyzed by Fe/Mn Bimetallic-Loaded In Situ Nitrogen-Doped Biochar: The Critical Role of Singlet Oxygen and Superoxide Radicals. Langmuir 2025, 41, 7089–7100. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Zhang, Y.; Xu, X.; Chen, J. Construction of Mo-Based p-n Heterojunction with Enhanced Oxidase-Mimic Activity for AOPs and Antibiofouling. Inorg. Chem. 2023, 62, 14773–14781. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.P.; Liu, Y.; Zhang, H.Y.; Duan, X.G.; Ma, J.; Sun, H.Q.; Tian, W.J.; Wang, S.B. Carbonaceous materials in structural dimensions for advanced oxidation processes. Chem. Soc. Rev. 2025, 54, 2436–2482. [Google Scholar] [CrossRef]
- Guo, J.R.; Gao, B.Y.; Li, Q.; Wang, S.B.; Shang, Y.N.; Duan, X.G.; Xu, X. Size-Dependent Catalysis in Fenton-like Chemistry: From Nanoparticles to Single Atoms. Adv. Mater. 2024, 36, 2403965. [Google Scholar] [CrossRef]
- Wang, Y.H.; Sun, Y.L.; Wang, R.Y.; Gao, M.C.; Xin, Y.J.; Zhang, G.S.; Xu, P.; Ma, D. Activation of peroxymonosulfate with cobalt embedded in layered δ-MnO2 for degradation of dimethyl phthalate: Mechanisms, degradation pathway, and DFT calculation. J. Hazard. Mater. 2023, 451, 130901. [Google Scholar] [CrossRef]
- Kim, J.; Song, O.; Cho, Y.S.; Jung, M.; Rhee, D.; Kang, J. Revisiting Solution-Based Processing of van der Waals Layered Materials for Electronics. ACS Mater. Au 2022, 2, 382–393. [Google Scholar] [CrossRef]
- Yuan, S.G.; Pang, S.Y.; Hao, J.H. 2D Transition Metal Dichalcogenides, Carbides, Nitrides, and Their Applications in Supercapacitors and Electrocatalytic Hydrogen Evolution Reaction. Appl. Phys. Rev. 2020, 7, 021304. [Google Scholar] [CrossRef]
- Cao, Y.H.; Li, B.; Zhong, G.Y.; Li, Y.H.; Wang, H.J.; Yu, H.; Peng, F. Catalytic wet air oxidation of phenol over carbon nanotubes: Synergistic effect of carboxyl groups and edge carbons. Carbon 2018, 133, 464–473. [Google Scholar] [CrossRef]
- Khan, Z.U.H.; Gul, N.S.; Sabahat, S.; Sun, J.Y.; Tahir, K.; Shah, N.S.; Muhammad, N.; Rahim, A.; Imran, M.; Iqbal, J.; et al. Removal of organic pollutants through hydroxyl radical-based advanced oxidation processes. Ecotox. Environ. Safe 2023, 267, 115564. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.Y.; Xu, L.C.; Fu, K.X.; Liu, X.; Wang, S.L.; Wu, M.H.; Lu, W.Y.; Lv, C.Y.; Luo, J.M. Electronic structure modulation of iron sites with fluorine coordination enables ultra-effective H2O2 activation. Nat. Commun. 2024, 15, 2241. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.M.; Wei, H.Z.; Zhao, Y.; Sun, W.J.; Sun, C.L. Low temperature modified sludge-derived carbon catalysts for efficient catalytic wet peroxide oxidation of m-cresol. Green Chem. 2017, 19, 1362–1370. [Google Scholar] [CrossRef]
- Ou, X.X.; Pilitsis, F.; Xu, N.H.; Taylor, S.F.R.; Warren, J.; Garforth, A.; Zhang, J.S.; Hardacre, C.; Jiao, Y.L.; Fan, X.L. On developing ferrisilicate catalysts supported on silicon carbide (SiC) foam catalysts for continuous catalytic wet peroxide oxidation (CWPO) reactions. Catal. Today 2020, 356, 631–640. [Google Scholar] [CrossRef]
- Choi, H.; Yanagita, M.; Teramoto, Y.; Takano, T. Preparation of hemin-bound chitosan flakes and their dye decolorizing ability. Int. J. Biol. Macromol. 2025, 307, 141952. [Google Scholar] [CrossRef]
- El-Eswed, B.; Albawarshi, Y. Utilization of encapsulating, anti-oxidizing, and green capping features of metakaolin based geopolymers for Mn, Cr and Co salts in catalytic degradation of dyes. Appl. Clay Sci. 2025, 267, 107721. [Google Scholar] [CrossRef]
- El-Eswed, B.; Dawoud, J.N.; Albawarshi, Y.; Esaifan, M. The role of surface hydroperoxyl copper (I) in degradation of Congo red pollutant using copper oxide composites. Int. J. Environ. Sci. Technol. 2024, 22, 9245–9260. [Google Scholar] [CrossRef]
- Bruziquesi, C.G.O.; Filho, J.B.G.; Mansur, H.S.; Chagas, P.; Mansur, A.A.P.; Oliveira, L.C.A.; Silva, A.C. New Niobate Based Catalyst for Organic Dye Oxidation: A Mechanistic Approach. Water Air Soil Pollut. 2024, 235, 679. [Google Scholar] [CrossRef]
- Zhan, Y.Z.; Zhou, X.; Fu, B.; Chen, Y.L. Catalytic wet peroxide oxidation of azo dye (Direct Blue 15) using solvothermally synthesized copper hydroxide nitrate as catalyst. J. Hazard. Mater. 2011, 187, 348–354. [Google Scholar] [CrossRef]
- Han, J.; Zeng, H.Y.; Xu, S.; Chen, C.R.; Liu, X.J. Catalytic properties of CuMgAlO catalyst and degradation mechanism in CWPO of methyl orange. Appl. Catal. A Gen. 2016, 527, 72–80. [Google Scholar] [CrossRef]
- Xiao, X.Z.; Dai, T.T.; Guo, J.; Wu, J.H. Flowerlike Brochantite Nanoplate Superstructures for Catalytic Wet Peroxide Oxidation of Congo Red. ACS Appl. Nano Mater. 2019, 2, 4159–4168. [Google Scholar] [CrossRef]
- Munoz, M.; Domínguez, P.; de Pedro, Z.M.; Casas, J.A.; Rodriguez, J.J. Naturally-occurring iron minerals as inexpensive catalysts for CWPO. Appl. Catal. B Environ. 2017, 203, 166–173. [Google Scholar] [CrossRef]
- Ribeiro, R.S.; Frontistis, Z.; Mantzavinos, D.; Venieri, D.; Antonopoulou, M.; Konstantinou, I.; Silva, A.M.T.; Faria, J.L.; Gomes, H.T. Magnetic carbon xerogels for the catalytic wet peroxide oxidation of sulfamethoxazole in environmentally relevant water matrices. Appl. Catal. B Environ. 2016, 199, 170–186. [Google Scholar] [CrossRef]
- Henrist, C.; Traina, K.; Hubert, C.; Toussaint, G.; Rulmont, A.; Cloots, R. Study of the Morphology of Copper Hydroxynitrate Nanoplatelets Obtained by Controlled Double Jet Precipitation and Urea Hydrolysis. J. Cryst. Growth 2003, 254, 176–187. [Google Scholar] [CrossRef]
- Newman, S.P.; Jones, W. Comparative study of some layered hydroxide salts containing exchangeable interlayer anions. J. Solid State Chem. 1999, 148, 26–40. [Google Scholar] [CrossRef]
- Pendashteh, A.; Rahmanifar, M.S.; Mousavi, M.F. Morphologically controlled preparation of CuO nanostructures under ultrasound irradiation and their evaluation as pseudocapacitor materials. Ultrason. Sonochem. 2014, 21, 643–652. [Google Scholar] [CrossRef] [PubMed]
- Guillou, N.; Louër, M.; Louër, D. An X-Ray and Neutron Powder Diffraction Study of a New Polymorphic Phase of Copper Hydroxide Nitrate. J. Solid State Chem. 1994, 109, 307–314. [Google Scholar] [CrossRef]
- Heinhold, R.; Williams, G.T.; Cooil, S.P.; Evans, D.A.; Allen, M.W. Influence of polarity and hydroxyl termination on the band bending at ZnO surfaces. Phys. Rev. B 2013, 88, 235315. [Google Scholar] [CrossRef]
- Liu, B. One-Dimensional Copper Hydroxide Nitrate Nanorods and Nanobelts for Radiochemical Applications. Nanoscale 2012, 4, 7194–7198. [Google Scholar] [CrossRef]
- Yu, Q.; Huang, H.W.; Chen, R.; Wang, P.; Yang, H.S.; Gao, M.X.; Peng, X.S.; Ye, Z.Z. Synthesis of CuO Nanowalnuts and Nanoribbons from Aqueous Solution and Their Catalytic and Electrochemical Properties. Nanoscale 2012, 4, 2613–2620. [Google Scholar] [CrossRef]
- Huang, K.; Wang, J.J.; Wu, D.F.; Lin, S. Copper Hydroxyl Sulfate as a Heterogeneous Catalyst for the Catalytic Wet Peroxide Oxidation of Phenol. RSC Adv. 2015, 5, 8455–8462. [Google Scholar] [CrossRef]
- Frost, R.L.; Leverett, P.; Williams, P.A.; Weier, M.L.; Erickson, K.L. Raman Spectroscopy of Gerhardtite at 298 and 77 K. J. Raman Spectrosc. 2004, 35, 991–996. [Google Scholar] [CrossRef]
- Hu, Z.M.; Xiao, X.; Jin, H.Y.; Li, T.Q.; Chen, M.; Liang, Z.; Guo, Z.F.; Li, J.; Wan, J.; Huang, L.; et al. Rapid mass production of two-dimensional metal oxides and hydroxides via the molten salts method. Nat. Commun. 2017, 8, 15630. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898. [Google Scholar] [CrossRef]
- Galeano, L.A.; Gil, A.; Vicente, M.A. Strategies for immobilization of manganese on expanded natural clays: Catalytic activity in the CWPO of methyl orange. Appl. Catal. B Environ. 2011, 104, 252–260. [Google Scholar] [CrossRef]
- Kim, H.; Gang, B.; Jung, H.; Byeon, S.H. Cinnamate Intercalated-Layered Yttrium Hydroxide: A Potential Hybrid UV Filter. J. Solid State Chem. 2019, 269, 233–238. [Google Scholar] [CrossRef]
- Yang, J.H.; Han, Y.S.; Park, M.P.T.; Hwang, S.J.; Choy, J.H. New Inorganic-Based Drug Delivery System of Indole-3-Acetic Acid-Layered Metal Hydroxide Nanohybrids with Controlled Release Rate. Chem. Mater. 2007, 19, 2679–2685. [Google Scholar] [CrossRef]
- Solano, A.M.S.; Garcia-Segura, S.; Martínez-Huitle, C.A.; Brillas, E. Degradation of acidic aqueous solutions of the diazo dye Congo Red by photo-assisted electrochemical processes based on Fenton’s reaction chemistry. Appl. Catal. B Environ. 2015, 168–169, 559–571. [Google Scholar] [CrossRef]
- Granato, T.; Katovic, A.; Maduna Valkaj, K.; Tagarelli, A.; Giordano, G. Cu-silicalite-1 catalyst for the wet hydrogen peroxide oxidation of phenol. J. Porous Mater. 2009, 16, 227–232. [Google Scholar] [CrossRef]
- Wang, L.S.; Kumeria, T.; Santos, A.; Forward, P.; Lambert, M.F.; Losic, D. Iron Oxide Nanowires from Bacteria Biofilm as An Efficient Visible-Light Magnetic Photocatalyst. ACS Appl. Mater. Interfaces 2016, 8, 20110–20119. [Google Scholar] [CrossRef]
- Mi, L.W.; Wei, W.T.; Zheng, Z.; Gao, Y.; Liu, Y.; Chen, W.H.; Guan, X.X. Tunable properties induced by ion exchange in multilayer intertwined CuS microflowers with hierarchal structures. Nanoscale 2013, 5, 6589–6598. [Google Scholar] [CrossRef] [PubMed]
- Yuan, G.G.; Zhang, G.Q.; Zhou, Y.F.; Yang, F.L. Synergetic adsorption and catalytic oxidation performance originating from leafy graphite nanosheet anchored iron(ii) phthalocyanine nanorods for efficient organic dye degradation. RSC Adv. 2015, 5, 26132–26140. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, G.Y.; Guo, J.; Wu, J.H. ZnO-Assisted Synthesis of Rouaite (Cu2(OH)3NO3) Long Hexagonal Multilayered Nanoplates Towards Catalytic Wet Peroxide Oxidation Application. Crystals 2025, 15, 710. https://doi.org/10.3390/cryst15080710
Zhou GY, Guo J, Wu JH. ZnO-Assisted Synthesis of Rouaite (Cu2(OH)3NO3) Long Hexagonal Multilayered Nanoplates Towards Catalytic Wet Peroxide Oxidation Application. Crystals. 2025; 15(8):710. https://doi.org/10.3390/cryst15080710
Chicago/Turabian StyleZhou, Guang Yao, Jun Guo, and Ji Hong Wu. 2025. "ZnO-Assisted Synthesis of Rouaite (Cu2(OH)3NO3) Long Hexagonal Multilayered Nanoplates Towards Catalytic Wet Peroxide Oxidation Application" Crystals 15, no. 8: 710. https://doi.org/10.3390/cryst15080710
APA StyleZhou, G. Y., Guo, J., & Wu, J. H. (2025). ZnO-Assisted Synthesis of Rouaite (Cu2(OH)3NO3) Long Hexagonal Multilayered Nanoplates Towards Catalytic Wet Peroxide Oxidation Application. Crystals, 15(8), 710. https://doi.org/10.3390/cryst15080710