Structural Analyses and Designs for Flexible/Stretchable Electronics, 3rd Edition

A special issue of Micromachines (ISSN 2072-666X). This special issue belongs to the section "A:Physics".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 3610

Special Issue Editor


E-Mail Website
Guest Editor
Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
Interests: flexible and stretchable electronics; bioelectronic implants; thin films; transfer printing; mechanics of soft matter
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Flexible and stretchable electronics represent a class of promising technology that involves stretchable/bendable/twistable components such that unprecedented properties are achieved over conventional rigid/brittle semiconductor-based electronics. Wide applications of flexible and stretchable electronics have been explored to yield many emerging devices such as flexible displays, conformable sensors, epidermal electronics and implantable transient electronics for daily-use or healthcare purposes. Rapid development in the field has attracted much interest in modeling, design and fabrication of relevant materials, structures, components and devices.

This special issue seeks for contributions on different aspects of flexible and stretchable electronics, with focus on mechanical analyses and structural designs toward various component-level or device-level applications. Research papers and review articles are both welcome. The topics include, but are not limited to:

  • Mechanical analysis methods of flexible/stretchable electronics on either device-level or component-level;
  • Structural optimization and design theories toward providing better related performance;
  • Experimental studies on various properties of flexible/stretchable electronics;
  • Novel flexible/stretchable structures with extraordinary mechanical or electrical properties;
  • Designs of materials, structures, and components for special application scenarios, such as bioelectronics and implantable electronics.

Prof. Dr. Rui Li
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Micromachines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • flexible electronics
  • stretchable electronics
  • wearable electronics
  • bioelectronics
  • implantable electronics
  • flexible/stretchable electronic materials
  • flexible/stretchable electronic structures
  • flexible/stretchable electronic components
  • structural analyses
  • structural designs
  • structural optimization

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

12 pages, 2219 KiB  
Article
Buckling Behavior Analysis of Kirigami Structure Under Tension
by Pengzhong Dai, Ziqi Li, Xiaoyang Zhang and Qingmin Yu
Micromachines 2024, 15(11), 1398; https://doi.org/10.3390/mi15111398 - 20 Nov 2024
Cited by 1 | Viewed by 957
Abstract
Flexible electronic technology has attracted great interest, where rigid and brittle semiconductor materials can withstand large deformation. In order to improve the stretchability of devices, many novel structures have been designed, such as the classical “wavy” structure, the island-bridge structure, and origami structures [...] Read more.
Flexible electronic technology has attracted great interest, where rigid and brittle semiconductor materials can withstand large deformation. In order to improve the stretchability of devices, many novel structures have been designed, such as the classical “wavy” structure, the island-bridge structure, and origami structures that achieve stretchability through creases. However, the stretchability of these structures is still not large enough. Inspired by traditional kirigami, the stretchability of devices is achieved by making various periodic cuts in the substrate while the devices are placed in the area around the cuts. The previous research mainly focused on the change in the electrical properties of the structure during the deformation process, and there were few studies on the mechanical mechanisms. Therefore, this paper studies the buckling behavior of the kirigami structure when the substrate is stretched, and its mechanism can provide guidance for practical applications. Full article
Show Figures

Figure 1

12 pages, 5376 KiB  
Article
A Self-Compensating Non-Intrusive Ring-Type AC Voltage Sensor Based on Capacitive Coupling
by Junpeng Wang, Jiacheng Li, Chunrong Peng, Zhengwei Wu, Dengfeng Ju and Qiang Zhang
Micromachines 2024, 15(11), 1314; https://doi.org/10.3390/mi15111314 - 29 Oct 2024
Viewed by 1047
Abstract
In order to reduce the influence of coupling capacitance variations on cable voltage measurement, this paper proposes a self-compensating non-intrusive ring-type AC voltage sensor based on capacitive coupling. A theoretical model of the sensor was established, and the influence of parasitic capacitance changes [...] Read more.
In order to reduce the influence of coupling capacitance variations on cable voltage measurement, this paper proposes a self-compensating non-intrusive ring-type AC voltage sensor based on capacitive coupling. A theoretical model of the sensor was established, and the influence of parasitic capacitance changes on sensor output was analyzed. Furthermore, a theoretical analysis shows that the parasitic capacitance between the external cable and the sensing probe, as well as between the ground and the sensing probe, will significantly affect the sensitivity of the sensor and increases the measurement error. A ring-type inductive probe and a signal processing circuit were designed, incorporating a reference signal to compensate for the influence of coupling capacitance variations. Additionally, to minimize the impact of parasitic capacitance on sensor output, the length of the outer ring electrode was extended, and a PTFE housing was designed for protection. A prototype of the sensor was developed and tested. This prototype has a good linear response to AC voltage in the measurement range of 0–1000 V with a linearity of 0.86%. The effects of changes in cable diameter and cable position on the measurement were tested separately. The worst-case error of the sensor output is less than 6.44%, representing a reduction of 21.4% compared to the uncompensated case. Under external cable interference, the sensor exhibited an output error of less than 1.85%. The results show that the designed sensor can accurately measure cable voltage despite changes in cable diameter or installation position, and also demonstrates effective shielding against external interference. Full article
Show Figures

Figure 1

Review

Jump to: Research

32 pages, 17993 KiB  
Review
Design, Fabrication, and Application of Large-Area Flexible Pressure and Strain Sensor Arrays: A Review
by Xikuan Zhang, Jin Chai, Yongfu Zhan, Danfeng Cui, Xin Wang and Libo Gao
Micromachines 2025, 16(3), 330; https://doi.org/10.3390/mi16030330 - 12 Mar 2025
Viewed by 1212
Abstract
The rapid development of flexible sensor technology has made flexible sensor arrays a key research area in various applications due to their exceptional flexibility, wearability, and large-area-sensing capabilities. These arrays can precisely monitor physical parameters like pressure and strain in complex environments, making [...] Read more.
The rapid development of flexible sensor technology has made flexible sensor arrays a key research area in various applications due to their exceptional flexibility, wearability, and large-area-sensing capabilities. These arrays can precisely monitor physical parameters like pressure and strain in complex environments, making them highly beneficial for sectors such as smart wearables, robotic tactile sensing, health monitoring, and flexible electronics. This paper reviews the fabrication processes, operational principles, and common materials used in flexible sensors, explores the application of different materials, and outlines two conventional preparation methods. It also presents real-world examples of large-area pressure and strain sensor arrays. Fabrication techniques include 3D printing, screen printing, laser etching, magnetron sputtering, and molding, each influencing sensor performance in different ways. Flexible sensors typically operate based on resistive and capacitive mechanisms, with their structural designs (e.g., sandwich and fork-finger) affecting integration, recovery, and processing complexity. The careful selection of materials—especially substrates, electrodes, and sensing materials—is crucial for sensor efficacy. Despite significant progress in design and application, challenges remain, particularly in mass production, wireless integration, real-time data processing, and long-term stability. To improve mass production feasibility, optimizing fabrication processes, reducing material costs, and incorporating automated production lines are essential for scalability and defect reduction. For wireless integration, enhancing energy efficiency through low-power communication protocols and addressing signal interference and stability are critical for seamless operation. Real-time data processing requires innovative solutions such as edge computing and machine learning algorithms, ensuring low-latency, high-accuracy data interpretation while preserving the flexibility of sensor arrays. Finally, ensuring long-term stability and environmental adaptability demands new materials and protective coatings to withstand harsh conditions. Ongoing research and development are crucial to overcoming these challenges, ensuring that flexible sensor arrays meet the needs of diverse applications while remaining cost-effective and reliable. Full article
Show Figures

Figure 1

Back to TopTop