Impact of Autoclaving on the Dimensional Stability of 3D-Printed Surgical Guides for Aesthetic Crown Lengthening
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Trueness and Precision Analysis
3.2. Axis Deviations at the Zenith Point
3.3. Area Variation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SG | Surgical guide |
ACL | Aesthetic crown lengthening |
CAD/CAM | Computer-aided design and computer-aided manufacturing |
SM | Subtractive method |
AM | Additive method |
APE | Altered passive eruption |
SLA | Stereolithography |
DLP | Digital light processing |
LCD | Liquid crystal display |
CLIP | Continuous liquid interface production |
CBCT | Cone beam computerized tomography |
DICOM | Digital imaging and communication in medicine |
STL | Standard Tessellation Language |
ROI | Region of interest |
SD | Standard deviation |
RMS | Root mean square |
Appendix A
Group | Composition | % | CAS Nº |
---|---|---|---|
FL | BIS-EMA (Poly(oxy-1,2-ethanediyl), α,α’-[(1-methylethylidene)di-4,1-phenylene]bis[ω-[(2-methyl-1-oxo-2-propenyl)oxy]-) | ≥75% | 41637-38-1 |
Urethane dimethacrylate (7,7,9(or 7,9,9)-trimethyl-4,13-dioxo-3,14-dioxa-5,12-diazahexadecane-1,16-diyl bismethacrylate) | 30–50% | 72869-86-4 | |
phenyl bis(2,4,6-trimethylbenzoyl)-phosphine oxide | <10% | 162881-26-7 | |
SR | BIS-EMA (Ethoxylated bisphenol a dimethacrylate) | 30–70% | 41637-38-1 |
Trimethylolpropane formal acrylate | 30–70% | 66492-51-1 | |
Urethane dimethacrylate | 15–35% | 72869-86-4 | |
TPO (Diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide) | ≤5 | 75980-60-8 | |
Trimethylolpropane triacrylate | ≤5 | 15625-89-5 | |
ND | BIS-EMA (Bisphenol A Polyethylene Glycol Diether Dimethacrylate) | ≥75% | 41637-38-1 |
Urethane dimethacrylate (7,7,9(or 7,9,9)-trimethyl-4,13-dioxo-3,14-dioxa-5,12-diazahexadecane-1,16-diyl bismethacrylate) | 10–20% | 72869-86-4 | |
phenyl bis(2,4,6-trimethylbenzoyl)-phosphine oxide | 1–5% | 162881-26-7 | |
KS | 2-hydroxyethyl methacrylate | ≥10 to ≤25% | 868-77-9 |
Isobornyl methacrylate | ≥10 to ≤25% | 7534-94-3 | |
TPO (Diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide) | <3% | 75980-60-8 | |
VC | BIS-EMA | 50–100% | 41637-38-1 |
Urethane dimethacrylate | 10–25% | 72869-86-4 | |
TPO (Diphenyl(2,4,6- trimethylbenzoyl)phosphine oxide) | ≤2.5% | 75980-60-8 |
References
- Khaohoen, A.; Powcharoen, W.; Sornsuwan, T.; Chaijareenont, P.; Rungsiyakull, C.; Rungsiyakull, P. Accuracy of implant placement with computer-aided static, dynamic, and robot-assisted surgery: A systematic review and meta-analysis of clinical trials. BMC Oral. Health 2024, 24, 359. [Google Scholar] [CrossRef]
- Jorba-García, A.; González-Barnadas, A.; Camps-Font, O.; Figueiredo, R.; Valmaseda-Castellón, E. Accuracy assessment of dynamic computer-aided implant placement: A systematic review and meta-analysis. Clin. Oral. Investig. 2021, 25, 2479–2494. [Google Scholar] [CrossRef]
- Camps-Font, O.; Vilarrasa, J. Computer-guided surgical exposure of palatally displaced canines: A technical note. Int. J. Comput. Dent. 2023, 26, 339–346. [Google Scholar] [CrossRef]
- Lucas-Taulé, E.; Llaquet, M.; Muñoz-Peñalver, J.; Somoza, J.; Satorres-Nieto, M.; Hernández-Alfaro, F. Fully Guided Tooth Autotransplantation Using a Multidrilling Axis Surgical Stent: Proof of Concept. J. Endod. 2020, 46, 1515–1521. [Google Scholar] [CrossRef]
- Gibreal, O.; Al-modallal, Y.; Mahmoud, G.; Gibreal, A. The efficacy and accuracy of 3D-guided orthodontic piezocision: A randomized controlled trial. BMC Oral. Health 2023, 23, 181. [Google Scholar] [CrossRef]
- Coachman, C.; Valavanis, K.; Silveira, F.C.; Kahn, S.; Tavares, A.D.; Mahn, E.; Parize, H.; Saliba, F.M.P. The crown lengthening double guide and the digital Perio analysis. J. Esthet. Restor. Dent. 2023, 35, 215–221. [Google Scholar] [CrossRef]
- Liu, X.; Yu, J.; Zhou, J.; Tan, J. A digitally guided dual technique for both gingival and bone resection during crown lengthening surgery. J. Prosthet. Dent. 2018, 119, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Giordani, G.; Ottoboni, T.; Ottoboni, G.; Martini, C.A.; Almeida, G.; Falacho, R.I. Digital resources for surgical and restorative treatment of excessive gingival display in one session. J. Esthet. Restor. Dent. 2024, 36, 1596–1603. [Google Scholar] [CrossRef]
- Longo, E.; de Giovanni, F.; Napolitano, F.; Rossi, R. Double guide concept: A new digital paradigm for the treatment of altered passive eruption in patients with high esthetic expectations. Int. J. Esthet. Dent. 2022, 17, 254–265. [Google Scholar] [PubMed]
- Borham, E.; Abuel-Ela, H.A.; Mohamed, I.S.; Fouad, Y.A. Treatment of excessive gingival display using conventional esthetic crown lengthening versus computer guided esthetic crown lengthening: (a randomized clinical trial). BMC Oral. Health 2024, 24, 317. [Google Scholar] [CrossRef] [PubMed]
- Passos, L.; Soares, F.P.; Choi, I.G.G.; Cortes, A.R.G. Full digital workflow for crown lengthening by using a single surgical guide. J. Prosthet. Dent. 2020, 124, 257–261. [Google Scholar] [CrossRef]
- Mendoza-Azpur, G.; Cornejo, H.; Villanueva, M.; Alva, R.; Barbisan de Souza, A. Periodontal plastic surgery for esthetic crown lengthening by using data merging and a CAD-CAM surgical guide. J. Prosthet. Dent. 2022, 127, 556–559. [Google Scholar] [CrossRef]
- Carrera, T.M.I.; Freire, A.E.N.; de Oliveira, G.J.P.L.; dos Reis Nicolau, S.; Pichotano, E.C.; Junior, N.V.R.; Pires, L.C.; Pigossi, S.C. Digital planning and guided dual technique in esthetic crown lengthening: A randomized controlled clinical trial. Clin. Oral. Investig. 2023, 27, 1589–1603. [Google Scholar] [CrossRef]
- Enfedaque-Prat, M.; González-Barnadas, A.; Jorba-García, A.; Vilarrasa, J.; Toledano-Serrabona, J.; Figueiredo, R.; Valmaseda-Castellón, E.; Camps-Font, O. Accuracy of Guided Dual Technique in Esthetic Crown Lengthening: A Prospective Case-Series Study. J. Esthet. Restor. Dent. 2025, 37, 1284–1296. [Google Scholar] [CrossRef]
- Henprasert, P.; Dawson, D.V.; El-Kerdani, T.; Song, X.; Couso-Queiruga, E.; Holloway, J.A. Comparison of the Accuracy of Implant Position Using Surgical Guides Fabricated by Additive and Subtractive Techniques. J. Prosthodont. 2020, 29, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Alammar, A.; Kois, J.C.; Revilla-León, M.; Att, W. Additive Manufacturing Technologies: Current Status and Future Perspectives. J. Prosthodont. 2022, 31 (Suppl. S1), 4–12. [Google Scholar] [CrossRef] [PubMed]
- Revilla-León, M.; Sadeghpour, M.; Özcan, M. An update on applications of 3D printing technologies used for processing polymers used in implant dentistry. Odontology 2020, 108, 331–338. [Google Scholar] [CrossRef]
- Rouzé l’Alzit, F.; Cade, R.; Naveau, A.; Babilotte, J.; Meglioli, M.; Catros, S. Accuracy of commercial 3D printers for the fabrication of surgical guides in dental implantology. J. Dent. 2022, 117, 103909. [Google Scholar] [CrossRef] [PubMed]
- Morón-Conejo, B.; Berrendero, S.; Salido, M.P.; Zarauz, C.; Pradíes, G. Accuracy of surgical guides manufactured with four different 3D printers. A comparative in vitro study. J. Dent. 2024, 148, 105226. [Google Scholar] [CrossRef]
- Ntovas, P.; Marchand, L.; Basir, B.; Kudara, Y.; Revilla-Leon, M.; Att, W. Effect of Storage Conditions and Time on the Dimensional Stability of 3D Printed Surgical Guides: An In Vitro Study. Clin. Oral. Implant. Res. 2024, 36, 92–99. [Google Scholar] [CrossRef]
- Li, R.; Zhu, J.; Wang, S.; Li, X.; Li, S. Effects of sterilization and disinfection methods on digitally designed surgical implant guide accuracy: An in vitro study. Clin. Implant. Dent. Relat. Res. 2024, 26, 889–898. [Google Scholar] [CrossRef]
- Lo Russo, L.; Guida, L.; Mariani, P.; Ronsivalle, V.; Gallo, C.; Cicciù, M.; Laino, L. Effect of Fabrication Technology on the Accuracy of Surgical Guides for Dental-Implant Surgery. Bioengineering 2023, 10, 875. [Google Scholar] [CrossRef]
- Yazigi, C.; Chaar, M.S.; Busch, R.; Kern, M. The Effect of Sterilization on the Accuracy and Fit of 3D-Printed Surgical Guides. Materials 2023, 16, 5305. [Google Scholar] [CrossRef] [PubMed]
- Marei, H.F.; Alshaia, A.; Alarifi, S.; Almasoud, N.; Abdelhady, A. Effect of Steam Heat Sterilization on the Accuracy of 3D Printed Surgical Guides. Implant. Dent. 2019, 28, 372–377. [Google Scholar] [CrossRef]
- Hüfner, M.; David, S.; Brunello, G.; Kerberger, R.; Rauch, N.; Busch, C.V.; Drescher, D.; Bourauel, C.; Becker, K. Autoclaving-induced dimensional changes of three-dimensional printed surgical guides: An in vitro study. Clin. Oral. Implant. Res. 2024, 35, 821–829. [Google Scholar] [CrossRef] [PubMed]
- ISO 5725-1:2023; Accuracy (Trueness and Precision) of Measurement Methods and Results—Part 1: General Principles and Definitions. ISO: Geneva, Switzerland, 2023. Available online: https://www.iso.org/obp/ui/es/#iso:std:iso:5725:-1:ed-2:v1:en (accessed on 24 April 2025).
- Török, G.; Gombocz, P.; Bognár, E.; Nagy, P.; Dinya, E.; Kispélyi, B.; Hermann, P. Effects of disinfection and sterilization on the dimensional changes and mechanical properties of 3D printed surgical guides for implant therapy—Pilot study. BMC Oral. Health 2020, 20, 19. [Google Scholar] [CrossRef] [PubMed]
- David, S.; Hüfner, M.; Rauch, N.; Kerberger, R.; Drescher, D.; Brunello, G.; Becker, K. Impact of Autoclaving on the Dimensional Stability of 3D-Printed Guides for Orthodontic Mini-Implant Insertion—An In Vitro Study. Clin. Exp. Dent. Res. 2025, 11, e70111. [Google Scholar] [CrossRef]
- Pranno, N.; Franchina, A.; De Angelis, F.; Bossù, M.; Salucci, A.; Brauner, E.; Cristalli, M.P.; La Monaca, G. The Effects of Light Crystal Display 3D Printers, Storage Time and Steam Sterilization on the Dimensional Stability of a Photopolymer Resin for Surgical Guides: An In Vitro Study. Materials 2025, 18, 474. [Google Scholar] [CrossRef]
- Vara, R.; Lin, W.; Low, J.K.; Smith, D.; Grimm, A.; Calvert, G.; Tadakamadla, S.K.; Alifui-Segbaya, F.; Ahmed, K.E. Assessing the Impact of Resin Type, Post-Processing Technique, and Arch Location on the Trueness and Precision of 3D-Printed Full-Arch Implant Surgical Guides. Appl. Sci. 2023, 13, 2491. [Google Scholar] [CrossRef]
Group (Technology) | N° SG per Batch (Total) | Printer | Resin | Layer Thickness (µm) | Post-Processing |
---|---|---|---|---|---|
FL (SLA) | 2 (10) | Formlabs Form 3 (Formlabs Inc, Sommerville, MA, USA) | Dental SG (Formlabs. Somerville, MA, USA). | 100 | Washing and drying protocol using Form Wash (Formlabs, EUA) with 98% isopropyl alcohol for 5 min. Once finished, postpolymerization using Form Cure (Formlabs, USA), during 30 min at 60 °C. |
SR (DLP) | 2 (10) | SprintRay Pro 95S (SprintRay Inc, Los Angeles, CA, USA) | Surgical Guide 3 (SprintRay. Los Angeles, CA, USA). | 100 | Washing and drying protocol using ProWash/Dry (SprintRay, USA) with 98% isopropyl alcohol. Once finished, postpolymerization using ProCure (SprintRay, EUA), during 20 min at 50 °C. |
ND (DLP) | 2 (10) | NextDent 5100 (Vertex Dental B.V., Soesterberg, The Netherlands) | NextDent SG (Vertex Dental B.V., Soesterberg, The Netherlands) | 100 | Washing and drying protocol using an ultrasonic cleaner with 98% isopropyl alcohol for 5 min. Once finished, postpolymerization using LC-3DPrint Box (3D Systems, Rock Hill, SC, USA), during 10 min at a temperature lower than 45 °C. |
KS (LCD) | 2 (10) | Phrozen Mighty 4K (Phrozen Tech Co/LTD, Tainan city, Taiwan) | Keyguide (Keystone Industries, Gibbstown, NJ, USA). | 100 | Washing and drying protocol using an ultrasonic cleaner with 98% isopropyl alcohol for 5 min. Once finished, postpolymerization using Phrozen Cure Mega S (Phrozen Tech Co/LTD, Tainan city, Taiwan) during 30 min at 60 °C. |
VC (LCD) | 2 (10) | Shining Accufab L4D (Shining 3D, Hangzhou, China) | V Print SG (Voco GmbH, Cuxhaven, Germany) | 100 | Washing and drying protocol using an ultrasonic cleaner with 98% isopropyl alcohol for 5 min (3 min with reusable alcohol and 2 min with new alcohol). Once finished, postpolymerization using LC-3DPrint Box (3D Systems, USA), during 30 min at 60 °C. |
Group | Trueness (RMS) (µm) | Precision (SD) (µm) | ||||
---|---|---|---|---|---|---|
T0 | T1 | T0 − T1 | T0 | T1 | T0 − T1 | |
FL | 81.99 (12.21) | 136.56 (35.88) | −54.57 ** (−72.17 to −36.97) | 81.53 (12.19) | 135.87 (35.78) | −54.34 ** (−71.80 to −36.88) |
SR | 138.74 (8.25) | 171.13 (17.57) | −32.39 ** (−49.99 to −14.79) | 137.36 (7.89) | 169.70 (16.69) | −32.34 ** (−49.80 to −14.88) |
ND | 107.02 (13.51) | 141.95 (18.26) | −34.93 ** (−52.53 to −17.33) | 104.97 (13.96) | 141.19 (18.47) | −36.22 ** (−53.68 to −18.76) |
KS | 110.1 (16.93) | 186.78 (28.94) | −76.68 ** (−94.28 to −59.08) | 109.14 (16.61) | 186.22 (29.03) | −77.08 ** (−94.54 to −59.62) |
VC | 107.82 (13.01) | 107.84 (16.90) | −0.02 (−17.62 to 17.58) | 105.69 (12.07) | 105.79 (16.99) | −0.10 (−17.56 to 17.36) |
T0 | Trueness (RMS) (µm) | ||||
---|---|---|---|---|---|
Precision (SD) (µm) | FL | 56.75 ** (32.05 to 81.45) | −25.03 * (−49.73 to −0.33) | −28.11 * (−52.81 to −3.18) | −25.83 * (−50.53 to −1.13) |
55.81 ** (31.30 to 80.32) | SR | 31.72 * (7.02 to 56.42) | 28.64 * (3.94 to 53.34) | 30.92 * (6.22 to 55.62) | |
−23.44 (−47.93 to 1.05) | 32.37 * (7.86 to 56.88) | ND | 3.08 (−21.62 to 27.78) | −0.80 (−25.50 to 23.88) | |
−27.59 * (−52.09 to −3.09) | 28.21 * (3.71 to 52.72) | 4.15 (−20.35 to 28.65) | KS | 2.28 (−22.42 to 26.98) | |
24.20 (−48.71 to 0.32) | 31.61 * (7.11 to 56.11) | −0.76 (−25.27 to 23.76) | 3.40 (−21.11 to 27.90) | VC |
T1 | Trueness (RMS) (µm) | ||||
---|---|---|---|---|---|
Precision (SD) (µm) | FL | 34.57 * (9.87 to 59.27) | −5.39 (−30.09 to 19.31) | −50.22 ** (−74.92 to −25.52) | 28.72 * (4.02 to 53.42) |
33.81 * (9.30 to 58.32) | SR | 29.18 * (4.48 to 53.88) | −15.65 (−40.35 to 9.05) | 63.29 ** (38.59 to 87.99) | |
−5.32 (−29.81 to 19.17) | 28.49 * (3.98 to 53.00) | ND | 44.83 ** (20.13 to 69.53) | 34.11 * (9.41 to 58.81) | |
−50.33 ** (−74.83 to −25.83) | −16.52 (−41.03 to 7.98) | 45.01 ** (20.51 to 69.51) | KS | 78.94 ** (54.24 to 103.64) | |
30.05 * (5.53 to 54.56) | 63.85 ** (39.35 to 88.35) | 35.37 * (10.85 to 59.88) | 80.36 ** (55.87 to 104.88) | VC |
Group | Axis (mm) | Area (mm2) | ||
---|---|---|---|---|
X | Y | Z | ||
FL | 0.03 * (0.01 to 0.06) | 0.06 * (0.03 to 0.09) | 0.05 (−0.01 to 0.11) | 712.82 (712.44 to 713.18) |
SR | 0.25 * (0.08 to 0.42) | 0.32 ** (0.23 to 0.40) | 0.13 * (0.04 to 0.23) | 710.20 ** (709.84 to 710.56) |
ND | 0.09 (−0.01 to 0.19) | 0.13 * (0.06 to 0.20) | 0.03 (−0.01 to 0.07) | 712.73 (712.37 to 713.08) |
KS | 0.04 * (0.01 to 0.06) | 0.10 * (0.05 to 0.15) | 0.10 * (0.02 to 0.19) | 712.73 (712.22 to 713.25) |
VC | 0.03 ** (0.02 to 0.04) | 0.09 ** (0.07 to 0.11) | 0.11 * (0.04 to 0.18) | 712.73 (712.60 to 712.86) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Barnadas, A.; Ribas-Garcia, A.; Jorba-García, A.; Figueiredo, R.; Valmaseda-Castellón, E.; Camps-Font, O. Impact of Autoclaving on the Dimensional Stability of 3D-Printed Surgical Guides for Aesthetic Crown Lengthening. J. Funct. Biomater. 2025, 16, 284. https://doi.org/10.3390/jfb16080284
González-Barnadas A, Ribas-Garcia A, Jorba-García A, Figueiredo R, Valmaseda-Castellón E, Camps-Font O. Impact of Autoclaving on the Dimensional Stability of 3D-Printed Surgical Guides for Aesthetic Crown Lengthening. Journal of Functional Biomaterials. 2025; 16(8):284. https://doi.org/10.3390/jfb16080284
Chicago/Turabian StyleGonzález-Barnadas, Albert, Anna Ribas-Garcia, Adrià Jorba-García, Rui Figueiredo, Eduard Valmaseda-Castellón, and Octavi Camps-Font. 2025. "Impact of Autoclaving on the Dimensional Stability of 3D-Printed Surgical Guides for Aesthetic Crown Lengthening" Journal of Functional Biomaterials 16, no. 8: 284. https://doi.org/10.3390/jfb16080284
APA StyleGonzález-Barnadas, A., Ribas-Garcia, A., Jorba-García, A., Figueiredo, R., Valmaseda-Castellón, E., & Camps-Font, O. (2025). Impact of Autoclaving on the Dimensional Stability of 3D-Printed Surgical Guides for Aesthetic Crown Lengthening. Journal of Functional Biomaterials, 16(8), 284. https://doi.org/10.3390/jfb16080284