Experimental Investigations on Sustainable Dual-Biomass-Based Composite Phase Change Materials for Energy-Efficient Building Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Waste Fat-Based PCM from Animal Residues
2.3. Preparation of Biomass Based Supporting Matrix and Composite PCM
2.4. Characterization of Lard and Bio-SSPCM
3. Results and Discussion
3.1. Characterization of Waste Fat-Based PCM
3.2. Morphology and Structural Characteristics of Reed Straw Biochar and Bio-SSPCM
3.3. Heat Storage Properties of the Bio-SSPCM
3.4. Leakage Resistance and Thermal Stability of the Bio-SSPCM
3.5. Thermal Conductivity of Bio-SSPCM
3.6. Melting and Solidifying Process of Bio-SSPCM
3.7. Thermal Reliability of Bio-SSPCM
4. Conclusions
- (1)
- FT-IR and GC-MS analysis of lard showed that the lard extracted from pork contains four types of fatty acids: 38.03% oleic acid (unsaturated acid), 12.73% palmitic acid, 21.49% stearic acid, 12.09% hexadecanamide, and other fatty acids. Due to the liquid state of unsaturated fatty acids at room temperature, the lard exhibits a gel-like structure at room temperature. DSC test results show that waste fat has the phase transition temperatures about 20–40 °C and a melting enthalpy value of 40 J/g, which is suitable for building passive cooling applications.
- (2)
- The prepared reed straw biochar (RSB) has hierarchical porous structure with a BET surface area of 29.58 m2/g, which is beneficial for PCM adsorption. When combined with lard, it can accommodate up to 80% loading without leakage. The peak transition temperatures of Bio-SSPCM were observed to be approximately 30 °C, with a melting enthalpy of 25.3 J/g, making it suitable for application in building envelopes.
- (3)
- The thermal conductivity of the Bio-SSPCM (lard/RSB/EG) is enhanced up to 5.4 times with the addition of RSB and EG. The first reason for this is that the addition of reed straw biochar as a supporting matrix can provide a heat transfer pathway for phonon motion in a particular direction over long distance. The second reason is that the infiltration of EG into the pores of the biochar framework enhances the carbon content in the Bio-SSPCM, which directly contributes to the observed increase in thermal conductivity.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Sun, J.; Zhang, X.; Wang, F. Assessment and regression of carbon emissions from the building and construction sector in China: A provincial study using machine learning. J. Clean. Prod. 2024, 450, 141903. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Y.; Sheng, Z.; Wu, W.; Wang, Y.; Dumoulin, J. Study on thermal storage effectiveness of a novel PCM concrete applied in buildings located at four cities. Renew. Energy 2023, 218, 119262. [Google Scholar] [CrossRef]
- Behzadi Hamooleh, M.; Torabi, A.; Baghoolizadeh, M. Multi-objective optimization of energy and thermal comfort using insulation and phase change materials in residential buildings. Build. Environ. 2024, 262, 111774. [Google Scholar] [CrossRef]
- Murali, G.; Sravya, G.S.N.; Jaya, J.; Naga Vamsi, V. A review on hybrid thermal management of battery packs and it’s cooling performance by enhanced PCM. Renew. Sustain. Energy Rev. 2021, 150, 111513. [Google Scholar] [CrossRef]
- Nandy, A.; Houl, Y.; Zhao, W.; D’Souza, N.A. Thermal heat transfer and energy modeling through incorporation of phase change materials (PCMs) into polyurethane foam. Renew. Sustain. Energy Rev. 2023, 182, 113410. [Google Scholar] [CrossRef]
- Yazdani McCord, M.R.; Baniasadi, H. Advancements in form-stabilized phase change materials: Stabilization mechanisms, multifunctionalities, and applications—A comprehensive review. Mater. Today Energy 2024, 41, 101532. [Google Scholar] [CrossRef]
- Kateshia, J.; Lakhera, V. A comparative study of various fatty acids as phase change material to enhance the freshwater productivity of solar still. J. Energy Storage 2022, 48, 103947. [Google Scholar] [CrossRef]
- Boussaba, L.; Makhlouf, S.; Foufa, A.; Lefebvre, G.; Royon, L. vegetable fat: A low-cost bio-based phase change material for thermal energy storage in buildings. J. Build. Eng. 2019, 21, 222–229. [Google Scholar] [CrossRef]
- Lawer-Yolar, G.; Dawson-Andoh, B.; Atta-Obeng, E. Novel phase change materials for thermal energy storage: Evaluation of tropical tree fruit oils. Biotechnol. Rep. 2019, 24, e00359. [Google Scholar] [CrossRef]
- Alipour, A.; Eslami, F.; Sadrameli, S.M. A novel bio-based phase change material of methyl palmitate and decanoic acid eutectic mixture: Thermodynamic modeling and thermal performance. Chem. Thermodyn. Therm. Anal. 2023, 10, 100111. [Google Scholar] [CrossRef]
- Dewi, O.C.; Putra, N.; Rangin, B.; Rahmasari, K.; Salsabila, N.D.; Nasution, G.G.; Waasthia, D. Bamboo-encapsulated bio-based PCM panel as thermal stabiliser for glamping in a highland area of Indonesia. Build. Environ. 2024, 252, 111298. [Google Scholar] [CrossRef]
- Li, C.; Sun, Z.; Wang, Y.; Zhu, J.; Wu, J.; Feng, L.; Wen, X.; Cai, W.; Yu, H.; Wang, M.; et al. A novel biogenic porous core/shell-based shape-stabilized phase change material for building energy saving. J. Energy Storage 2024, 95, 112504. [Google Scholar] [CrossRef]
- Benhorma, A.; Bensenouci, A.; Teggar, M.; Ismail, K.A.R.; Arıcı, M.; Mezaache, E.; Laouer, A.; Lino, F.A.M. Prospects and challenges of bio-based phase change materials: An up to date review. J. Energy Storage 2024, 90, 111713. [Google Scholar] [CrossRef]
- Prabhu, B.; Valan Arasu, A.; Nižetić, S.; Arıcı, M.; Nallamuthu, R. A comprehensive assessment on bio-mass derived form-stabilized composite phase change materials for solar thermal energy storage systems. J. Energy Storage 2024, 86, 111278. [Google Scholar]
- Yun, B.Y.; Choi, J.Y.; Kim, Y.U.; Kang, Y.; Kim, S. Evaluation of shape-stabilized phase-change materials using calcium carbonate-based starfish microporous materials for thermal energy storage. Appl. Therm. Eng. 2024, 241, 122267. [Google Scholar] [CrossRef]
- Zhu, G.; Chen, W.; Liu, Y.; Hu, X.; Ma, Y.; Luo, W.; Luo, L.; Chen, B.; Jiang, L.; Zhang, Z.; et al. A novel bio-based composite phase change material with excellent photo-thermal conversion capability for solar energy harvesting and energy storage. J. Energy Storage 2024, 78, 110067. [Google Scholar] [CrossRef]
- Dasiewicz, J.; Wronka, A.; Jeżo, A.; Kowaluk, G. Thermally Active Medium-Density Fiberboard (MDF) with the Addition of Phase Change Materials for Furniture and Interior Design. Materials 2024, 17, 4001. [Google Scholar] [CrossRef]
- Das, D.; Masek, O.; Paul, M.C. Development of novel form-stable PCM-biochar composites and detailed characterization of their morphological, chemical and thermal properties. J. Energy Storage 2024, 84, 110995. [Google Scholar] [CrossRef]
- Fabiani, C.; Pisello, A.L.; Barbanera, M.; Cabeza, L.F.; Cotana, F. Assessing the Potentiality of Animal Fat Based-Bio Phase Change Materials (PCM) for Building Applications: An Innovative Multipurpose Thermal Investigation. Energies 2019, 12, 1111. [Google Scholar] [CrossRef]
- Bragaglia, M.; Lamastra, F.R.; Berrocal, J.A.; Paleari, L.; Nanni, F. Sustainable phase change materials (PCMs): Waste fat from cooking pork meat confined in polypropylene fibrous mat from waste surgical mask and porous bio-silica. Mater. Today Sustain. 2023, 23, 100454. [Google Scholar] [CrossRef]
- Goodrum, J.W.; Geller, D.P.; Adams, T.T. Rheological characterization of animal fats and their mixtures with #2 fuel oil. Biomass Bioenergy 2003, 24, 249–256. [Google Scholar]
- Ito, T.; Sakurai, Y.; Kakuta, Y.; Sugano, M.; Hirano, K. Biodiesel production from waste animal fats using pyrolysis method. Fuel Process. Technol. 2012, 94, 47–52. [Google Scholar] [CrossRef]
- Li, C.; Yu, H.; Song, Y.; Wang, M.; Liu, Z. A n-octadecane/hierarchically porous TiO2 form-stable PCM for thermal energy storage. Renew. Energy 2020, 145, 1465–1473. [Google Scholar] [CrossRef]
- Tomin, O.; Vahala, R.; Yazdani, M.R. Synthesis and efficiency comparison of reed straw-based biochar as a mesoporous adsorbent for ionic dyes removal. Heliyon 2024, 10, e24722. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Yang, F.; Wei, C. Developing goethite modified reed-straw biochar for remediation of metal(loids) co-contamination. Colloids Surf. A Physicochem. Eng. Asp. 2024, 692, 133942. [Google Scholar] [CrossRef]
- Ma, F.; Liang, Y.; Tao, Z.; Guo, X.; Guo, Q.; Liu, Z. A novel PCM/expanded graphite composite sphere with high thermal conductivity and excellent shape stability used for a packed-bed thermal energy system. Diam. Relat. Mater. 2024, 145, 111102. [Google Scholar] [CrossRef]
- Liu, D.; Yang, L.; Li, B.; Wu, J. Gaseous mercury removal using biogenic porous silica modified with potassium bromide. J. Energy Inst. 2021, 99, 161–169. [Google Scholar] [CrossRef]
- Eanest Jebasingh, B.; Valan Arasu, A. A comprehensive review on latent heat and thermal conductivity of nanoparticle dispersed phase change material for low-temperature applications. Energy Storage Mater. 2020, 24, 52–74. [Google Scholar] [CrossRef]
- Guo, Y.; Ruan, K.; Wang, G.; Gu, J. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 2023, 68, 1195–1212. [Google Scholar] [CrossRef]
Samples of Bio-SSPCM | Lard (g) | Reed Straw (g) | EG (g) |
---|---|---|---|
PCM-1 | 7.0 ± 0.1 | 2.1 ± 0.1 | 0.4 ± 0.01 |
PCM-2 | 8.0 ± 0.1 | 1.6 ± 0.1 | 0.4 ± 0.01 |
PCM-3 | 9.0 ± 0.1 | 0.6 ± 0.01 | 0.4 ± 0.01 |
Peaks | Melting Process | Solidification Process | ||||
---|---|---|---|---|---|---|
Tm (°C) | Tpeak-m (°C) | ΔHm (J/g) | Ts (°C) | Tpeak-s (°C) | ΔHs (J/g) | |
Peak 1 | 21.2 | 29.7 | 30.5 ± 1.2 | 26.5 | 23.5 | 7.1 ± 0.4 |
Peak 2 | 41.1 | 47.0 | 10.2 ± 0.5 | 16.0 | 14.4 | 31.0 ± 1.3 |
Total | 40.7 ± 1.5 | 38.1 ± 1.5 |
BET Surface Area (m2/g) | Adsorption Total Pore Volume (cm3/g) | Average Pore Diameter (nm) |
---|---|---|
29.58 ± 0.89 | 0.0329 ± 0.001 | 4.46 ± 0.15 |
Samples | Melting Process | Solidification Process | ||||||
---|---|---|---|---|---|---|---|---|
Tm1 (°C) | ΔHm1 (J/g) | Tm2 (°C) | ΔHm2 (J/g) | Ts1 (°C) | ΔHs1 (J/g) | Ts2 (°C) | ΔHs2 (J/g) | |
PCM 1 | 23.9 | 18.6 ± 0.3 | 42.9 | 1.1 ± 0.1 | 19.9 | 3.1 ± 0.1 | 14.2 | 7.7 ± 0.2 |
PCM 2 | 22.6 | 18.4 ± 0.2 | 40.9 | 7.0 ± 0.3 | 20.1 | 2.8 ± 0.1 | 14.3 | 5.9 ± 0.1 |
PCM 3 | 23.6 | 26.2 ± 0.4 | 41.0 | 8.3 ± 0.4 | 20.1 | 20.9 ± 0.3 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Wen, W.; Wu, J.; Shao, J.; Cai, W.; Wen, X.; Li, C.; Guo, H.; Tang, Y.; Wang, M.; et al. Experimental Investigations on Sustainable Dual-Biomass-Based Composite Phase Change Materials for Energy-Efficient Building Applications. Materials 2025, 18, 3632. https://doi.org/10.3390/ma18153632
Sun Z, Wen W, Wu J, Shao J, Cai W, Wen X, Li C, Guo H, Tang Y, Wang M, et al. Experimental Investigations on Sustainable Dual-Biomass-Based Composite Phase Change Materials for Energy-Efficient Building Applications. Materials. 2025; 18(15):3632. https://doi.org/10.3390/ma18153632
Chicago/Turabian StyleSun, Zhiwei, Wei Wen, Jiayu Wu, Jingjing Shao, Wei Cai, Xiaodong Wen, Chaoen Li, Haijin Guo, Yin Tang, Meng Wang, and et al. 2025. "Experimental Investigations on Sustainable Dual-Biomass-Based Composite Phase Change Materials for Energy-Efficient Building Applications" Materials 18, no. 15: 3632. https://doi.org/10.3390/ma18153632
APA StyleSun, Z., Wen, W., Wu, J., Shao, J., Cai, W., Wen, X., Li, C., Guo, H., Tang, Y., Wang, M., Liu, D., & He, Y. (2025). Experimental Investigations on Sustainable Dual-Biomass-Based Composite Phase Change Materials for Energy-Efficient Building Applications. Materials, 18(15), 3632. https://doi.org/10.3390/ma18153632