Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (95)

Search Parameters:
Keywords = L. rhamnosus GG

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3947 KiB  
Article
Banana Pseudostem By-Product: A Sustainable Source of Prebiotics and Protection for Probiotic Lactic Acid Bacteria Under Gastrointestinal Conditions
by Márcia Maria de Souza Moretti, Tais Fernanda Borgonovi, Svetoslav Dimitrov Todorov and Ana Lúcia Barretto Penna
Fermentation 2025, 11(8), 476; https://doi.org/10.3390/fermentation11080476 - 20 Aug 2025
Abstract
Agricultural by-products, such as banana pseudostems (BPS), present a sustainable solution for waste reduction and the recovery of valuable metabolites with biotechnological applications. This study investigated the potential of BPS as a substrate for bio-fermentation, specifically for the cultivation of lactic acid bacteria [...] Read more.
Agricultural by-products, such as banana pseudostems (BPS), present a sustainable solution for waste reduction and the recovery of valuable metabolites with biotechnological applications. This study investigated the potential of BPS as a substrate for bio-fermentation, specifically for the cultivation of lactic acid bacteria (LAB). Maçã cultivar BPSs (MBPS) and Nanica cultivar BPSs (NBPS) flour samples showed differences in carbohydrate composition, especially in resistant starch (16.7 and 2.7%), cellulose (27.0 and 52.4%), and hemicellulose (25.4 and 33.8%), respectively. Phenolic compound content in NBPS was higher than in MBPS (193.9 and 153.5 GAE/100 g, respectively). The BPS starches and flour were well assimilated by the probiotic LAB cultures. Limosilactobacillus fermentum SJRP30 and SJRP43 showed significant growth in media with gelatinized Maçã flour (GMF) and non-gelatinized Nanica flour (NGNF) BPS by-products (Log 9.18 and 9.75 CFU/mL, respectively), while Lacticaseibacillus rhamnosus GG exhibited the highest growth (Log 11.31 CFU/mL) in the medium with NGNF BPS by-products. The probiotic Lbs. casei SJRP146 and Lmb. fermentum SJRP30 and SJRP43 presented high enzymatic activity and the ability to assimilate D-xylose. Only Lactobacillus delbrueckii subsp. bulgaricus SJRP57 and SJRP49 were able to assimilate starch. Their prebiotic potential under in vitro gastrointestinal digestion was evidenced by promoting the selected probiotic bacteria’s protection and maintaining their viable cells after challenging conditions, likely associated with the BPS composition. Lab. delbrueckii subsp. bulgaricus SJRP57, Lacticaseibacillus casei SJRP145, and Lmb. fermentum SJRP43 performed similarly to the commercial strain Lbs. rhamnosus GG. These results demonstrate the feasibility of using cost-effective and abundant agricultural waste as a promising sustainable ingredient with potential prebiotic activity, via eco-friendly production methods that do not require chemical or enzymatic extraction. The prebiotic potential under in vitro gastrointestinal digestion was evidenced by promoting the selected probiotic bacteria’s protection and maintaining their viable cells after challenging conditions, likely associated with the BPS composition. These results demonstrate the feasibility of cost-effective and abundantly available agricultural waste using eco-friendly production (without chemical or enzymatic extraction methods), as a promising sustainable ingredient with potential prebiotic activity. Full article
(This article belongs to the Special Issue Fermentation of Organic Waste for High-Value-Added Product Production)
Show Figures

Figure 1

15 pages, 1487 KiB  
Article
Protective Effects of a Bifidobacterium-Based Probiotic Mixture on Gut Inflammation and Barrier Function
by Yeji You, Tae-Rahk Kim, Minn Sohn, Dongmin Yoo and Jeseong Park
Microbiol. Res. 2025, 16(8), 168; https://doi.org/10.3390/microbiolres16080168 - 1 Aug 2025
Viewed by 453
Abstract
Disruption of the intestinal epithelial barrier is a key driver of gut-derived inflammation in various disorders, yet strategies to preserve or restore barrier integrity remain limited. To address this, we evaluated a four-strain Bifidobacterium mixture—selected for complementary anti-inflammatory potency and industrial scalability—in lipopolysaccharide [...] Read more.
Disruption of the intestinal epithelial barrier is a key driver of gut-derived inflammation in various disorders, yet strategies to preserve or restore barrier integrity remain limited. To address this, we evaluated a four-strain Bifidobacterium mixture—selected for complementary anti-inflammatory potency and industrial scalability—in lipopolysaccharide (LPS)-challenged RAW 264.7 macrophages and a Caco-2/THP-1 transwell co-culture model. Pretreatment with the probiotic blend reduced nitric oxide (NO) release in a dose-dependent manner by 25.9–48.3% and significantly down-regulated the pro-inflammatory markers in macrophages. In the co-culture system, the formulation decreased these markers, increased transepithelial electrical resistance (TEER) by up to 31% at 105 colony-forming unit (CFU)/mL after 48 h, and preserved the membrane localization of tight junction (TJ) proteins. Adhesion to Caco-2 cells (≈ 6%) matched that of the benchmark probiotic Lacticaseibacillus rhamnosus GG, suggesting direct epithelial engagement. These in vitro findings demonstrate that this probiotic mixture can attenuate LPS-driven inflammation and reinforce epithelial architecture, providing a mechanistic basis for its further evaluation in animal models and clinical studies of intestinal inflammatory disorders. Full article
Show Figures

Figure 1

14 pages, 692 KiB  
Article
Prebiotic and Health-Promoting Benefits of Dextran-Type Exopolysaccharide Produced by Leuconostoc mesenteroides SJC113
by Dominika Jurášková, Susana C. Ribeiro and Célia C. G. Silva
Foods 2025, 14(15), 2635; https://doi.org/10.3390/foods14152635 - 27 Jul 2025
Viewed by 494
Abstract
The exopolysaccharide (EPS) produced by Leuconostoc mesenteroides SJC113 is a glucan with α-1,6 and α-3,6 branched glycosidic linkages that may promote human health. The aim of this study was to investigate in vitro the antioxidant, cholesterol-binding, and prebiotic activities of this EPS and [...] Read more.
The exopolysaccharide (EPS) produced by Leuconostoc mesenteroides SJC113 is a glucan with α-1,6 and α-3,6 branched glycosidic linkages that may promote human health. The aim of this study was to investigate in vitro the antioxidant, cholesterol-binding, and prebiotic activities of this EPS and its effect on the gut microbiota. The EPS exhibited moderate antioxidant activity, showing free radical scavenging activity (10.94 ± 1.33%) and hydroxyl scavenging activity (6.29 ± 1.59%) at 1 mg/mL. Notably, it showed high cholesterol-binding activity, lowering cholesterol levels by 40% at 1 mg/mL EPS. Ln. mesenteroides SJC113 showed strong adhesion to mucin, and its EPS enhanced the adhesion of the probiotic Lacticaseibacillus rhamnosus GG. The application of this EPS stimulated the growth of several lactic acid bacteria (LAB) strains in vitro, indicating its potential as a prebiotic. In addition, the use of a human gastrointestinal simulator inoculated with fecal microbiota showed that the EPS favored the growth of Bifidobacterium spp. and lactobacilli while reducing Enterobacteriaceae. These results emphasize the multifunctional nature of the EPS produced by Ln. mesenteroides SJC113 with antioxidant, cholesterol-lowering, and prebiotic properties. Further research is required to investigate the specific mechanisms of action and health benefits in vivo. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

17 pages, 1701 KiB  
Article
Novel Synbiotic Yogurt Formulation Supplemented with Fucoidan from Phaeophyceae Algae to Promote Limosilactobacillus reuteri and Lacticaseibacillus rhamnosus GG
by Neus Ricós-Muñoz, Sergi Maicas, Miguel Tortajada-Girbés and Maria Consuelo Pina-Pérez
Foods 2025, 14(15), 2589; https://doi.org/10.3390/foods14152589 - 24 Jul 2025
Viewed by 444
Abstract
Allergy is recognized as a public health problem with pandemic consequences and is estimated to affect more than 50% of Europeans in 2025. Prebiotic and probiotic food implementation has recently emerged as an alternative strategy to promote immunomodulatory beneficial effects in allergic patients. [...] Read more.
Allergy is recognized as a public health problem with pandemic consequences and is estimated to affect more than 50% of Europeans in 2025. Prebiotic and probiotic food implementation has recently emerged as an alternative strategy to promote immunomodulatory beneficial effects in allergic patients. Among prebiotics, Phaeophyceae algae represent a niche of research with enormous possibilities. The present study aims to evaluate the in vitro prebiotic potential of fucoidan from Fucus vesiculosus, Macrocystis pyrifera, and Undaria pinnatifida algae, to promote the growth of Limosilactobacillus reuteri and Lacticaseibacillus rhamnosus GG as probiotic bacteria added to the formulation of a novel yogurt. Concentrations of fucoidan of 100 and 2000 µg/mL were added to reference growth media and kinetic growth curves for both microorganisms were fitted to the Gompertz equation. Optimized prebiotic conditions for fucoidan were selected to validate in vitro results by means of the formulation of a novel fermented prebiotic yogurt. Conventional yogurts (including Streptococcus thermophilus and Lactobacillus delbrueckii subs. bulgaricus) were formulated with the different fucoidans, and production batches were prepared for L. rhamnosus and L. reuteri. Increased L. reuteri and L. rhamnosus populations in 1.7–2.2 log10 cycles just after 48 h of in vitro exposure were detected in fucoidan supplemented yogurt. M. pyrifera and U. pinnatifida fucoidans were the most effective ones (500 µg/mL) promoting probiotic growth in new formulated yogurts (during the complete shelf life of products, 28 days). Diet supplementation with fucoidan can be proposed as a strategy to modulate beneficial microbiota against allergy. Full article
(This article belongs to the Section Dairy)
Show Figures

Figure 1

23 pages, 4049 KiB  
Article
Gut Microbiome Engineering for Diabetic Kidney Disease Prevention: A Lactobacillus rhamnosus GG Intervention Study
by Alaa Talal Qumsani
Biology 2025, 14(6), 723; https://doi.org/10.3390/biology14060723 - 19 Jun 2025
Viewed by 846
Abstract
The gut microbiota has emerged as a critical modulator in metabolic diseases, with substantial evidence supporting its role in attenuating diabetes-related nephropathy. Recent investigations demonstrate that strategic manipulation of intestinal microflora offers novel therapeutic avenues for safeguarding renal function against diabetic complications. This [...] Read more.
The gut microbiota has emerged as a critical modulator in metabolic diseases, with substantial evidence supporting its role in attenuating diabetes-related nephropathy. Recent investigations demonstrate that strategic manipulation of intestinal microflora offers novel therapeutic avenues for safeguarding renal function against diabetic complications. This investigation sought to determine the nephroprotective potential of Lactobacillus rhamnosus GG (LGG) administration in diabetic nephropathy models. Six experimental cohorts were evaluated: control, probiotic-supplemented control, diabetic, diabetic receiving probiotic therapy, diabetic with antibiotics, and diabetic treated with both antibiotics and probiotics. Diabetic conditions were established via intraperitoneal administration of streptozotocin (50 mg/kg) following overnight fasting, according to validated protocols for experimental diabetes induction. Probiotic therapy (3 × 109 CFU/kg, bi-daily) began one month before diabetes induction and continued throughout the study duration. Glycemic indices were monitored at bi-weekly intervals, inflammatory biomarkers, renal function indices, and urinary albumin excretion. The metabolic profile was evaluated through the determination of HOMA-IR and the computation of metabolic syndrome scores. Microbiome characterization employed 16S rRNA gene sequencing alongside metagenomic shotgun sequencing for comprehensive microbial community mapping. L. rhamnosus GG supplementation substantially augmented microbiome richness and evenness metrics. Principal component analysis revealed distinct clustering of microbial populations between treatment groups. The Prevotella/Bacteroides ratio, an emerging marker of metabolic dysfunction, normalized following probiotic intervention in diabetic subjects. Results: L. rhamnosus GG administration markedly attenuated diabetic progression, achieving glycated hemoglobin reduction of 32% compared to untreated controls. Pro-inflammatory cytokine levels (IL-6, TNF-α) decreased significantly, while anti-inflammatory mediators (IL-10, TGF-β) exhibited enhanced expression. The renal morphometric analysis demonstrated preservation of glomerular architecture and reduced interstitial fibrosis. Additionally, transmission electron microscopy confirmed the maintenance of podocyte foot process integrity in probiotic-treated groups. Conclusions: The administration of Lactobacillus rhamnosus GG demonstrated profound renoprotective efficacy through multifaceted mechanisms, including microbiome reconstitution, metabolic amelioration, and inflammation modulation. Therapeutic effects suggest the potential of a combined probiotic and pharmacological approach to attenuate diabetic-induced renal pathology with enhanced efficacy. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

19 pages, 1601 KiB  
Article
Isolation and Characterization of Lactic Acid Bacteria from an Italian Traditional Raw Milk Cheese: Probiotic Properties and Technological Performance of Selected Strains
by Marianna Roselli, Federica Colafranceschi, Valentina Cipriani, Alessandra Valle, Paola Zinno, Barbara Guantario, Emily Schifano, Daniela Uccelletti and Chiara Devirgiliis
Microorganisms 2025, 13(6), 1368; https://doi.org/10.3390/microorganisms13061368 - 12 Jun 2025
Viewed by 757
Abstract
The increasing interest in fermented foods stems from their health benefits, mediated by foodborne microorganisms. This study aimed to characterize the fermentative microbiota of Pecorino di Picinisco, a traditional Italian cheese made from ovine raw milk, and to evaluate the probiotic and technological [...] Read more.
The increasing interest in fermented foods stems from their health benefits, mediated by foodborne microorganisms. This study aimed to characterize the fermentative microbiota of Pecorino di Picinisco, a traditional Italian cheese made from ovine raw milk, and to evaluate the probiotic and technological potential of selected lactic acid bacteria strains. Three strains representative of the different species found (Lactococcus lactis, Lactiplantibacillus plantarum and Latilactobacillus curvatus) were chosen and analyzed. All three strains were able to adhere to human intestinal Caco-2 cells, were resistant to simulated in vitro digestion and significantly prolonged the lifespan of Caenorhabditis elegans, used as a simplified in vivo model, with respect to the commercial probiotic strain Lacticaseibacillus rhamnosus GG. The L. plantarum Pic37.4 strain was particularly promising; therefore, its cell-free supernatant was employed to evaluate the antimicrobial activity against indicator strains of foodborne and intestinal pathogens or spoilage bacteria. The results demonstrated the effectiveness of the supernatant against all strains tested, with the strongest effect on the intestinal pathogen enterotoxigenic Escherichia coli K88. In addition, the inhibitory effect on pathogen adhesion to intestinal mucosa was investigated on Caco-2 cells, resulting in a significant reduction in adhesion mediated by the L. plantarum Pic37.4 supernatant. The antimicrobial properties of the L. plantarum strain were confirmed in vivo in C. elegans. These promising results lay the ground for further investigations aimed at substantiating the probiotic and technological potential of the L. plantarum Pic37.4 investigated in this work. Full article
Show Figures

Graphical abstract

21 pages, 2536 KiB  
Article
Lactobacillus rhamnosus GG Modulates Mitochondrial Function and Antioxidant Responses in an Ethanol-Exposed In Vivo Model: Evidence of HIGD2A-Dependent OXPHOS Remodeling in the Liver
by Celia Salazar, Marlen Barreto, Alfredo Alfonso Adriasola-Carrasco, Francisca Carvajal, José Manuel Lerma-Cabrera and Lina María Ruiz
Antioxidants 2025, 14(6), 627; https://doi.org/10.3390/antiox14060627 - 23 May 2025
Viewed by 1024
Abstract
The gut microbiota plays a central role in host energy metabolism and the development of metabolic disorders, partly through its influence on mitochondrial function. Probiotic supplementation, particularly with Lactobacillus rhamnosus GG, has been proposed as a strategy to modulate the microbiota and improve [...] Read more.
The gut microbiota plays a central role in host energy metabolism and the development of metabolic disorders, partly through its influence on mitochondrial function. Probiotic supplementation, particularly with Lactobacillus rhamnosus GG, has been proposed as a strategy to modulate the microbiota and improve host metabolic health. Adolescent binge-like alcohol consumption is a critical public health issue known to induce neuroinflammation, oxidative stress, mitochondrial dysfunction, and intestinal dysbiosis, contributing to disorders such as alcoholic liver disease (ALD). This study aimed to evaluate the effects of L. rhamnosus GG supplementation on mitochondrial physiology in Sprague Dawley rats exposed to binge-like ethanol (BEP group) or saline (SP group) during adolescence (postnatal days 30–43). Starting on postnatal day 44, L. rhamnosus GG was administered orally for 28 days. Fecal colonization was confirmed by qPCR, and mitochondrial function was assessed in the liver, heart, and bone marrow through quantification of NADH, ATP, ADP/ATP ratio, total antioxidant capacity, and the expression of mitochondrial genes Higd2a, MnSOD1, and AMPKα1. L. rhamnosus GG supplementation induced tissue-specific mitochondrial adaptations. In the liver, it increased Higd2a expression and restored antioxidant and energy balance in ethanol-exposed rats. In the bone marrow, it reversed ethanol-induced metabolic stress and enhanced AMPKα1 expression. In contrast, in the heart, L. rhamnosus GG had minimal impact on mitochondrial energy markers but increased antioxidant capacity, indicating a more limited, redox-focused effect. These findings suggest that L. rhamnosus GG exerts context-dependent, tissue-specific benefits on mitochondrial physiology, primarily through the modulation of antioxidant defenses, activation of AMPKα1, and remodeling of respiratory complexes. This probiotic may represent a promising therapeutic strategy to mitigate mitochondrial dysfunction associated with early-life alcohol exposure. Full article
(This article belongs to the Special Issue Interplay of Microbiome and Oxidative Stress)
Show Figures

Figure 1

14 pages, 1061 KiB  
Article
The Probiotic Potential, Safety, and Immunomodulatory Properties of Levilactobacillus brevis ZG2488: A Novel Strain Isolated from Healthy Human Feces
by Zhijie Cao, Mengshan Chen, Yulu Chen and Hui Sun
Fermentation 2025, 11(5), 287; https://doi.org/10.3390/fermentation11050287 - 15 May 2025
Viewed by 836
Abstract
Probiotics exert beneficial effects on health improvement, infection prevention, and disease management. This study investigated the probiotic characteristics and safety parameters of Levilactobacillus brevis ZG2488, a novel strain isolated from healthy human feces. The strain exhibited robust tolerance to simulated gastrointestinal conditions, maintaining [...] Read more.
Probiotics exert beneficial effects on health improvement, infection prevention, and disease management. This study investigated the probiotic characteristics and safety parameters of Levilactobacillus brevis ZG2488, a novel strain isolated from healthy human feces. The strain exhibited robust tolerance to simulated gastrointestinal conditions, maintaining survival rates of 87.20% in artificial gastric juice (pH 3.0; 3 h) and 95.32% in 0.3% bile salt (24 h). Notably, L. brevis ZG2488 displayed superior microbial adhesion properties with high cell surface hydrophobicity (87.32%), auto-aggregation (81.15% at 24 h), and co-aggregation capacities with Escherichia coli ATCC 43895 (63.90%) and Salmonella typhimurium SL1344 (59.28%). Its adhesion to HT-29 cells (7.15%) surpassed that of the reference strain Lactobacillus rhamnosus GG (1.26%). Antimicrobial testing revealed broad-spectrum inhibitory effects against multidrug-resistant Klebsiella pneumoniae NK04152 and other pathogens. Comprehensive safety assessments confirmed the absence of hemolytic or DNase activity, along with appropriate antibiotic susceptibility to most antibiotics, except kanamycin, streptomycin, vancomycin, and penicillin G. Furthermore, L. brevis ZG2488 significantly enhanced nitric oxide production and upregulated the gene expression of nitric oxide synthase (iNOS) and proinflammatory cytokines (IL-1β, IL-6, and TNF-α) in RAW264.7 macrophages. These findings underscore L. brevis ZG2488 as a promising probiotic candidate with functionality in pathogen inhibition and immune modulation. Full article
(This article belongs to the Section Probiotic Strains and Fermentation)
Show Figures

Figure 1

33 pages, 4269 KiB  
Article
Peroxisome Proliferator-Activated Receptors (PPARs) May Mediate the Neuroactive Effects of Probiotic Metabolites: An In Silico Approach
by Irving Parra, Alan Carrasco-Carballo, Victoria Palafox-Sanchez, Isabel Martínez-García, José Aguilera, José L. Góngora-Alfaro, Irma Isela Aranda-González, Yousef Tizabi and Liliana Mendieta
Int. J. Mol. Sci. 2025, 26(10), 4507; https://doi.org/10.3390/ijms26104507 - 9 May 2025
Viewed by 864
Abstract
It is well established that the gut-brain axis (GBA) is a bidirectional communication between the gut and the brain. This axis, critical in maintaining overall homeostasis, is regulated at the neuronal, endocrine, and immunological levels, all of which may be influenced by the [...] Read more.
It is well established that the gut-brain axis (GBA) is a bidirectional communication between the gut and the brain. This axis, critical in maintaining overall homeostasis, is regulated at the neuronal, endocrine, and immunological levels, all of which may be influenced by the gut microbiota (GM). Therefore, dysbiosis or disruption in the GM may have serious consequences including neuroinflammation due to overactivation of the immune system. Strategies to reestablish GM integrity via use of probiotics are being pursued as novel therapeutic intervention in a variety of central and peripheral diseases. The mechanisms leading to dysbiosis or efficacy of probiotics, however, are not fully evident. Here, we performed computational analysis on two major probiotics, namely Lactobacillus Lacticaseibacillus rhamnosus GG (formerly named Lactobacillus rhamnosus, L. rhamnosus GG) and Bifidobacterium animalis spp. lactis (B. lactis or B. animalis) to not only shed some light on their mechanism(s) of action but also to identify potential molecular targets for novel probiotics. Using the PubMed web page and BioCyc Database Collection platform we specifically analyzed proteins affected by metabolites of these bacteria. Our results indicate that peroxisome proliferator-activated receptors (PPARs), nuclear receptor proteins that are involved in regulation of inflammation are key mediators of the neuroactive effect of probiotics. Full article
Show Figures

Figure 1

14 pages, 2815 KiB  
Article
Effect of Lactiplantibacillus plantarum DSW3805 Isolated from Kimchi for Gut Health Attenuating Colonic Inflammation in a Dextran Sulfate Sodium-Induced Mouse Model
by Na-Kyoung Lee, Yunjung Lee, Da-Soul Shin, Yong-Min Choi, Jinhyeuk Lee, Eunju Park and Hyun-Dong Paik
Nutrients 2025, 17(7), 1259; https://doi.org/10.3390/nu17071259 - 3 Apr 2025
Viewed by 716
Abstract
Background/Objectives: Lactiplantibacillus plantarum DSW3805 was isolated from Korean kimchi samples to examine its effect in a dextran sulfate sodium (DSS)-induced mouse model. Methods: To induce colitis, mice were treated with DSS for one week before sacrifice (n = 8 per group, [...] Read more.
Background/Objectives: Lactiplantibacillus plantarum DSW3805 was isolated from Korean kimchi samples to examine its effect in a dextran sulfate sodium (DSS)-induced mouse model. Methods: To induce colitis, mice were treated with DSS for one week before sacrifice (n = 8 per group, total n = 40). Lacticaseibacillus rhamnosus GG (109 CFU/day) or probiotics (L. plantarum DSW3805; 108 or 109 CFU/day) were administered for two weeks. To assess colitis damage, we evaluated the disease activity index, colon tissue, inflammatory factors, the microbiome, short-chain fatty acids, and intestine-related factors. Results: DSS induced colonic tissue damage (colon length, mucus thickness, and colonic crypts), and L. plantarum DSW3805 alleviated the tissue damage. Induced inflammation was reduced by inhibiting TNF-α, IFN-γ, IL-1β, IL-6, IgA, IgG, LTB4, PGE2, and NF-κB protein expression. The ratio of Firmicutes to Bacteroidetes in the PC group (DSS-treated control) was lower than that in the NC (DSS-nontreated control); L. plantarum DSW3805 increased the ratio. Higher concentrations of acetic, propionic, and butyric acids were detected in probiotic groups. In addition, harmful factors, such as calprotectin and β-glucuronidase, were reduced in the probiotic groups. Conclusions: L. plantarum DSW3805 alleviates gut damage by colitis; therefore, it can be used as a functional food to improve gut health. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

25 pages, 2453 KiB  
Article
The Effect of Edible Plant Oils on Increasing the Viability of Lacticaseibacillus rhamnosus GG During the Microencapsulation by Spray Drying Process
by Alicja Fedorowicz and Artur Bartkowiak
Appl. Sci. 2025, 15(7), 3948; https://doi.org/10.3390/app15073948 - 3 Apr 2025
Viewed by 603
Abstract
This work concerns the spray drying of probiotic bacteria Lacticaseibacillus rhamnosus GG suspended in a solution of starch, whey protein concentrate, soy lecithin, and ascorbic acid, with additional selected natural plant-origin liquid oils. The aim of this study was to examine these oils [...] Read more.
This work concerns the spray drying of probiotic bacteria Lacticaseibacillus rhamnosus GG suspended in a solution of starch, whey protein concentrate, soy lecithin, and ascorbic acid, with additional selected natural plant-origin liquid oils. The aim of this study was to examine these oils and their concentrations (20% and 30%) on bacterial viability during the spray drying (inlet temperature was 180 °C, outlet temperature from 50 to 54 °C, feed rate around 9 mL/min) and storage for 4 weeks at 4 °C and 20 °C, with attempts to explain the protective mechanism in respect including their fatty acid composition. The viability of microencapsulated bacteria, moisture content, water activity, color properties, morphology, particle size of obtained powders, and thermal properties of encapsulated oils were evaluated. The highest viability of bacterial cells after spray drying 83.7% and 86.0%, was recorded with added borage oil respectively with 20% and 30% oil content. This oil has a lower content of oleic and linoleic acid compared to other applied oils, but a high content of both vitamin E and γ- linoleic acid. However, this study did not confirm unambiguously whether and which of the components present in natural plant oils specifically affect the overall viability of bacteria during spray drying. Full article
(This article belongs to the Special Issue New Advances in Functional Foods and Nutraceuticals)
Show Figures

Figure 1

22 pages, 16108 KiB  
Article
Marine-Derived Enterococcus faecalis HY0110 as a Next-Generation Functional Food Probiotic: Comprehensive In Vitro and In Vivo Bioactivity Evaluation and Synergistic Fermentation of Periplaneta americana Extract Powder
by Feiyun Huang, Nan Yang, Qingqing Zhang, Cuiling Luo, Jingheng Wang, Yu Yang, Bisong Yue, Peng Chen and Xiuyue Zhang
Foods 2025, 14(7), 1181; https://doi.org/10.3390/foods14071181 - 28 Mar 2025
Viewed by 1158
Abstract
Addressing the escalating global burdens of inflammatory bowel disease and antimicrobial resistance demanded innovative food-based approaches to fortify gut health and suppress pathogens. We introduced a novel edible probiotic, Enterococcus faecalis HY0110, isolated from marine Thunnus thynnus. Through comprehensive in vitro, in [...] Read more.
Addressing the escalating global burdens of inflammatory bowel disease and antimicrobial resistance demanded innovative food-based approaches to fortify gut health and suppress pathogens. We introduced a novel edible probiotic, Enterococcus faecalis HY0110, isolated from marine Thunnus thynnus. Through comprehensive in vitro, in vivo, and metabolomic analyses, we demonstrated its superior antibacterial effects compared to Lactobacillus rhamnosus GG, along with significantly enhanced antioxidant and free-radical scavenging capacities. Notably, elevated acetic acid production strongly correlated with its antimicrobial efficacy (R ≥ 0.999). HY0110 also exerted antiproliferative effects on HT-29 colorectal cancer cells by attenuating β-catenin and BCL-2 expression while upregulating pro-apoptotic markers P62 and c-PARP. In a DSS-induced colitis model, HY0110 alleviated inflammation, restored gut microbial homeostasis, and enhanced deterministic processes in community assembly dynamics. Furthermore, fermenting Periplaneta americana powder with HY0110 triggered extensive metabolic remodeling, notably a 668.73-fold rise in astragaloside A, plus increases in L-Leucyl-L-Alanine, S-lactoylglutathione, and 16,16-dimethyl prostaglandin A1. These shifts diminished harmful components and amplified essential amino acids and peptides to bolster immune modulation, redox balance, and anti-inflammatory responses. This work established a transformative paradigm for utilizing marine probiotics and novel entomological substrates in functional foods, presenting strategic pathways for precision nutrition and inflammatory disease management. Full article
Show Figures

Graphical abstract

14 pages, 1700 KiB  
Article
In Vivo Study on the Salivary Kinetics of Two Probiotic Strains Delivered via Chewing Gum
by Silvia Cirio, Claudia Salerno, Simone Domenico Guglielmetti, Valerio Mezzasalma, Andrea Sarrica, Natalja Kirika, Guglielmo Campus and Maria Grazia Cagetti
Microorganisms 2025, 13(4), 721; https://doi.org/10.3390/microorganisms13040721 - 24 Mar 2025
Viewed by 861
Abstract
Probiotics are increasingly used to promote oral health, with Lacticaseibacillus rhamnosus demonstrating proven effectiveness. Additionally, Heyndrickxia coagulans shows promising potential in this field. Chewing gum has recently been proposed as an innovative delivery method for probiotics. This study aimed to evaluate the kinetics [...] Read more.
Probiotics are increasingly used to promote oral health, with Lacticaseibacillus rhamnosus demonstrating proven effectiveness. Additionally, Heyndrickxia coagulans shows promising potential in this field. Chewing gum has recently been proposed as an innovative delivery method for probiotics. This study aimed to evaluate the kinetics in saliva of Heyndrickxia coagulans SNZ1969® and Lacticaseibacillus rhamnosus GG in microencapsulated and non-microencapsulated forms (LGG®) following their administration via sugar-free chewing gums. A randomized cross-over trial was conducted involving 10 volunteers. Participants chewed gums containing one of the probiotic strains for 10 min. Saliva samples were collected at baseline (T0) and six subsequent time points over 2 h (T1–T6). Colony-forming units (CFUs) were identified and quantified. The Tukey’s range test was applied to make pairwise comparisons between different probiotics at every time point, between different time points of the same probiotic, and between the area under the curve describing the kinetics of different probiotics in saliva. At T1, all probiotics exhibited peak counts, followed by a gradual decline until T6. H. coagulans SNZ1969® achieved the highest counts at T1, T2, and T3 (mean log10 CFU/mL: 6.1 ± 0.5; 5.8 ± 0.5; 5.6 ± 0.5, respectively), while the non-microencapsulated form of LGG® peaked at T4, T5, and T6 (mean log10 CFU/mL: 4.0 ± 0.7; 3.8 ± 0.9; 3.3 ± 1.3, respectively). The participants reported no adverse effects. Probiotics were detectable in saliva up to 2 h post-administration via chewing gum, indicating its suitability as a delivery vehicle. However, significant variability was observed among participants. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

29 pages, 4262 KiB  
Systematic Review
Effectiveness of Probiotics, Prebiotics, and Symbiotic Supplementation in Cystic Fibrosis Patients: A Systematic Review and Meta-Analysis of Clinical Trials
by Freiser Eceomo Cruz Mosquera, Claudia Lorena Perlaza, Anisbed Naranjo Rojas, Saray Murillo Rios, Alejandra Carrero Gallego, Sara Isabel Fischersworring, Juan Sebastián Rodríguez and Yamil Liscano
Medicina 2025, 61(3), 489; https://doi.org/10.3390/medicina61030489 - 12 Mar 2025
Cited by 4 | Viewed by 2218
Abstract
Background and Objectives: Cystic fibrosis (CF), caused by CFTR gene mutations, primarily affects the respiratory and gastrointestinal systems. Microbiota modulation through probiotics, prebiotics, or synbiotics may help restore microbial diversity and reduce inflammation. This study aimed to evaluate their efficacy in CF. [...] Read more.
Background and Objectives: Cystic fibrosis (CF), caused by CFTR gene mutations, primarily affects the respiratory and gastrointestinal systems. Microbiota modulation through probiotics, prebiotics, or synbiotics may help restore microbial diversity and reduce inflammation. This study aimed to evaluate their efficacy in CF. Materials and Methods: A systematic review and meta-analysis of randomized controlled trials (RCTs) published between 2000 and 2024 was conducted in Cochrane, ScienceDirect, Web of Science, LILAC, BMC, PubMed, and SCOPUS following PRISMA guidelines. Methodological quality was assessed using the Jadad scale, and RevMan 5.4® estimated effects on pulmonary function (FEV1), exacerbations, hospitalizations, quality of life, and inflammatory markers. Results: Thirteen RCTs (n = 552), mostly in pediatric populations, were included. Most examined probiotics (e.g., Lactobacillus rhamnosus GG, L. reuteri), while four used synbiotics. Several studies reported reduced fecal calprotectin and proinflammatory interleukins (e.g., IL-6, IL-8), suggesting an anti-inflammatory effect. However, no significant differences were observed regarding hospitalizations or quality of life. Additionally, none of the studies documented serious adverse events associated with the intervention. The meta-analysis showed no significant decrease in exacerbations (RR = 0.81; 95% CI = 0.48–1.37; p = 0.43) or improvements in FEV1 (MD = 4.7; 95% CI = −5.4 to 14.8; p = 0.37), even in subgroup analyses. Sensitivity analyses did not modify the effect of the intervention on pulmonary function or exacerbation frequency, supporting the robustness of the findings. Conclusions: Current evidence suggests that probiotics or synbiotics yield inconsistent clinical benefits in CF, although some reduction in inflammatory markers may occur. Larger, multicenter RCTs with longer follow-up are needed for clearer conclusions. Until more definitive evidence is available, these supplements should be considered experimental adjuncts rather than standard interventions for CF management. Full article
Show Figures

Figure 1

7 pages, 256 KiB  
Proceeding Paper
Lacticaseibacillus rhamnosus GG and Lactobacillus casei Shirota Growth on a Medium Enriched with Rye Protein, and Assessment of DPP-IV Inhibitory Activity
by Areli Elizabeth García-Escamilla, Zaira Daniela Solís-Macías, Gabriela Mariana Rodríguez-Serrano, Luis Guillermo González-Olivares, Jesús Guadalupe Pérez-Flores, Elizabeth Contreras-López, Laura García-Curiel and Emmanuel Pérez-Escalante
Biol. Life Sci. Forum 2024, 40(1), 34; https://doi.org/10.3390/blsf2024040034 - 18 Feb 2025
Viewed by 1376
Abstract
Due to climate change and the development of sustainable foods, protein vegetable sources are being considered as promising food commodities. Fermentation is an ancient tool for obtaining bioactive compounds, and has been exploited for bioactive peptide production from different sources. Thus, this work [...] Read more.
Due to climate change and the development of sustainable foods, protein vegetable sources are being considered as promising food commodities. Fermentation is an ancient tool for obtaining bioactive compounds, and has been exploited for bioactive peptide production from different sources. Thus, this work aimed to evaluate growth and the antidiabetic peptides released from a rye-enriched medium fermented by probiotics. The culture was made with 7.5% rye protein isolate and 1% glucose, with buffering at pH = 6.8. Fermentation began with 1% inoculum addition and was performed for 24 h. The proposed medium allowed the growth of L. rhamnosus GG and L. casei Shirota to reach concentrations of 9.72 and 10.52 log cfu/mL, respectively, superior to those recommended to obtain beneficial effects on humans. In addition, the nitrogen demands of each strain tested produced peptides capable of inhibiting the DPP-IV enzyme at percentages between 20 and 27%, which converted the hydrolysates into an interesting tool for glycemic control. Finally, rye fermentation by probiotics is a promising process for developing plant-based products with functional properties. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Foods)
Back to TopTop