Lacticaseibacillus rhamnosus GG and Lactobacillus casei Shirota Growth on a Medium Enriched with Rye Protein, and Assessment of DPP-IV Inhibitory Activity †
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taveira, I.C.; Nogueira, K.M.V.; Oliveira, D.L.G.D.; Silva, R.D.N. Fermentation: Humanitys oldest biotechnological tool. Front. Young Minds 2021, 9, 568656. [Google Scholar] [CrossRef]
- Venegas-Ortega, M.G.; Flores-Gallegos, A.C.; Martínez-Hernández, J.L.; Aguilar, C.N.; Nevárez-Moorillón, G.V. Production of bioactive peptides from lactic acid bacteria: A sustainable approach for healthier foods. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1039–1051. [Google Scholar] [CrossRef] [PubMed]
- Chai, K.F.; Voo, A.Y.H.; Chen, W.N. Bioactive peptides from food fermentation: A comprehensive review of their sources, bioactivities, applications, and future development. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3825–3885. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Wu, Z.; Dai, Z.; Wang, G.; Wu, G. Protein hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance. J. Anim. Sci. Biotechnol. 2017, 8, 24. [Google Scholar] [CrossRef]
- Akbarian, M.; Khani, A.; Eghbalpour, S.; Uversky, V.N. Bioactive peptides: Synthesis, sources, applications, and proposed mechanisms of action. Int. J. Mol. Sci. 2022, 23, 1445. [Google Scholar] [CrossRef]
- Singh, B.P.; Bangar, S.P.; Alblooshi, M.; Ajayi, F.F.; Mudgil, P.; Maqsood, S. Plant-derived proteins as a sustainable source of bioactive peptides: Recent research updates on emerging production methods, bioactivities, and potential application. Crit. Rev. Food Sci. Nutr. 2023, 63, 9539–9560. [Google Scholar] [CrossRef] [PubMed]
- Añon, M.C.; Quiroga, A.; Scilingo, A.; Tironi, V. Plant Bioactive Peptides: From Oilseed, Legume, Cereal, Fruit, and Vegetable. In Handbook of Food Bioactive Ingredients: Properties and Applications, 1st ed.; Jafari, S.M., Rashidinejad, A., Simal-Gandara, J., Eds.; Springer International Publishing: Basingstoke, UK, 2023; Volume 1, pp. 907–940. [Google Scholar]
- Zhang, W.; Boateng, I.D.; Xu, J.; Zhang, Y. Proteins from Legumes, Cereals, and Pseudo-Cereals: Composition, Modification, Bioactivities, and Applications. Foods 2024, 13, 1974. [Google Scholar] [CrossRef] [PubMed]
- Erem, E.; Kilic-Akyilmaz, M. The role of fermentation with lactic acid bacteria in quality and health effects of plant-based dairy analogues. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13402. [Google Scholar] [CrossRef] [PubMed]
- Gille, D.; Schmid, A.; Walther, B.; Vergères, G. Fermented food and non-communicable chronic diseases: A review. Nutrients 2018, 10, 448. [Google Scholar] [CrossRef] [PubMed]
- Rollán, G.C.; Gerez, C.L.; LeBlanc, J.G. Lactic fermentation as a strategy to improve the nutritional and functional values of pseudocereals. Front. Nutr. 2019, 6, 98. [Google Scholar] [CrossRef] [PubMed]
- Aderinola, T.A.; Duodu, K.G. Production, health-promoting properties and characterization of bioactive peptides from cereal and legume grains. BioFactors 2022, 4, 972–992. [Google Scholar] [CrossRef] [PubMed]
- Orona-Tamayo, D.; Valverde, M.E.; Paredes-López, O. Bioactive peptides from selected latin american food crops–A nutraceutical and molecular approach. Crit. Rev. Food Sci. Nutr. 2019, 59, 1949–1975. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela Zamudio, F.; Segura Campos, M.R. Amaranth, quinoa and chia bioactive peptides: A comprehensive review on three ancient grains and their potential role in management and prevention of Type 2 diabetes. Crit. Rev. Food Sci. Nutr. 2022, 62, 2707–2721. [Google Scholar] [CrossRef] [PubMed]
- Lobo, M.O.; Mosso, A.L.; Jiménez, M.D.; Sammán, N. Ingredients of High Nutritional Value Obtained from Latin-American Crops through Biotechnology. In Latin-American Seeds, 1st ed.; Haros, C.M., Reguera, M., Sammán, N., Paredes-López, O., Eds.; CRC Press: Boca Raton, FL, USA, 2023; Volume 1, pp. 371–400. [Google Scholar]
- Tachie, C.Y.; Onuh, J.O.; Aryee, A.N. Nutritional and potential health benefits of fermented food proteins. J. Sci. Food Agric. 2024, 104, 1223–1233. [Google Scholar] [CrossRef]
- Ali, M.K.; Pearson-Stuttard, J.; Selvin, E.; Gregg, E.W. Interpreting global trends in type 2 diabetes complications and mortality. Diabetologia 2022, 65, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P.; Sandhu, K.S.; Purewal, S.S.; Kaur, M.; Singh, S.K. Rye: A wonder crop with industrially important macromolecules and health benefits. Food Res. Int. 2021, 150, 110769. [Google Scholar] [CrossRef] [PubMed]
- Dziki, D. Rye flour and rye bran: New perspectives for use. Processes 2022, 10, 293. [Google Scholar] [CrossRef]
- Deleu, L.J.; Lemmens, E.; Redant, L.; Delcour, J.A. The major constituents of rye (Secale cereale L.) flour and their role in the production of rye bread, a food product to which a multitude of health aspects are ascribed. Cereal Chem. 2020, 97, 739–754. [Google Scholar] [CrossRef]
- Islas-Martínez, D.; Ávila-Vargas, Y.N.; Rodríguez-Serrano, G.M.; González-Olivares, L.G.; Pérez-Flores, J.G.; Contreras-López, E.; Olloqui, E.J.; Pérez-Escalante, E. Multi-Bioactive Potential of a Rye Protein Isolate Hydrolysate by Enzymatic Processes. Biol. Life Sci. Forum 2023, 26, 38. [Google Scholar] [CrossRef]
- Naghili, H.; Tajik, H.; Mardani, K.; Rouhani, S.M.R.; Ehsani, A.; Zare, P. Validation of drop plate technique for bacterial enumeration by parametric and nonparametric tests. Vet. Res. Forum 2013, 4, 179–183. [Google Scholar]
- Adler-Nissen, J. Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. J. Agric. Food Chem. 1979, 2, 1256–1262. [Google Scholar] [CrossRef] [PubMed]
- Nongonierma, A.B.; FitzGerald, R.J. Prospects for the management of type 2 diabetes using food protein-derived peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activity. Curr. Opin. Food Sci. 2016, 8, 19–24. [Google Scholar] [CrossRef]
- Kocková, M.; Dilongová, M.; Hybenová, E.; Valík, L.U. Evaluation of cereals and pseudocereals suitability for the development of new probiotic foods. J. Chem. 2013, 2013, 414303. [Google Scholar] [CrossRef]
- Matejčeková, Z.; Liptáková, D.; Valík, Ľ. Functional probiotic products based on fermented buckwheat with Lactobacillus rhamnosus. LWT-Food Sci. Technol. 2017, 81, 35–41. [Google Scholar] [CrossRef]
- Němečková, I.; Dragounová, H.; Pechačová, M.; Rysova, J.; Roubal, P. Fermentation of vegetable substrates by lactic acid bacteria as a basis of functional foods. Czech J. Food Sci. 2011, 29, S42–S48. [Google Scholar] [CrossRef]
- Ziarno, M.; Cichońska, P. Lactic acid bacteria-fermentable cereal-and pseudocereal-based beverages. Microorganisms 2021, 9, 2532. [Google Scholar] [CrossRef] [PubMed]
- Nithya, A.; Misra, S.; Panigrahi, C.; Dalbhagat, C.G.; Mishra, H.N. Probiotic potential of fermented foods and their role in non-communicable diseases management: An understanding through recent clinical evidences. Food Chem. Adv. 2023, 3, 100381. [Google Scholar] [CrossRef]
- Moiseenko, K.V.; Glazunova, O.A.; Fedorova, T.V. Fermentation of Rice, Oat, and Wheat Flour by Pure Cultures of Common Starter Lactic Acid Bacteria: Growth Dynamics, Sensory Evaluation, and Functional Properties. Foods 2024, 13, 2414. [Google Scholar] [CrossRef] [PubMed]
- González-Olivares, L.G.; Jiménez-Guzmán, J.; Cruz-Guerrero, A.; Rodríguez-Serrano, G.; Gómez-Ruiz, L.; García-Garibay, M. Liberación de péptidos bioactivos por bacterias lácticas en leches fermentadas comerciales. Rev. Mex. Ing. Quim. 2011, 10, 179–188. [Google Scholar]
- Pérez-Escalante, E.; Jaimez-Ordaz, J.; Castañeda-Ovando, A.; Contreras-López, E.; Añorve-Morga, J.; González-Olivares, L.G. Antithrombotic activity of milk protein hydrolysates by lactic acid bacteria isolated from commercial fermented milks. Braz. Arch. Biol. Technol. 2018, 61, e18180132. [Google Scholar] [CrossRef]
- Olvera-Rosales, L.B.; Pérez-Escalante, E.; Castañeda-Ovando, A.; Contreras-López, E.; Cruz-Guerrero, A.E.; Regal-López, P.; Cardelle-Cobas, A.; González-Olivares, L.G. ACE-Inhibitory Activity of Whey Proteins Fractions Derived of Fermentation by Lacticaseibacillus rhamnosus GG and Streptococcus thermophilus SY-102. Foods 2023, 12, 2416. [Google Scholar] [CrossRef] [PubMed]
- Olvera-Rosales, L.B.; Cruz-Guerrero, A.E.; Jaimez-Ordaz, J.; Pérez-Escalante, E.; Quintero-Lira, A.; Ramírez-Moreno, E.; ContrerasLópez, E.; González-Olivares, L.G. Differences in the Proteolytic System of Lactic Acid Bacteria Affect the Release of DPP-IV Inhibitory Peptides from Whey Proteins. Dairy 2023, 4, 515–526. [Google Scholar] [CrossRef]
- Feng, L.; Xie, Y.; Peng, C.; Liu, Y.; Wang, H. A novel antidiabetic food produced via solid-state fermentation of Tartary buckwheat by L. plantarum TK9 and L. paracasei TK1501. Food Technol. Biotech. 2018, 56, 373. [Google Scholar] [CrossRef] [PubMed]
- Garzón, A.G.; Veras, F.F.; Brandelli, A.; Drago, S.R. Bio-functional and prebiotics properties of products based on whole grain sorghum fermented with lactic acid bacteria. J. Sci. Food Agric. 2024, 104, 2971–2979. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Lu, S.; Liu, J.; Yang, S.; Yan, Q.; Jiang, Z. Physicochemical properties and bioactivities of rice beans fermented by Bacillus amyloliquefaciens. Engineering 2021, 7, 219–225. [Google Scholar] [CrossRef]
Lactic Acid Bacteria Strain | Bacterial Concentration (Log CFU/mL) | Free Amino Groups Concentration (mg/L) | DPP-IV Inhibition (%) | |||
---|---|---|---|---|---|---|
0 h | 24 h | 0 h | 24 h | 0 h | 24 h | |
L. rhamnosus GG | 7.58 ± 0.02 b | 9.72 ± 0.10 a | 163.33 ± 6.97 a | 167.50 ± 1.54 a | 5.72 ± 0.14 b | 20.32 ± 0.95 a |
L. casei Shirota | 8.47 ± 0.07 b | 10.52 ± 0.07 a | 11.80 ± 0.00 b | 891.78 ± 48.92 a | 10.37 ± 1.04 b | 27.04 ± 1.57 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Escamilla, A.E.; Solís-Macías, Z.D.; Rodríguez-Serrano, G.M.; González-Olivares, L.G.; Pérez-Flores, J.G.; Contreras-López, E.; García-Curiel, L.; Pérez-Escalante, E. Lacticaseibacillus rhamnosus GG and Lactobacillus casei Shirota Growth on a Medium Enriched with Rye Protein, and Assessment of DPP-IV Inhibitory Activity. Biol. Life Sci. Forum 2024, 40, 34. https://doi.org/10.3390/blsf2024040034
García-Escamilla AE, Solís-Macías ZD, Rodríguez-Serrano GM, González-Olivares LG, Pérez-Flores JG, Contreras-López E, García-Curiel L, Pérez-Escalante E. Lacticaseibacillus rhamnosus GG and Lactobacillus casei Shirota Growth on a Medium Enriched with Rye Protein, and Assessment of DPP-IV Inhibitory Activity. Biology and Life Sciences Forum. 2024; 40(1):34. https://doi.org/10.3390/blsf2024040034
Chicago/Turabian StyleGarcía-Escamilla, Areli Elizabeth, Zaira Daniela Solís-Macías, Gabriela Mariana Rodríguez-Serrano, Luis Guillermo González-Olivares, Jesús Guadalupe Pérez-Flores, Elizabeth Contreras-López, Laura García-Curiel, and Emmanuel Pérez-Escalante. 2024. "Lacticaseibacillus rhamnosus GG and Lactobacillus casei Shirota Growth on a Medium Enriched with Rye Protein, and Assessment of DPP-IV Inhibitory Activity" Biology and Life Sciences Forum 40, no. 1: 34. https://doi.org/10.3390/blsf2024040034
APA StyleGarcía-Escamilla, A. E., Solís-Macías, Z. D., Rodríguez-Serrano, G. M., González-Olivares, L. G., Pérez-Flores, J. G., Contreras-López, E., García-Curiel, L., & Pérez-Escalante, E. (2024). Lacticaseibacillus rhamnosus GG and Lactobacillus casei Shirota Growth on a Medium Enriched with Rye Protein, and Assessment of DPP-IV Inhibitory Activity. Biology and Life Sciences Forum, 40(1), 34. https://doi.org/10.3390/blsf2024040034