In Vivo Study on the Salivary Kinetics of Two Probiotic Strains Delivered via Chewing Gum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of the Study
2.2. Sample Selection
2.3. Chewing Gums Production
- -
- 6 × 108 CFU of Lacticaseibacillus rhamnosus LGG® (non-microencapsulated form);
- -
- 2 × 108 CFU of Lacticaseibacillus rhamnosus GG (microencapsulated);
- -
- 5 × 108 CFU of Heyndrickxia coagulans SNZ1969®.
2.4. Use of Chewing Gum
2.5. Microbiological Analyses
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EFSA | European Food Safety Authority |
CFUs | Colony-Forming Units |
MDR | Maximum Recovery Diluent |
References
- Fiorillo, L. Medicina Editorial Oral Health: The First Step to Well-Being. Medicina 2019, 55, 676. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert Consensus Document. The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Rasaei, N.; Heidari, M.; Esmaeili, F.; Khosravi, S.; Baeeri, M.; Tabatabaei-Malazy, O.; Emamgholipour, S. The Effects of Prebiotic, Probiotic or Synbiotic Supplementation on Overweight/Obesity Indicators: An Umbrella Review of the Trials’ Meta-Analyses. Front. Endocrinol. 2024, 15, 1277921. [Google Scholar] [CrossRef]
- Qing, Q.; Chen, Y.; Zheng, D.K.; Sun, M.L.; Xie, Y.; Zhang, S.H. Systematic Review with Meta-Analysis: Effects of Probiotic Fungi on Irritable Bowel Syndrome. Benef. Microbes 2023, 14, 303–315. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; He, Y.; Zhang, D.; Zhang, S. Probiotics for the Prevention of Gestational Diabetes Mellitus: A Meta-Analysis of Randomized Controlled Trials. Biomol. Biomed. 2024, 24, 1092–1104. [Google Scholar] [CrossRef]
- Wei, K.; Liao, X.; Yang, T.; He, X.; Yang, D.; Lai, L.; Lang, J.; Xiao, M.; Wang, J. Efficacy of Probiotic Supplementation in the Treatment of Psoriasis-A Systematic Review and Meta-Analysis. J. Cosmet. Dermatol. 2024, 23, 2361–2367. [Google Scholar] [CrossRef]
- Peng, T.R.; Chen, S.M.; Lee, M.C. Effectiveness of Probiotic/Prebiotic/Synbiotic Treatments on Anxiety: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Affect. Disord. 2024, 353, 36–37. [Google Scholar] [CrossRef]
- Chen, T.; Wang, J.; Liu, Z.; Gao, F. Effect of Supplementation with Probiotics or Synbiotics on Cardiovascular Risk Factors in Patients with Metabolic Syndrome: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Front. Endocrinol. 2024, 14, 1282699. [Google Scholar] [CrossRef]
- Prebiotic Ingredients Market Industry Leaders, Size, Share and Trends Report. Available online: https://www.marketsandmarkets.com/ResearchInsight/prebiotics-ingredients-market.asp (accessed on 1 May 2024).
- Probiotics Market Size, Share, Analysis and Growth Trends Report by Product Type (Funcional Food and Beverages (FnB), Dietary Supplements, and Feed), Ingredient (Bacteria and Yeast), End User (Human and Animal), Distribution Channel and Region—Global Forecast to 2029. Available online: https://www.marketsandmarkets.com/market-reports/probiotics-market-69.html (accessed on 10 January 2025).
- Lai, S.; Lingström, P.; Cagetti, M.G.; Cocco, F.; Meloni, G.; Arrica, M.A.; Campus, G. Effect of Lactobacillus Brevis CD2 Containing Lozenges and Plaque PH and Cariogenic Bacteria in Diabetic Children: A Randomised Clinical Trial. Clin. Oral Investig. 2021, 25, 115–123. [Google Scholar] [CrossRef]
- Motta, P.d.B.; Gonçalves, M.L.L.; Gallo, J.M.A.S.; Sobral, A.P.T.; Motta, L.J.; Mayer, M.P.A.; Kawamoto, D.; de Andrade, D.C.; Santos, E.M.; Fernandes, K.P.S.; et al. Short Term Effect of Antimicrobial Photodynamic Therapy and Probiotic L. Salivarius WB21 on Halitosis: A Controlled and Randomized Clinical Trial. PLoS ONE 2024, 19, e0297351. [Google Scholar] [CrossRef]
- Stuermer, E.K.; Bang, C.; Giessler, A.; Smeets, R.; Janke, T.M.; Seki, F.D.; Debus, E.S.; Franke, A.; Augustin, M. Effect of Oral Multispecies Probiotic on Wound Healing, Periodontitis and Quality of Life on Patients with Diabetes. J. Wound Care 2024, 33, 394–407. [Google Scholar] [CrossRef] [PubMed]
- Marsh, P.D. Are Dental Diseases Examples of Ecological Catastrophes? Microbiology 2003, 149, 279–294. [Google Scholar] [CrossRef] [PubMed]
- Chugh, P.; Dutt, R.; Sharma, A.; Bhagat, N.; Dhar, M.S. A Critical Appraisal of the Effects of Probiotics on Oral Health. J. Funct. Foods 2020, 70, 103985. [Google Scholar] [CrossRef]
- Lopes, P.C.; Gomes, A.T.P.C.; Mendes, K.; Blanco, L.; Correia, M.J. Unlocking the Potential of Probiotic Administration in Caries Management: A Systematic Review. BMC Oral Health 2024, 24, 216. [Google Scholar] [CrossRef]
- Yli-Knuuttila, H.; Snäll, J.; Kari, K.; Meurman, J.H. Colonization of Lactobacillus Rhamnosus GG in the Oral Cavity. Oral Microbiol. Immunol. 2006, 21, 129–131. [Google Scholar] [CrossRef]
- Alanzi, A.; Honkala, S.; Honkala, E.; Varghese, A.; Tolvanen, M.; Söderling, E. Effect of Lactobacillus Rhamnosus and Bifidobacterium Lactis on Gingival Health, Dental Plaque, and Periodontopathogens in Adolescents: A Randomised Placebocontrolled Clinical Trial. Benef. Microbes 2018, 9, 593–602. [Google Scholar] [CrossRef]
- Toiviainen, A.; Jalasvuori, H.; Lahti, E.; Gursoy, U.; Salminen, S.; Fontana, M.; Flannagan, S.; Eckert, G.; Kokaras, A.; Paster, B.; et al. Impact of Orally Administered Lozenges with Lactobacillus Rhamnosus GG and Bifidobacterium Animalis Subsp. Lactis BB-12 on the Number of Salivary Mutans Streptococci, Amount of Plaque, Gingival Inflammation and the Oral Microbiome in Healthy Adults. Clin. Oral Investig. 2015, 19, 77–83. [Google Scholar] [CrossRef]
- Patil, A.V.; Shetty, S.S.; Padhye, A.M. Comparative Evaluation of the Inhibitory Effect of Lactobacillus Rhamnosus on Halitosis-Causing Bacteria: An Invitro Microbiological Study. Cureus 2023, 15, e38568. [Google Scholar] [CrossRef]
- Chantanawilas, P.; Pahumunto, N.; Thananimit, S.; Teanpaisan, R. Anticandidal Activity of Various Probiotic Lactobacillus Strains and Their Efficacy Enhanced by Prebiotic Supplementation. Curr. Microbiol. 2024, 81, 271. [Google Scholar] [CrossRef]
- Elshaghabee, F.M.F.; Rokana, N.; Gulhane, R.D.; Sharma, C.; Panwar, H. Bacillus As Potential Probiotics: Status, Concerns, and Future Perspectives. Front. Microbiol. 2017, 8, 1490. [Google Scholar] [CrossRef]
- Ratna Sudha, M.; Neelamraju, J.; Surendra Reddy, M.; Kumar, M. Evaluation of the Effect of Probiotic Bacillus Coagulans Unique IS2 on Mutans Streptococci and Lactobacilli Levels in Saliva and Plaque: A Double-Blind, Randomized, Placebo-Controlled Study in Children. Int. J. Dent. 2020, 2020, 8891708. [Google Scholar] [CrossRef] [PubMed]
- Rajam, R.; Subramanian, P. Encapsulation of Probiotics: Past, Present and Future. Beni Suef Univ. J. Basic. Appl. Sci. 2022, 11, 46. [Google Scholar] [CrossRef]
- Jebin, A.A.; Suresh, A. Oral Microbial Shift Induced by Probiotic Bacillus Coagualans along with Its Clinical Perspectives. J. Oral Biol. Craniofac. Res. 2023, 13, 398–402. [Google Scholar]
- Jindal, G.; Pandey, R.K.; Agarwal, J.; Singh, M. A Comparative Evaluation of Probiotics on Salivary Mutans Streptococci Counts in Indian Children. Eur. Arch. Paediatr. Dent. 2011, 12, 211–215. [Google Scholar] [CrossRef]
- Koopaie, M.; Fatahzadeh, M.; Jahangir, S.; Bakhtiari, R. Comparison of the Effect of Regular and Probiotic Cake (Bacillus coagulans) on Salivary Ph and Streptococcus Mutans Count. Dent. Med. Probl. 2019, 56, 33–38. [Google Scholar] [CrossRef]
- Jagadeesh, K.M.; Shenoy, N.; Talwar, A.; Shetty, S. Clinical Effect of Pro-Biotic Containing Bacillus Coagulans on Plaque Induced Gingivitis: A Randomised Clinical Pilot Study. J. Health Allied Sci. NU 2017, 7, 007–012. [Google Scholar] [CrossRef]
- Koutsoumanis, K.; Allende, A.; Álvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; de Cesare, A.; Hilbert, F.; Lindqvist, R.; Nauta, M.; et al. Update of the List of Qualified Presumption of Safety (QPS) Recommended Microorganisms Intentionally Added to Food or Feed as Notified to EFSA. EFSA J. 2023, 21, 7747. [Google Scholar] [CrossRef]
- Alanber, M.N.; Alharbi, N.S.; Khaled, J.M. Evaluation of Multidrug-Resistant Bacillus Strains Causing Public Health Risks in Powdered Infant Milk Formulas. J. Infect. Public Health 2020, 13, 1462–1468. [Google Scholar] [CrossRef]
- Beiswanger, B.B.; Boneta, A.E.; Mau, M.S.; Katz, B.P.; Proskin, H.M.; Stookey, G.K. The Effect of Chewing Sugar-Free Gum after Meals on Clinical Caries Incidence. J. Am. Dent. Assoc. 1998, 129, 1623–1626. [Google Scholar] [CrossRef]
- Szöke, J.; Bánóczy, J.; Proskin, H.M. Effect of After-Meal Sucrose-Free Gum-Chewing on Clinical Caries. J. Dent. Res. 2005, 60, 1725–1729. [Google Scholar] [CrossRef]
- Dawes, C.; Macpherson, L.M. Effects of Nine Different Chewing-Gums and Lozenges on Salivary Flow Rate and PH. Caries Res. 1992, 26, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Li, X.; Ma, H.; Yin, W.; Que, K.; Hu, D.; Dodds, M.; Tian, M. Assessment of Chewing Sugar-Free Gums for Oral Debris Reduction: A Randomized Controlled Crossover Clinical Trial. Am. J. Dent. 2012, 25, 118–122. [Google Scholar] [PubMed]
- Cocco, F.; Cagetti, M.G.; Majdub, O.; Campus, G. Concentration in Saliva and Antibacterial Effect of Xylitol Chewing Gum: In Vivo and In Vitro Study. Appl. Sci. 2020, 10, 2900. [Google Scholar] [CrossRef]
- Cagetti, M.G.; Brambilla, E.; Fadini, L.; Strohmenger, L. Comparative Study of Salivary and Urinary Fluoride Levels and Clearance Patterns between Fluoridated Chewing Gum and Fluoride Tablets in Children. Eur. J. Paediatr. Dent. 2002, 3, 27–32. [Google Scholar]
- European Food Safety Authority (EFSA). Outcome of a Public Consultation on the Scientific Opinion of the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) on the Appropriate Age Range for Introduction of Complementary Feeding into an Infant’s Diet†. EFSA Support. Publ. 2019, 16, 1686E. [Google Scholar] [CrossRef]
- EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). Scientific Opinion on the Re-evaluation of Butylated Hydroxytoluene BHT (E 321) as a Food Additive. EFSA J. 2012, 10, 2588. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the Substantiation of a Health Claim Related to Sugar Free Chewing Gum and Neutralisation of Plaque Acids Which Reduces the Risk of Dental Caries Pursuant to Article 14 of Regulation (EC) No 1924/2006. EFSA J. 2010, 8, 1776. [Google Scholar] [CrossRef]
- Agostoni, C.; Bresson, J.-L.; Fairweather-Tait, S.; Flynn, A.; Golly, I.; Korhonen, H.; Lagiou, P.; Løvik, M.; Marchelli, R.; Martin, A.; et al. Scientific Opinion on the Substantiation of a Health Claim Related to Sugar Free Chewing Gum and Reduction of Tooth Demineralisation Which Reduces the Risk of Dental Caries Pursuant to Article 14 of Regulation (EC) No 1924/2006. EFSA J. 2010, 8, 1775. [Google Scholar] [CrossRef]
- Surana, A.S. Chewing Gum: A Friendly Oral Mucosal Drug Delivery System. Int. J. Pharm. Sci. Rev. Res. 2010, 4, 68–71. [Google Scholar]
- Aslani, A.; Rostami, F. Medicated Chewing Gum, a Novel Drug Delivery System. J. Res. Med. Sci. 2015, 20, 403. [Google Scholar] [CrossRef]
- Krasse, P.; Carlsson, B.; Dahl, C.; Paulsson, A.; Nilsson, A.; Sinkiewicz, G. Decreased Gum Bleeding and Reduced Gingivitis by the Probiotic Lactobacillus reuteri. Swed. Dent. J. 2006, 30, 55–60. [Google Scholar] [PubMed]
- Kaur, K.; Nekkanti, S.; Madiyal, M.; Choudhary, P. Effect of Chewing Gums Containing Probiotics and Xylitol on Oral Health in Children: A Randomized Controlled Trial. J. Int. Oral Health 2018, 10, 237–243. [Google Scholar] [CrossRef]
- Çaglar, E.; Kavaloglu, S.C.; Kuscu, O.O.; Sandalli, N.; Holgerson, P.L.; Twetman, S. Effect of Chewing Gums Containing Xylitol or Probiotic Bacteria on Salivary Mutans Streptococci and Lactobacilli. Clin. Oral Investig. 2007, 11, 425–429. [Google Scholar] [CrossRef]
- Twetman, S.; Derawi, B.; Keller, M.; Ekstrand, K.; Yucel-Lindberg, T.; Stecksén-Blicks, C. Short-Term Effect of Chewing Gums Containing Probiotic Lactobacillus reuteri on the Levels of Inflammatory Mediators in Gingival Crevicular Fluid. Acta Odontol. Scand. 2009, 67, 19–24. [Google Scholar] [CrossRef]
- Keller, M.K.; Bardow, A.; Jensdottir, T.; Lykkeaa, J.; Twetman, S. Effect of Chewing Gums Containing the Probiotic Bacterium Lactobacillus reuteri on Oral Malodour. Acta Odontol. Scand. 2012, 70, 246–250. [Google Scholar] [CrossRef]
- Aslani, A.; Rafiei, S. Design, Formulation and Evaluation of Nicotine Chewing Gum. Adv. Biomed. Res. 2012, 1, 57. [Google Scholar] [CrossRef]
- Aslani, A.; Ghannadi, A.; Khalafi, Z. Design, Formulation and Evaluation of Green Tea Chewing Gum. Adv. Biomed. Res. 2014, 3, 142. [Google Scholar] [CrossRef]
- Ferrazzano, G.F.; Cantile, T.; Coda, M.; Alcidi, B.; Sangianantoni, G.; Ingenito, A.; Stasio, M.D.; Volpe, M.G. In Vivo Release Kinetics and Antibacterial Activity of Novel Polyphenols-Enriched Chewing Gums. Molecules 2016, 21, 1008. [Google Scholar] [CrossRef]
- Heller, D.; Helmerhorst, E.J.; Gower, A.C.; Siqueira, W.L.; Paster, B.J.; Oppenheim, F.G. Microbial Diversity in the Early In Vivo -Formed Dental Biofilm. Appl. Environ. Microbiol. 2016, 82, 1881–1888. [Google Scholar] [CrossRef]
- Löe, H.; Silness, J. Periodontal Disease in Pregnancy. I. Prevalence and Severity. Acta Odontol. Scand. 1963, 21, 533–551. [Google Scholar] [CrossRef]
- Silness, J.; Löe, H. Periodontal Disease in Pregnancy. II. Correlation Between Oral Hygiene and Periodontal Condtion. Acta Odontol. Scand. 1964, 22, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Rathore, S.; Desai, P.M.; Liew, C.V.; Chan, L.W.; Heng, P.W.S. Microencapsulation of Microbial Cells. J. Food Eng. 2013, 116, 369–381. [Google Scholar] [CrossRef]
- Hartel, R.W.; von Elbe, J.H. Confectionery Science and Technology; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Perotti, S.; Mantegazza, G.; Pierallini, E.; Kirika, N.; Duncan, R.; Telesca, N.; Sarrica, A.; Guglielmetti, S. Human In Vivo Assessment of the Survival and Germination of Heyndrickxia Coagulans SNZ1969 Spores Delivered via Gummy Candies. Curr. Res. Food Sci. 2024, 9, 100793. [Google Scholar] [CrossRef] [PubMed]
- Brandt, K.; Alatossava, T. Specific Identification of Certain Probiotic Lactobacillus rhamnosus Strains with PCR Primers Based on Phage-Related Sequences. Int. J. Food Microbiol. 2003, 84, 189–196. [Google Scholar] [CrossRef]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA Sequencing with Chain-Terminating Inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467. [Google Scholar] [CrossRef]
- Butera, A.; Gallo, S.; Maiorani, C.; Molino, D.; Chiesa, A.; Preda, C.; Esposito, F.; Scribante, A. Probiotic Alternative to Chlorhexidine in Periodontal Therapy: Evaluation of Clinical and Microbiological Parameters. Microorganisms 2020, 9, 69. [Google Scholar] [CrossRef]
- Schlagenhauf, U.; Rehder, J.; Gelbrich, G.; Jockel-Schneider, Y. Consumption of Lactobacillus reuteri-Containing Lozenges Improves Periodontal Health in Navy Sailors at Sea: A Randomized Controlled Trial. J. Periodontol. 2020, 91, 1328–1338. [Google Scholar] [CrossRef]
- Giannini, G.; Ragusa, I.; Nardone, G.N.; Soldi, S.; Elli, M.; Valenti, P.; Rosa, L.; Marra, E.; Stoppoloni, D.; Merlo Pich, E. Probiotics-Containing Mucoadhesive Gel for Targeting the Dysbiosis Associated with Periodontal Diseases. Int. J. Dent. 2022, 2022, 5007930. [Google Scholar] [CrossRef]
- Alemzadeh, K.; Jones, S.B.; Davies, M.; West, N. Development of a Chewing Robot with Built-in Humanoid Jaws to Simulate Mastication to Quantify Robotic Agents Release From Chewing Gums Compared to Human Participants. IEEE Trans. Biomed. Eng. 2021, 68, 492–504. [Google Scholar] [CrossRef]
- Nishigawa, K.; Suzuki, Y.; Matsuka, Y. Masticatory Performance Alters Stress Relief Effect of Gum Chewing. J. Prosthodont. Res. 2015, 59, 262–267. [Google Scholar] [CrossRef]
- Karami-Nogourani, M.; Kowsari-Isfahan, R.; Hosseini-Beheshti, M. The Effect of Chewing Gum’s Flavor on Salivary Flow Rate and PH. Dent. Res. J. 2011, 8, S71–S75. [Google Scholar]
- Qaziyani, S.D.; Pourfarzad, A.; Gheibi, S.; Nasiraie, L.R. Effect of Encapsulation and Wall Material on the Probiotic Survival and Physicochemical Properties of Synbiotic Chewing Gum: Study with Univariate and Multivariate Analyses. Heliyon 2019, 5, e02144. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, M.B.; Massaut, K.B.; Vitola, H.R.S.; Siqueira, M.F.F.; da Silva, W.P.; Fiorentini, Â.M. Antagonistic Activity of Lactobacillus Spp. and Bifidobacterium Spp. against Cariogenic Streptococcus mutans In Vitro and Viability When Added to Chewing Gum during Storage. Braz. J. Microbiol. 2023, 54, 2197–2204. [Google Scholar] [CrossRef] [PubMed]
- Arioli, S.; Koirala, R.; Taverniti, V.; Fiore, W.; Guglielmetti, S. Quantitative Recovery of Viable Lactobacillus paracasei CNCM I-1572 (L. Casei DG®) After Gastrointestinal Passage in Healthy Adults. Front. Microbiol. 2018, 9, 1720. [Google Scholar] [CrossRef]
- Radicioni, M.; Koirala, R.; Fiore, W.; Leuratti, C.; Guglielmetti, S.; Arioli, S. Survival of L. Casei DG® (Lactobacillus paracasei CNCMI1572) in the Gastrointestinal Tract of a Healthy Paediatric Population. Eur. J. Nutr. 2019, 58, 3161–3170. [Google Scholar] [CrossRef]
- Chandrasekaran, P.; Weiskirchen, S.; Weiskirchen, R. Effects of Probiotics on Gut Microbiota: An Overview. Int. J. Mol. Sci. 2024, 25, 6022. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cirio, S.; Salerno, C.; Guglielmetti, S.D.; Mezzasalma, V.; Sarrica, A.; Kirika, N.; Campus, G.; Cagetti, M.G. In Vivo Study on the Salivary Kinetics of Two Probiotic Strains Delivered via Chewing Gum. Microorganisms 2025, 13, 721. https://doi.org/10.3390/microorganisms13040721
Cirio S, Salerno C, Guglielmetti SD, Mezzasalma V, Sarrica A, Kirika N, Campus G, Cagetti MG. In Vivo Study on the Salivary Kinetics of Two Probiotic Strains Delivered via Chewing Gum. Microorganisms. 2025; 13(4):721. https://doi.org/10.3390/microorganisms13040721
Chicago/Turabian StyleCirio, Silvia, Claudia Salerno, Simone Domenico Guglielmetti, Valerio Mezzasalma, Andrea Sarrica, Natalja Kirika, Guglielmo Campus, and Maria Grazia Cagetti. 2025. "In Vivo Study on the Salivary Kinetics of Two Probiotic Strains Delivered via Chewing Gum" Microorganisms 13, no. 4: 721. https://doi.org/10.3390/microorganisms13040721
APA StyleCirio, S., Salerno, C., Guglielmetti, S. D., Mezzasalma, V., Sarrica, A., Kirika, N., Campus, G., & Cagetti, M. G. (2025). In Vivo Study on the Salivary Kinetics of Two Probiotic Strains Delivered via Chewing Gum. Microorganisms, 13(4), 721. https://doi.org/10.3390/microorganisms13040721