Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,132)

Search Parameters:
Keywords = H2O2 sensors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2441 KiB  
Article
Phosphonium Salt-Functionalized β-Cyclodextrin Film for Ultrasensitive and Selective Electrochemical Impedance Spectroscopy Detection of Perchlorate in Drinking Water
by Zeineb Baatout, Achref Jebnouni, Nawfel Sakly, Safa Teka, Nuzaiha Mohamed, Sayda Osman, Raoudha Soury, Mabrouka El Oudi, Salman Hamdan Alsaqri, Nejmeddine Smida Jaballah and Mustapha Majdoub
Polymers 2025, 17(14), 1937; https://doi.org/10.3390/polym17141937 - 15 Jul 2025
Viewed by 211
Abstract
This work represents the first use of a phosphonium salt-functionalized β-Cyclodextrin polymer (β-CDP) as a highly selective sensing membrane for monitoring the safety of drinking water against perchlorate ions (ClO4) using electrochemical impedance spectroscopy (EIS). Structural confirmation via 1H [...] Read more.
This work represents the first use of a phosphonium salt-functionalized β-Cyclodextrin polymer (β-CDP) as a highly selective sensing membrane for monitoring the safety of drinking water against perchlorate ions (ClO4) using electrochemical impedance spectroscopy (EIS). Structural confirmation via 1H NMR, 13C NMR, 31P NMR, and FT-IR spectroscopies combined with AFM and contact angle measurements demonstrate how the enhanced solubility of modified cyclodextrin improves thin film quality. The innovation lies in the synergistic combination of two detection mechanisms: the “Host-Guest” inclusion in the cyclodextrin cavity and anionic exchange between the bromide ions of the phosphonium groups and perchlorate anions. Under optimized functionalization conditions, EIS reveals high sensitivity and selectivity, achieving a record-low detection limit (LOD) of ~10−12 M and a wide linear range of detection (10−11 M–10−4 M). Sensing mechanisms at the functionalized transducer interfaces are examined through numerical fitting of Cole-Cole impedance spectra via a single relaxation equivalent circuit. Real water sample analysis confirms the sensor’s practical applicability, with recoveries between 96.9% and 109.8% and RSDs of 2.4–4.8%. Finally, a comparative study with reported membrane sensors shows that β-CDP offers superior performance, wider range, higher sensitivity, lower LOD, and simpler synthesis. Full article
(This article belongs to the Special Issue Development of Polymer Materials as Functional Coatings)
Show Figures

Figure 1

25 pages, 18692 KiB  
Article
Hydrothermally Synthesized TiO2 Nanostructures for Electrochemical Detection of H2O2 in Barley (Hordeum vulgare) Under Salt Stress and Remediation with Fe3O4 Nanoparticles
by Irena Mihailova, Marina Krasovska, Eriks Sledevskis, Vjaceslavs Gerbreders, Jans Keviss, Valdis Mizers, Inese Kokina, Ilona Plaksenkova, Marija Jermalonoka and Aleksandra Mosenoka
Chemosensors 2025, 13(7), 256; https://doi.org/10.3390/chemosensors13070256 - 14 Jul 2025
Viewed by 231
Abstract
This study presents the development of a TiO2 nanowire-based electrochemical sensor for the selective and sensitive detection of hydrogen peroxide (H2O2) under neutral pH conditions, with a particular focus on its application in analyzing plant stress. The sensor [...] Read more.
This study presents the development of a TiO2 nanowire-based electrochemical sensor for the selective and sensitive detection of hydrogen peroxide (H2O2) under neutral pH conditions, with a particular focus on its application in analyzing plant stress. The sensor exhibited a linear detection range of 0–0.5 mM, a sensitivity of 0.0393 mA · mM−1, and a detection limit of 2.8 μM in phosphate-buffered saline solution (PBS, pH 7.4). This work’s main novelty lies in the systematic investigation of the relationship between TiO2 nanostructure morphology, which is controlled by hydrothermal synthesis parameters, and the resulting sensor performance. Interference studies confirmed excellent selectivity in the presence of common electroactive species found in plant samples, such as NaCl, KNO3, glucose, citric acid, and ascorbic acid. Real sample analysis using barley plant extracts grown under salt stress and treated with Fe3O4 nanoparticles confirmed the sensor’s applicability in complex biological matrices, enabling accurate quantification of endogenously produced H2O2. Endogenous H2O2 concentrations were found to range from near-zero levels in control and Fe3O4-only treated plants, to elevated levels of up to 0.36 mM in salt-stressed samples. These levels decreased to 0.25 and 0.15 mM upon Fe3O4 nanoparticle treatment, indicating a dose-dependent mitigation of stress. This finding was supported by genome template stability (GTS) analysis, which revealed improved DNA integrity in Fe3O4-treated plants. This study takes an integrated approach, combining the development of a nanostructured sensor with physiological and molecular stress assessment. The urgent need for tools to detect stress at an early stage and manage oxidative stress in sustainable agriculture underscores its relevance. Full article
(This article belongs to the Special Issue Electrochemical Sensors and Biosensors for Environmental Detection)
Show Figures

Figure 1

18 pages, 7559 KiB  
Article
An Electrochemical Sensor for the Simultaneous Detection of Pb2+ and Cd2+ in Contaminated Seawater Based on Intelligent Mobile Detection Devices
by Zizi Zhao, Wei Qu, Chengjun Qiu, Yuan Zhuang, Kaixuan Chen, Yi Qu, Huili Hao, Wenhao Wang, Haozheng Liu and Jiahua Su
Chemosensors 2025, 13(7), 251; https://doi.org/10.3390/chemosensors13070251 - 11 Jul 2025
Viewed by 232
Abstract
Excessive levels of Pb2+ and Cd2+ in seawater pose significant combined toxicity to marine organisms, resulting in harmful effects and further threatening human health through biomagnification in the food chain. Traditional methods for detecting marine Pb2+ and Cd2+ rely [...] Read more.
Excessive levels of Pb2+ and Cd2+ in seawater pose significant combined toxicity to marine organisms, resulting in harmful effects and further threatening human health through biomagnification in the food chain. Traditional methods for detecting marine Pb2+ and Cd2+ rely on laboratory analyses, which are hindered by limitations such as sample degradation during transport and complex operational procedures. In this study, we present an electrochemical sensor based on intelligent mobile detection devices. By combining G-COOH-MWCNTs/ZnO with differential pulse voltammetry, the sensor enables the efficient, simultaneous detection of Pb2+ and Cd2+ in seawater. The G-COOH-MWCNTs/ZnO composite film is prepared via drop-coating and is applied to a glassy carbon electrode. The film is characterized using cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy, while Pb2+ and Cd2+ are quantified using differential pulse voltammetry. Using a 0.1 mol/L sodium acetate buffer (pH 5.5), a deposition potential of −1.1 V, and an accumulation time of 300 s, a strong linear correlation was observed between the peak response currents of Pb2+ and Cd2+ and their concentrations in the range of 25–450 µg/L. The detection limits were 0.535 µg/L for Pb2+ and 0.354 µg/L for Cd2+. The sensor was applied for the analysis of seawater samples from Maowei Sea, achieving recovery rates for Pb2+ ranging from 97.7% to 103%, and for Cd2+ from 97% to 106.1%. These results demonstrate that the sensor exhibits high sensitivity and stability, offering a reliable solution for the on-site monitoring of heavy metal contamination in marine environments. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Figure 1

36 pages, 2877 KiB  
Article
Dual-Oriented Targeted Nanostructured SERS Label-Free Immunosensor for Detection, Quantification, and Analysis of Breast Cancer Biomarker Concentrations in Blood Serum
by Mohammad E. Khosroshahi, Christine Gaoiran, Vithurshan Umashanker, Hayagreev Veeru and Pranav Panday
Biosensors 2025, 15(7), 447; https://doi.org/10.3390/bios15070447 - 11 Jul 2025
Viewed by 186
Abstract
In clinical applications of surface-enhanced Raman spectroscopy (SERS) immunosensors, accurately determining analyte biomarker concentrations is essential. This study presents a non-invasive approach for quantifying various breast cancer biomarkers—including human epidermal growth factor receptor II (HER-II) (2+, 3+ (I), 3+ (II), 3+ (III), and [...] Read more.
In clinical applications of surface-enhanced Raman spectroscopy (SERS) immunosensors, accurately determining analyte biomarker concentrations is essential. This study presents a non-invasive approach for quantifying various breast cancer biomarkers—including human epidermal growth factor receptor II (HER-II) (2+, 3+ (I), 3+ (II), 3+ (III), and positive IV) and CA 15-3—using a directional, plasmonically active, label-free SERS sensor. Each stage of sensor functionalization, conjugation, and biomarker interaction was verified by UV–Vis spectroscopy. Atomic force microscopy (AFM) characterized the morphology of gold nanourchin (GNU)-immobilized printed circuit board (PCB) substrates. An enhancement factor of ≈ 0.5 × 105 was achieved using Rhodamine 6G as the probe molecule. Calibration curves were initially established using standard HER-II solutions at concentrations ranging from 1 to 100 ng/mL and CA 15-3 at concentrations from 10 to 100 U/mL. The SERS signal intensities in the 620–720 nm region were plotted against concentration, yielding linear sensitivity with R2 values of 0.942 and 0.800 for HER-II and CA15-3, respectively. The same procedure was applied to breast cancer serum (BCS) samples, allowing unknown biomarker concentrations to be determined based on the corresponding calibration curves. SERS data were processed using the filtfilt filter from scipy.signal for smoothing and then baseline-corrected with the Improved Asymmetric Least Squares (IASLS) algorithm from the pybaselines.Whittaker library. Principal Component Analysis (PCA) effectively distinguished the sample groups and revealed spectral differences before and after biomarker interactions. Key Raman peaks were attributed to functional groups including N–H (primary and secondary amines), C–H antisymmetric stretching, C–N (amines), C=O antisymmetric stretching, NH3+ (amines), carbohydrates, glycine, alanine, amides III, C=N stretches, and NH2 in primary amides. Full article
Show Figures

Figure 1

17 pages, 4195 KiB  
Article
Rapid Synthesis of Highly Crystalline ZnO Nanostructures: Comparative Evaluation of Two Alternative Routes
by Emely V. Ruiz-Duarte, Juan P. Molina-Jiménez, Duber A. Avila, Cesar O. Torres and Sindi D. Horta-Piñeres
Crystals 2025, 15(7), 640; https://doi.org/10.3390/cryst15070640 - 11 Jul 2025
Viewed by 162
Abstract
Zinc oxide (ZnO) is a wide bandgap semiconductor of great scientific and technological interest due to its high exciton binding energy and outstanding structural and optical properties, making it an ideal material for applications in optoelectronics, sensors, and photocatalysis. This study presents the [...] Read more.
Zinc oxide (ZnO) is a wide bandgap semiconductor of great scientific and technological interest due to its high exciton binding energy and outstanding structural and optical properties, making it an ideal material for applications in optoelectronics, sensors, and photocatalysis. This study presents the rapid synthesis of highly crystalline ZnO nanostructures using two alternative routes: (1) direct thermal decomposition of zinc acetate and (2) a physical-green route assisted by Mangifera indica extract. Both routes were subjected to identical calcination thermal conditions (400 °C for 2 h), allowing for an objective comparison of their effects on structural, vibrational, morphological, and optical characteristics. X-ray diffraction analyses confirmed the formation of a pure hexagonal wurtzite phase in both samples, highlighting a higher crystallinity index (91.6%) and a larger crystallite size (35 nm) in the sample synthesized using the physical-green route. Raman and FTIR spectra supported these findings, revealing greater structural order. Electron microscopy showed significant morphological differences, and UV-Vis analysis showed a red shift in the absorption peak, associated with a decrease in the optical bandgap (from 3.34 eV to 2.97 eV). These results demonstrate that the physical-green route promotes significant improvements in the structural and functional properties of ZnO, without requiring changes in processing temperature or the use of additional chemicals. Full article
(This article belongs to the Special Issue Synthesis and Characterization of Oxide Nanoparticles)
Show Figures

Figure 1

16 pages, 4139 KiB  
Article
Engineering Hierarchical CuO/WO3 Hollow Spheres with Flower-like Morphology for Ultra-Sensitive H2S Detection at ppb Level
by Peishuo Wang and Xueli Yang
Chemosensors 2025, 13(7), 250; https://doi.org/10.3390/chemosensors13070250 - 11 Jul 2025
Viewed by 207
Abstract
Highly sensitive real-time detection of hydrogen sulfide (H2S) is important for human health and environmental protection due to its highly toxic properties. The development of high-performance H2S sensors remains challenging for poor selectivity, high limit detection and slow recovery [...] Read more.
Highly sensitive real-time detection of hydrogen sulfide (H2S) is important for human health and environmental protection due to its highly toxic properties. The development of high-performance H2S sensors remains challenging for poor selectivity, high limit detection and slow recovery from irreversible sulfidation. To solve these problems, we strategically prepared a layered structure of CuO-sensitized WO3 flower-like hollow spheres with CuO as the sensitizing component. A 15 wt% CuO/WO3 exhibits an ultra-high response (Ra/Rg = 571) to 10 ppm H2S (131-times of pure WO3), excellent selectivity (97-times higher than 100 ppm interference gas), and a low detection limit (100 ppb). Notably, its fast response (4 s) is accompanied by full recovery within 236 s. After 30 days of continuous testing, the response of 15 wt% CuO/WO3 decreased slightly but maintained the initial response of 90.5%. The improved performance is attributed to (1) the p-n heterojunction formed between CuO and WO3 optimizes the energy band structure and enriches the chemisorption sites for H2S; (2) the reaction of H2S with CuO generates highly conductive CuS, which significantly reduces the interfacial resistance; and (3) the hierarchical flowery hollow microsphere structure, heterojunction, and oxygen vacancy synergistically promote the desorption. This work provides a high-performance H2S gas sensor that balances response, selectivity, and response/recovery kinetics. Full article
(This article belongs to the Special Issue Recent Progress in Nano Material-Based Gas Sensors)
Show Figures

Graphical abstract

13 pages, 2602 KiB  
Article
Hollow Mesoporous ZnO/ZnCo2O4 Based on Ostwald Ripening for H2S Detection
by Hongtao Wang, Yang Liu, Yuanchao Xie, Jianan Ma, Dan Han and Shengbo Sang
Chemosensors 2025, 13(7), 239; https://doi.org/10.3390/chemosensors13070239 - 5 Jul 2025
Viewed by 253
Abstract
Mesoporous ZnO/ZnCo2O4 nanocomposites with excellent gas-sensing performance were synthesized using the Ostwald ripening method. The as-prepared ZnO/ZnCo2O4 comprised aggregated monodisperse nanoparticles, and the nanoparticle size grew with increasing thermal treatment temperature. Increasing the calcination temperature did not [...] Read more.
Mesoporous ZnO/ZnCo2O4 nanocomposites with excellent gas-sensing performance were synthesized using the Ostwald ripening method. The as-prepared ZnO/ZnCo2O4 comprised aggregated monodisperse nanoparticles, and the nanoparticle size grew with increasing thermal treatment temperature. Increasing the calcination temperature did not significantly change the overall size of the ZnO/ZnCo2O4 nanocomposites, but the pore size and specific surface area were noticeably affected. The gas-sensing results showed that ZnO/ZnCo2O4 composites calcined at 500 °C exhibited the highest response to H2S at 200 °C, with a detection limit of 500 ppb. The ZnO/ZnCo2O4 composites also exhibited remarkable selectivity, response/recovery speed, and stability. Their excellent gas-sensing performance might be attributed to their porous structure, large specific surface area, and the heterogeneous interface between ZnO and ZnCo2O4. This work not only represents a new example of the Ostwald ripening-based formation of inorganic hollow structures in a template-free aqueous solution but also provides a novel and efficient sensing material for the detection of H2S gas. Full article
(This article belongs to the Special Issue Recent Progress in Nano Material-Based Gas Sensors)
Show Figures

Figure 1

22 pages, 3063 KiB  
Article
High-Temperature Methane Sensors Based on ZnGa2O4:Er Ceramics for Combustion Monitoring
by Aleksei V. Almaev, Zhakyp T. Karipbayev, Askhat B. Kakimov, Nikita N. Yakovlev, Olzhas I. Kukenov, Alexandr O. Korchemagin, Gulzhanat A. Akmetova-Abdik, Kuat K. Kumarbekov, Amangeldy M. Zhunusbekov, Leonid A. Mochalov, Ekaterina A. Slapovskaya, Petr M. Korusenko, Aleksandra V. Koroleva, Evgeniy V. Zhizhin and Anatoli I. Popov
Technologies 2025, 13(7), 286; https://doi.org/10.3390/technologies13070286 - 4 Jul 2025
Viewed by 281
Abstract
The use of CH4 as an energy source is increasing every day. To increase the efficiency of CH4 combustion and ensure that the equipment meets ecological requirements, it is necessary to measure the CH4 concentration in the exhaust gases of [...] Read more.
The use of CH4 as an energy source is increasing every day. To increase the efficiency of CH4 combustion and ensure that the equipment meets ecological requirements, it is necessary to measure the CH4 concentration in the exhaust gases of combustion systems. To this end, sensors are required that can withstand extreme operating conditions, including temperatures of at least 600 °C, as well as high pressure and gas flow rate. ZnGa2O4, being an ultra-wide bandgap semiconductor with high chemical and thermal stability, is a promising material for such sensors. The synthesis and investigation of the structural and CH4 sensing properties of ceramic pellets made from pure and Er-doped ZnGa2O4 were conducted. Doping with Er leads to the formation of a secondary Er3Ga5O12 phase and an increase in the active surface area. This structural change significantly enhanced the CH4 response, demonstrating an 11.1-fold improvement at a concentration of 104 ppm. At the optimal response temperature of 650 °C, the Er-doped ZnGa2O4 exhibited responses of 2.91 a.u. and 20.74 a.u. to 100 ppm and 104 ppm of CH4, respectively. The Er-doped material is notable for its broad dynamic range for CH4 concentrations (from 100 to 20,000 ppm), low sensitivity to humidity variations within the 30–70% relative humidity range, and robust stability under cyclic gas exposure. In addition to CH4, the sensitivity of Er-doped ZnGa2O4 to other gases at a temperature of 650 °C was investigated. The samples showed strong responses to C2H4, C3H8, C4H10, NO2, and H2, which, at gas concentrations of 100 ppm, were higher than the response to CH4 by a factor of 2.41, 2.75, 3.09, 1.16, and 1.64, respectively. The study proposes a plausible mechanism explaining the sensing effect of Er-doped ZnGa2O4 and discusses its potential for developing high-temperature CH4 sensors for applications such as combustion monitoring systems and determining the ideal fuel/air mixture. Full article
(This article belongs to the Section Innovations in Materials Processing)
Show Figures

Figure 1

14 pages, 4505 KiB  
Article
Electrochemical Determination of Creatinine Based on Multienzyme Cascade-Modified Nafion/Gold Nanoparticles/Screen-Printed Carbon Composite Biosensors
by Jialin Yang, Ruizhi Yu, Wanxin Zhang, Yijia Wang and Zejun Deng
Sensors 2025, 25(13), 4132; https://doi.org/10.3390/s25134132 - 2 Jul 2025
Viewed by 314
Abstract
Creatinine serves as a crucial diagnostic biomarker for assessing kidney disease. This work developed portable non-enzymatic and multienzyme-modified electrochemical biosensors for the detection of creatinine based on commercial screen-printed carbon electrodes (SPCEs). The non-enzymatic creatinine sensor was constructed by the electrochemical deposition of [...] Read more.
Creatinine serves as a crucial diagnostic biomarker for assessing kidney disease. This work developed portable non-enzymatic and multienzyme-modified electrochemical biosensors for the detection of creatinine based on commercial screen-printed carbon electrodes (SPCEs). The non-enzymatic creatinine sensor was constructed by the electrochemical deposition of AuNPs onto the surface of a pre-activated SPCE by electrochemical activation, followed by the surface modification of a Nafion membrane. The developed AuNPs/SCPE exhibited excellent reproducibility, and the proposed Nafion/AuNPs/SPCE sensor showed excellent detection sensitivity and selectivity toward creatinine. In comparison, the enzymatic creatinine biosensor was gradually established by the electrodeposition of a Prussian blue (PB) membrane on the optimal AuNPs/SCPE surface, followed by multi-enzyme cascade modification (which consisted of creatinine amidohydrolase (CA), creatine oxidase (CI) and sarcosine oxidase (SOx)) and drop-casting the Nafion membrane to stabilize the interface. The introduction of a PB interlayer acted as the redox layer to monitor the generation of hydrogen peroxide (H2O2) produced by the enzymatic reaction, while the Nafion membrane enhanced the detection selectivity toward creatine, and the multi-enzyme cascade modification further increased the detection specificity. Both non-enzymatic and enzymatic creatinine sensors could detect the lowest concentrations of less than or equal to 10 μM. In addition, the efficiency and reproducibility of the proposed composite biosensor were also confirmed by repetitive electrochemical measurements in human serum, which showed a positive linear calibration relation of peak currents versus the logarithm of the concentration between 10 μM and 1000 μM, namely, ip (μA) = −7.06 lgC (μM) −5.30, R2 = 0.996. This work offers a simple and feasible approach to the development of enzymatic and non-enzymatic creatinine biosensors. Full article
Show Figures

Figure 1

13 pages, 2581 KiB  
Article
Triazine Calixarene as a Dual-Channel Chemosensor for the Reversible Detection of Cu2+ and I Ions via Water Content Modulation
by Fuyong Wu, Long Chen, Mei Yu, Liang Zhao, Lu Jiang, Tianzhu Shi, Ju Guo, Huayan Zheng, Ruixiao Wang and Mingrui Liao
Molecules 2025, 30(13), 2815; https://doi.org/10.3390/molecules30132815 - 30 Jun 2025
Viewed by 279
Abstract
Rationally designing and synthesizing chemosensors capable of simultaneously detecting both anions and cations via water content modulation is challenging. In this study, we synthesized and characterized a novel triazine calixarene derivative-based iodide and copper ion-selective fluorescent “turn-off” sensor. This dual-channeled fluorescent probe is [...] Read more.
Rationally designing and synthesizing chemosensors capable of simultaneously detecting both anions and cations via water content modulation is challenging. In this study, we synthesized and characterized a novel triazine calixarene derivative-based iodide and copper ion-selective fluorescent “turn-off” sensor. This dual-channeled fluorescent probe is able to recognize Cu2+ and I ions simultaneously in aqueous systems. The fluorescent sensor s4 was synthesized by displacement reaction of acridine with 1, 3-bis (dichloro-mono-triazinoxy) benzene in acetonitrile. Mass spectrometry (MS), UV-vis, and fluorescence spectra were acquired to characterize the fluorescence response of s4 to different cations and anions, while infrared (IR) spectroscopy and isothermal titration calorimetry (ITC) were employed to study the underlying selectivity mechanism of s4 to Cu2+ and I. In detail, s4 displayed extremely high sensitivity to Cu2+ with over 80% fluorescence decrement caused by the paramagnetic nature of Cu2+ in the aqueous media. The reversible fluorescence response to Cu2+ and the responses to Cu2+ in the solution of other potential interferent cations, such as Li+, Na+, K+, Ca2+, Cd2+, Zn2+, Sr2+, Ni2+, Co2+ were also investigated. Probe s4 also exhibited very good fluorescence selectivity to iodide ions under various anion (F, Cl, Br, NO3, HSO4, ClO4, PF6, AcO, H2PO4) interferences. In addition to the fluorescent response to I, s4 showed a highly selective naked-eye-detectable color change from colorless to yellow with the other tested anions. Full article
Show Figures

Figure 1

12 pages, 3828 KiB  
Article
Convenient Preparation of PEDOT-Based Conductive Fabrics via a Green Strategy for Morse Code Recognition
by Hongjian Yu, Yifan Cui and Miao Miao
Polymers 2025, 17(13), 1816; https://doi.org/10.3390/polym17131816 - 29 Jun 2025
Viewed by 256
Abstract
With the rapid development of Internet of Things (IoT) and bioscience technology, wearable smart devices are developing toward advanced trends such as flexibility, convenience and environmental-friendliness. Poly (p-styrenesulfonic acid) (PSS), as a common template and dispersant, is indispensable in the polymerization of conductive [...] Read more.
With the rapid development of Internet of Things (IoT) and bioscience technology, wearable smart devices are developing toward advanced trends such as flexibility, convenience and environmental-friendliness. Poly (p-styrenesulfonic acid) (PSS), as a common template and dispersant, is indispensable in the polymerization of conductive polymers. However, the doping amount of PSS has a significant effect on the electrical conductivity of the polymer. Herein, different molar quantities of PSS were used to assist the polymerization of 3,4-ethylenedioxythiophene (EDOT) monomer in a horseradish peroxidase/hydrogen peroxide (HRP/H2O2) low-temperature system to obtain conductive finishing solutions with more excellent electrical properties. Then, the polyester nonwoven fabric was immersed in the conductive finishing solution, and when the addition ratio of EDOT and PSS was 1:2, the conductive performance was optimal (3.27 KΩ cm−1). Finally, the conductive fabric was assembled into a pressure sensor and a temperature sensor, which can transmit Morse code in the form of single-parameter (pressure response or temperature response) or collaboration. Overall, this research has great potential for production of poly(3,4-ethylenedioxythiophene) (PEDOT)-based composites and their applications in smart wearable device. Full article
(This article belongs to the Special Issue Polymer-Based Flexible Materials, 3rd Edition)
Show Figures

Figure 1

24 pages, 2231 KiB  
Article
Characterization of Aroma-Active Compounds in Five Dry-Cured Hams Based on Electronic Nose and GC-MS-Olfactometry Combined with Odor Description, Intensity, and Hedonic Assessment
by Dongbing Yu and Yu Gu
Foods 2025, 14(13), 2305; https://doi.org/10.3390/foods14132305 - 29 Jun 2025
Viewed by 326
Abstract
The evaluation of aroma-active profiles in dry-cured hams is crucial for determining quality, flavor, consumer acceptance, and economic value. This study characterized the volatile compounds in five varieties of dry-cured hams using gas chromatography-mass spectrometry-olfactometry (GC-MS-O) and an electronic nose (E-Nose). In total, [...] Read more.
The evaluation of aroma-active profiles in dry-cured hams is crucial for determining quality, flavor, consumer acceptance, and economic value. This study characterized the volatile compounds in five varieties of dry-cured hams using gas chromatography-mass spectrometry-olfactometry (GC-MS-O) and an electronic nose (E-Nose). In total, 78 volatile compounds were identified across five varieties of dry-cured hams. A total of 29 compounds were recognized as aroma-active compounds. Odor description, intensity, and hedonic assessment were employed to evaluate these compounds. Black Hoof Cured Ham and Special-grade Xuan-Zi Ham contained higher levels of favorable compounds such as nonanal, 5-butyldihydro-2(3H)-furanone, and 2,6-dimethylpyrazine, contributing to sweet and popcorn-like notes. In contrast, Fei-Zhong-Wang Ham and Liang-Tou-Wu Ham exhibited higher proportions of off-odor compounds with lower hedonic scores. A principal component analysis clearly separated the five hams based on their aroma-active profiles, and a correlation analysis between E-Nose sensor responses and GC-MS-O data demonstrated a strong discriminatory ability for specific samples. These findings offer valuable insights into the chemical and sensory differentiation of dry-cured hams and provide a scientific basis for quality control, product development, and future improvements in E-Nose sensor design and intelligent aroma assessment. Full article
(This article belongs to the Special Issue How Does Consumers’ Perception Influence Their Food Choices?)
Show Figures

Figure 1

12 pages, 9078 KiB  
Article
High-Performance Cu1.8Se Nanosheets for Dual-Sensing: H2O2 Electrochemical Detection and SERS Substrate
by Ying-Chu Chen, Michael Chen and Yu-Kuei Hsu
Nanomaterials 2025, 15(13), 998; https://doi.org/10.3390/nano15130998 - 27 Jun 2025
Viewed by 235
Abstract
A facile fabrication method was developed for the growth of Cu1.8Se nanosheets (NSs) on a Cu foil substrate, enabling dual-functionality as an electrochemical sensor for H2O2 and an active surface-enhanced Raman scattering (SERS) substrate. The process involved the [...] Read more.
A facile fabrication method was developed for the growth of Cu1.8Se nanosheets (NSs) on a Cu foil substrate, enabling dual-functionality as an electrochemical sensor for H2O2 and an active surface-enhanced Raman scattering (SERS) substrate. The process involved the preparation of Cu(OH)2 nanowires (NWs) via electrochemical oxidation, followed by chemical conversion to Cu1.8Se through a selenization process. The morphology, composition, and microstructure of the resulting Cu1.8Se NSs were systematically characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The Cu1.8Se NSs exhibited excellent electrocatalytic activity for H2O2 reduction, achieving a notably low detection limit of 1.25 μM and demonstrating rapid response and high sensitivity with a linear relationship in amperometric detection. Additionally, SERS experiments using Rhodamine B as a probe molecule and the Cu1.8Se NS/Cu foil as a substrate displayed outstanding performance, with a detection limit as low as 1 μM. The flower-like structure of the Cu1.8Se NSs exhibited linear dependence between analyte concentration and detection signals, along with satisfactory reproducibility in dual-sensing applications. These findings underscore the scalability and potential of this fabrication approach for advanced sensor development. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

15 pages, 3568 KiB  
Article
Construction of Chitin-Based Composite Hydrogel via AlCl3/ZnCl2/H2O Ternary Molten Salt System and Its Flexible Sensing Performance
by Yanjun Lv, Hailong Huang, Guozhong Wu and Yuan Qian
Gels 2025, 11(7), 501; https://doi.org/10.3390/gels11070501 - 27 Jun 2025
Viewed by 324
Abstract
Bio-based ionic conductive hydrogels have attracted significant attention for use in wearable electronic sensors due to their inherent flexibility, ionic conductivity, and biocompatibility. However, achieving a balance between high ionic conductivity and mechanical robustness remains a significant challenge. In this study, we present [...] Read more.
Bio-based ionic conductive hydrogels have attracted significant attention for use in wearable electronic sensors due to their inherent flexibility, ionic conductivity, and biocompatibility. However, achieving a balance between high ionic conductivity and mechanical robustness remains a significant challenge. In this study, we present a simple yet effective strategy for fabricating a polyelectrolyte–chitin double-network hydrogel (CAA) via the copolymerization of acrylamide (AM) and acrylic acid (AA) with chitin in an AlCl3-ZnCl2-H2O ternary molten salt system. The synergistic interactions of dynamic metal ion coordination bonds and hydrogen bonding impart the CAA hydrogel with outstanding mechanical properties, including a fracture strain of 1765.5% and a toughness of 494.4 kJ/m3, alongside a high ionic conductivity of 1.557 S/m. Moreover, the hydrogel exhibits excellent thermal stability across a wide temperature range (−50 °C to 25 °C). When employed as a wearable sensor, the hydrogel demonstrates a rapid response time (<0.2 s), remarkable durability over 95 cycles with less than 5% resistance drift, and high sensitivity in detecting various human joint motions (e.g., finger, knee, and elbow bending). It presents a scalable strategy for biomass-derived flexible electronics that harmonizes mechanical robustness with electromechanical performance. Full article
(This article belongs to the Section Gel Analysis and Characterization)
Show Figures

Graphical abstract

16 pages, 3131 KiB  
Article
Humidity Sensing in Graphene-Trenched Silicon Junctions via Schottky Barrier Modulation
by Akeel Qadir, Munir Ali, Afshan Khaliq, Shahid Karim, Umar Farooq, Hongsheng Xu and Yiting Yu
Nanomaterials 2025, 15(13), 985; https://doi.org/10.3390/nano15130985 - 25 Jun 2025
Viewed by 222
Abstract
In this study, we develop a graphene-trenched silicon Schottky junction for humidity sensing. This novel structure comprises suspended graphene bridging etched trenches on a silicon substrate, creating both free-standing and substrate-contacting regions of graphene that enhance water adsorption sensing. Suspended graphene is intrinsically [...] Read more.
In this study, we develop a graphene-trenched silicon Schottky junction for humidity sensing. This novel structure comprises suspended graphene bridging etched trenches on a silicon substrate, creating both free-standing and substrate-contacting regions of graphene that enhance water adsorption sensing. Suspended graphene is intrinsically insensitive to water adsorption, making it difficult for adsorbed H2O to effectively dope the graphene. In contrast, when graphene is supported on the silicon substrate, water molecules can effectively dope the graphene by modifying the silicon’s impurity bands and their hybridization with graphene. This humidity-induced doping leads to a significant modulation of the Schottky barrier at the graphene–silicon interface, which serves as the core sensing mechanism. We investigate the current–voltage (I–V) characteristics of these devices as a function of trench width and relative humidity. Our analysis shows that humidity influences key device parameters, including the Schottky barrier height, ideality factor, series resistance, and normalized sensitivity. Specifically, larger trench widths reduce the graphene density of states, an effect that is accounted for in our analysis of these parameters. The sensor operates under both forward and reverse bias, enabling tunable sensitivity, high selectivity, and low power consumption. These features make it promising for applications in industrial and home safety, environmental monitoring, and process control. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

Back to TopTop