Recent Progress in Nano Material-Based Gas Sensors

A special issue of Chemosensors (ISSN 2227-9040). This special issue belongs to the section "Nanostructures for Chemical Sensing".

Deadline for manuscript submissions: 15 July 2025 | Viewed by 3151

Special Issue Editor


E-Mail Website
Guest Editor
Department of Electronic Engineering, School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China
Interests: gas sensors; semiconductors; 2D materials; photocatalysis; optoelectronics; micro-nano machining
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Gas sensors are the core components of olfactory sensing and are generally classified as chemical sensors. They can sense the components and concentrations of the atmosphere in the environment and have broad application prospects in environmental monitoring, industrial production, medical testing, food safety, military aerospace, and other fields. The sensitivity, selectivity, stability, response and recovery speed, power consumption, and cost of gas sensors have always been used to evaluate their performance level and application potential. It can be seen that the evaluation of gas sensors is comprehensive, which also determines the diversity and complexity of related research work. Semiconductor gas sensors have been favored by researchers due to their inherent advantages, with the widest research scope, the best research foundation, the deepest research degree, and the greatest research prospects.

Researchers are more focused on their own strengths, and their research on gas sensors is also multifaceted. Although these studies have played a role in promoting the development of the gas sensor field, it is still necessary to summarize and integrate research on specific topics with appropriate standards, and contribute concentrated wisdom and solutions. This Special Issue of “Chemosensors” mainly focuses on the latest developments in the field of gas sensors, especially the improvement of their various performance indicators, whether single or multiple. This Special Issue welcomes research on gas sensors using traditional methods, such as innovative work in sensitive materials, excitation sources, electrodes, circuits, signal processing, etc. At the same time, this Special Issue strongly encourages submission of papers studying gas sensors from a new perspective, such as using cutting-edge academic ideas or research methods from other fields for cross research, even if the conclusions are not novel or prominent. This Special Issue not only supports experimental exploration, but also strongly supports theoretical calculations or simulation analysis, especially looking forward to comprehensive analysis results on gas sensing mechanisms. This Special Issue aims to build a platform for researchers in the field of gas sensors to share their achievements, gather the latest research progress, and jointly promote the vigorous development of the gas sensor field.

In this Special Issue, all short communications, original research articles, and timely reviews are cordially solicited. Topics of interest include, but are not limited to, the following areas:

(1) Emerging materials for gas sensors; (2) Emerging applications for gas sensors; (3) New sensitization strategies for gas sensors; (4) Moisture resistance study for gas sensors; (5) Theoretical calculation for gas-sensitive mechanisms; (6) MEMS gas sensors; (7) Wearable gas sensors; (8) Gas sensor arrays. (9) Applications of artificial intelligence (machine learning) to gas sensors; (10) Controllable synthesis of sensing materials; (11) Microwave type gas sensors; (12) Solid state electrolyte gas sensors.

We look forward to receiving your contributions.

Dr. Bo Zhang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Chemosensors is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • gas sensor
  • chemiresistive type
  • heterostructure
  • photoactivation
  • photosensitization
  • sensor array
  • nanostructure
  • semiconductor material
  • doping
  • sensitizer

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 3183 KiB  
Article
Platinum-Functionalized Hierarchically Structured Flower-like Nickel Ferrite Sheets for High-Performance Acetone Sensing
by Ziwen Yang, Zhen Sun, Yuhao Su, Caixuan Sun, Peishuo Wang, Shaobin Yang, Xueli Yang and Guofeng Pan
Chemosensors 2025, 13(7), 234; https://doi.org/10.3390/chemosensors13070234 - 26 Jun 2025
Viewed by 225
Abstract
Acetone detection is crucial for non-invasive health monitoring and environmental safety, so there is an urgent demand to develop high-performance gas sensors. Here, platinum (Pt)-functionalized layered flower-like nickel ferrite (NiFe2O4) sheets were efficiently fabricated via facile hydrothermal synthesis and [...] Read more.
Acetone detection is crucial for non-invasive health monitoring and environmental safety, so there is an urgent demand to develop high-performance gas sensors. Here, platinum (Pt)-functionalized layered flower-like nickel ferrite (NiFe2O4) sheets were efficiently fabricated via facile hydrothermal synthesis and wet chemical reduction processes. When the Ni/Fe molar ratio is 1:1, the sensing material forms a Ni/NiO/NiFe2O4 composite, with performance further optimized by tuning Pt loading. At 1.5% Pt mass fraction, the sensor shows a high acetone response (Rg/Ra = 58.33 at 100 ppm), a 100 ppb detection limit, fast response/recovery times (7/245 s at 100 ppm), and excellent selectivity. The enhancement in performance originates from the synergistic effect of the structure and Pt loading: the layered flower-like morphology facilitates gas diffusion and charge transport, while Pt nanoparticles serve as active sites to lower the activation energy of acetone redox reactions. This work presents a novel strategy for designing high-performance volatile organic compound (VOC) sensors by combining hierarchical nanostructured transition metal ferrites with noble metal modifications. Full article
(This article belongs to the Special Issue Recent Progress in Nano Material-Based Gas Sensors)
Show Figures

Graphical abstract

21 pages, 5047 KiB  
Article
Electrospun WO3/TiO2 Core–Shell Nanowires for Triethylamine Gas Sensing
by Wenhao Li, Bo Zhang, Xiangrui Dong, Qi Lu, Hao Shen, Yi Ni, Yuechen Liu and Haitao Song
Chemosensors 2025, 13(2), 45; https://doi.org/10.3390/chemosensors13020045 - 2 Feb 2025
Cited by 2 | Viewed by 1162
Abstract
In this work, WO3/TiO2 core–shell (C-S) nanowires (NWs) were successfully synthesized by the coaxial electrospinning method and subsequent high-temperature calcination treatment. After some microscopic structural characterizations, although the prepared WO3–TiO2 and TiO2–WO3 C-S NWs [...] Read more.
In this work, WO3/TiO2 core–shell (C-S) nanowires (NWs) were successfully synthesized by the coaxial electrospinning method and subsequent high-temperature calcination treatment. After some microscopic structural characterizations, although the prepared WO3–TiO2 and TiO2–WO3 C-S NWs displayed quite different surface morphologies, both of the shell coatings were uniform and their typical shell thicknesses were extremely close, with mean values of 22 and 20 nm, respectively. In gas sensing tests, WO3/TiO2 C-S NWs exhibited good selectivity towards triethylamine (TEA) without significant interfering gases. Compared with bare WO3 and TiO2 NWs, WO3/TiO2 C-S NWs showed better gas sensing performance. Specifically, the optimal operating temperature and response of TiO2–WO3 C-S NWs to 100 ppm TEA were 130 °C and 106, which were reduced by 70 °C and increased by 5.73 times compared to bare WO3, respectively. Obviously, the C-S nanostructures contributed to improving the gas sensing performance of materials towards TEA. Finally, some hypothetical sensing mechanisms were proposed, which were expected to have important reference significance for the design of target products applied to TEA sensing. Full article
(This article belongs to the Special Issue Recent Progress in Nano Material-Based Gas Sensors)
Show Figures

Figure 1

Review

Jump to: Research

51 pages, 5828 KiB  
Review
A Comprehensive Review of Advanced Sensor Technologies for Fire Detection with a Focus on Gasistor-Based Sensors
by Mohsin Ali, Ibtisam Ahmad, Ik Geun, Syed Ameer Hamza, Umar Ijaz, Yuseong Jang, Jahoon Koo, Young-Gab Kim and Hee-Dong Kim
Chemosensors 2025, 13(7), 230; https://doi.org/10.3390/chemosensors13070230 - 23 Jun 2025
Viewed by 491
Abstract
Early fire detection plays a crucial role in minimizing harm to human life, buildings, and the environment. Traditional fire detection systems struggle with detection in dynamic or complex situations due to slow response and false alarms. Conventional systems are based on smoke, heat, [...] Read more.
Early fire detection plays a crucial role in minimizing harm to human life, buildings, and the environment. Traditional fire detection systems struggle with detection in dynamic or complex situations due to slow response and false alarms. Conventional systems are based on smoke, heat, and gas sensors, which often trigger alarms when a fire is in full swing. In order to overcome this, a promising approach is the development of memristor-based gas sensors, known as gasistors, which offer a lightweight design, fast response/recovery, and efficient miniaturization. Recent studies on gasistor-based sensors have demonstrated ultrafast response times as low as 1–2 s, with detection limits reaching sub-ppm levels for gases such as CO, NH3, and NO2. Enhanced designs incorporating memristive switching and 2D materials have achieved a sensitivity exceeding 90% and stable operation across a wide temperature range (room temperature to 250 °C). This review highlights key factors in early fire detection, focusing on advanced sensors and their integration with IoT for faster, and more reliable alerts. Here, we introduce gasistor technology, which shows high sensitivity to fire-related gases and operates through conduction filament (CF) mechanisms, enabling its low power consumption, compact size, and rapid recovery. When integrated with machine learning and artificial intelligence, this technology offers a promising direction for future advancements in next-generation early fire detection systems. Full article
(This article belongs to the Special Issue Recent Progress in Nano Material-Based Gas Sensors)
Show Figures

Figure 1

Back to TopTop