Miniature Sensors Based on Highly Efficient Chemical and Biological Sensing Interfaces

A special issue of Biosensors (ISSN 2079-6374). This special issue belongs to the section "Biosensor and Bioelectronic Devices".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 2960

Special Issue Editors

1. Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
2. Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
Interests: chem/biosensors; microfluidic; paper-based device; environmental monitor and analysis; point-of-care testing (POCT)

E-Mail Website
Guest Editor
Department of Chemistry, Kongju National University, Gongju 32588, Republic of Korea
Interests: biosensor; surface enhanced Raman scattering (SERS); CRISPR/Cas; point-of-care testing (POCT); nanowire

Special Issue Information

Dear Colleagues,

In the modern era, miniature sensors have become an integral part of daily life. Numerous devices have been developed that utilize miniature sensors based on fundamental principles of physics, such as electronics and mechanics, to deliver intelligent services (smartphones, smartwatches, smart cars, etc.) aimed at enhancing human well-being. However, traditional physical sensing methods face limitations when it comes to detecting biochemical targets. To address this, biological and chemical sensing interfaces, constructed from a wide array of materials, such as small molecule groups/probes, polymers, enzymes, antibodies, and nucleic acids, enable the highly sensitive and selective recognition of specific targets. In recent years, microfluidic chips, portable monitoring instruments, clinical rapid diagnostic tools, and wearable or implantable devices based on these sensing interfaces have garnered significant attention. The potential applications for these miniature sensors are vast, spanning personal health, environmental monitoring, early warning systems, and food safety. Moreover, when combined with artificial intelligence and deep learning, miniature sensors featuring chemical and biological sensing interfaces are poised to become essential components in advancing human life towards deeper intelligence in the future.

The focus of this Special Issue is on miniature sensors based on highly efficient chemical and biological sensing interfaces. We invite readers to consider several key questions: What functional materials are available for these sensors? How can the interfaces be constructed? How can sensing performance and mass transfer efficiency be enhanced? How are miniature devices designed to align with analytical methods and operations? What are the most effective applications of these miniature sensors? For that, this Special Issue aims to gather original articles and reviews showcasing research advances, fabrications, innovative applications, new challenges, and future perspectives of miniature sensors based on highly efficient chemical and biological sensing interfaces in important areas, such as health, medicine, environment, food safety, and research. 

Dr. Ji Qi
Dr. Hongki Kim
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biosensors is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • chemical (bio) sensors
  • paper-based device
  • portable device
  • lab on a chip
  • enzyme-linked immunosorbent assay (ELISA)
  • nanomaterial
  • molecularly imprinted polymer (MIP)
  • electrochemical analysis
  • surface-enhanced Raman scattering (SERS)
  • fluorescence
  • point of care testing (POCT)

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

11 pages, 1759 KiB  
Article
A Label-Free CRISPR/Cas12a-G4 Biosensor Integrated with FTA Card for Detection of Foodborne Pathogens
by Anqi Chao, Qinqin Hu and Kun Yin
Biosensors 2025, 15(4), 230; https://doi.org/10.3390/bios15040230 - 5 Apr 2025
Viewed by 269
Abstract
CRISPR/Cas-based diagnostics offer unparalleled specificity, but their reliance on fluorescently labeled probes and complex nucleic acid extraction limits field applicability. To tackle this problem, we have developed a label-free, equipment-free platform integrating FTA card-based extraction, CRISPR/Cas12a, and pre-folded G-quadruplex (G4)–Thioflavin T (ThT) signal [...] Read more.
CRISPR/Cas-based diagnostics offer unparalleled specificity, but their reliance on fluorescently labeled probes and complex nucleic acid extraction limits field applicability. To tackle this problem, we have developed a label-free, equipment-free platform integrating FTA card-based extraction, CRISPR/Cas12a, and pre-folded G-quadruplex (G4)–Thioflavin T (ThT) signal reporter. This system eliminates costly fluorescent labeling by leveraging G4-ThT structural binding for visible fluorescence output, while FTA cards streamline nucleic acid isolation without centrifugation. Achieving a limit of detection (LOD) to 101 CFU/mL for Escherichia coli O157:H7 in spiked food samples, the platform demonstrated 100% concordance with qPCR and standard fluorescent probe-based CRISPR/Cas12a system. Its simplicity, minimal equipment (portable heating/imaging), and cost-effectiveness make it a revolutionary tool for detecting foodborne pathogens in resource-limited environments. Full article
Show Figures

Figure 1

14 pages, 2580 KiB  
Article
Ternary-Emission Molecularly Imprinted Ratiometric Fluorescence Sensor and Kit for the Rapid and Visual Detection of Enrofloxacin
by Siwu Liu, Jingyi Yan, Dani Sun, Siyuan Peng, Jinhua Li and Huaying Fan
Biosensors 2025, 15(4), 226; https://doi.org/10.3390/bios15040226 - 2 Apr 2025
Viewed by 250
Abstract
In this study, a RGB based ternary-emission molecularly imprinted ratiometric fluorescence (MI-RFL) sensor was facilely constructed by using a post-imprinting mixing strategy for the sensitive detection of enrofloxacin (ENR). Upon excitation at 365 nm, the MI-RFL sensor exhibited significant emission peaks at 450, [...] Read more.
In this study, a RGB based ternary-emission molecularly imprinted ratiometric fluorescence (MI-RFL) sensor was facilely constructed by using a post-imprinting mixing strategy for the sensitive detection of enrofloxacin (ENR). Upon excitation at 365 nm, the MI-RFL sensor exhibited significant emission peaks at 450, 550, and 620 nm. As the ENR concentration increased, the blue fluorescence generated by ENR in the sensing system gradually intensified, while the red and green fluorescence emitted by the quantum dots in the molecularly imprinted polymers (MIPs) was significantly quenched. Sensing conditions were systematically investigated, including the excitation wavelength, mixing ratio of red/green MIPs, the pH of the buffer solution, and the reaction time. Under the optimal conditions, the developed sensor showed a good linear relationship within the range of 0.25–4 ppm along with obvious color change, with a low detection limit of 0.134 ppm. High selectivity was also attained with an imprinting factor up to 11.65. When applied to real samples of seawater and seafood, the sensor showed good recovery rates of 94.3–126.4% and accuracy with a relative standard deviation of less than 3.97%. Furthermore, the sensor-based kit was easily fabricated and, thus, naked-eye detection of ENR was realized onsite. This study can provide a universal approach for the rapid and visual detection of ENR in complicated matrices. Full article
Show Figures

Figure 1

12 pages, 4942 KiB  
Article
Intermolecular Structure Conversion-Based G4-TDF Nanostructures Functionalized μPADs for Fluorescent Determination of Potassium Ion in Serum
by Mengqi Wang, Xiuli Fu, Yixuan Liu, Zhiyang Zhang, Chenyu Jiang and Dean Song
Biosensors 2025, 15(4), 223; https://doi.org/10.3390/bios15040223 - 31 Mar 2025
Viewed by 168
Abstract
Herein, we proposed a versatile G-quadruplex (G4)-tetrahedral DNA framework (G4-TDF) nanostructure functionalized origami microfluidic paper-based device (μPADs) for fluorescence detection of K+ by lighting up thioflavin T (ThT). In this work, TDF provided robust structural support for G-rich sequence in well-defined orientation [...] Read more.
Herein, we proposed a versatile G-quadruplex (G4)-tetrahedral DNA framework (G4-TDF) nanostructure functionalized origami microfluidic paper-based device (μPADs) for fluorescence detection of K+ by lighting up thioflavin T (ThT). In this work, TDF provided robust structural support for G-rich sequence in well-defined orientation and spacing to ensure high recognition efficiency, enabling sensitive fluorescence sensing on origami μPAD. After introducing ThT, the G-rich sequences extended from TDF vertices formed a parallel G4 structure, showing weak fluorescence signal output. Upon the presence of target K+, this parallel G4 structure transitioned to antiparallel G4 structure, leading to a significantly increase in fluorescence signal of ThT. Benefiting from the outstanding fluorescence enhancement characteristic of the G4 structure for ThT and excellent specificity of the G4 structure to K+ plus satisfactory recognition efficiency with the aid of TDF, this origami paper-based fluorescence sensing strategy exhibited an impressive detection limit as low as 0.2 mM with a wide range of 0.5–5.5 mM. This innovative G4-TDF fluorescence sensing was applied for the first time on μPAD, providing a simple, effective, and rapid method for K+ detection in human serum with significant potential for clinical diagnostics. Full article
Show Figures

Figure 1

17 pages, 5277 KiB  
Article
A New Chitosan-Modified Paper-Based SERS Glucose Sensor with Enhanced Reproducibility, Stability, and Sensitivity for Non-Enzymatic Label-Free Detection
by Rashida Akter, Toeun Kim, Jong Seob Choi and Hongki Kim
Biosensors 2025, 15(3), 153; https://doi.org/10.3390/bios15030153 - 1 Mar 2025
Viewed by 839
Abstract
We have fabricated a new highly reproducible, stable, and sensitive cellulose paper-based Surfaced-enhanced Raman scattering (SERS) sensor substrate for non-enzymatic label-free glucose detection. To enhance reproducibility, stability, and sensitivity, the cellulose paper (CP) substrate has been modified with a naturally derived biocompatible polymer, [...] Read more.
We have fabricated a new highly reproducible, stable, and sensitive cellulose paper-based Surfaced-enhanced Raman scattering (SERS) sensor substrate for non-enzymatic label-free glucose detection. To enhance reproducibility, stability, and sensitivity, the cellulose paper (CP) substrate has been modified with a naturally derived biocompatible polymer, chitosan (CS), followed by depositing enormous amount of plasmonic silver nanoparticles (AgNPs) on CP/CS and finally forming a self-assembling monolayer of 4-mercaptophenyl boronic acid (MPBA) on CP/CS/AgNPs (CP/CS/AgNPs/MPBA). The SERS sensor substrate is characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Fourier transform infrared (FT-IR), and X-ray diffraction (XRD) spectroscopy techniques. The glucose sensing is achieved by monitoring the SERS intensity of C-S and B-O stretching vibrations at 1072 cm−1 in MPBA, which is gradually increased with increasing concentration of glucose due to the increasing orientation change of MPBA on AgNPs. The results show that the proposed glucose paper-based SERS sensor exhibits a high analytical enhancement factor (AEF) (3.4 × 107), enhanced reproducibility (<7%), improved stability (>5 weeks), excellent selectivity towards other metabolic compounds, and high sensitivity with a limit of detection (LOD) of 0.74 mM and a linear dynamic range between 1.0 and 7.0 mM. The practical application of this SERS sensor is examined in real spiked and non-spiked human blood serum samples for the detection of glucose, and satisfactory recovery results have been obtained, demonstrating the potentiality of the present paper-based SERS sensor for non-enzymatic label-free glucose detection in real biological samples. Full article
Show Figures

Figure 1

11 pages, 5003 KiB  
Article
SERS Detection of Hydrophobic Molecules: Thio-β-Cyclodextrin-Driven Rapid Self-Assembly of Uniform Silver Nanoparticle Monolayers and Analyte Trapping
by Qi Yuan and Yunqing Wang
Biosensors 2025, 15(1), 52; https://doi.org/10.3390/bios15010052 - 15 Jan 2025
Cited by 1 | Viewed by 946
Abstract
High-sensitivity and repeatable detection of hydrophobic molecules through the surface-enhanced Raman scattering (SERS) technique is a tough challenge because of their weak adsorption and non-uniform distribution on SERS substrates. In this research, we present a simple self-assembly protocol for monolayer SERS mediated by [...] Read more.
High-sensitivity and repeatable detection of hydrophobic molecules through the surface-enhanced Raman scattering (SERS) technique is a tough challenge because of their weak adsorption and non-uniform distribution on SERS substrates. In this research, we present a simple self-assembly protocol for monolayer SERS mediated by 6-deoxy-6-thio-β-cyclodextrin (β-CD-SH). This protocol allows for the rapid assembly of a compact silver nanoparticle (Ag NP) monolayer at the oil/water interface within 40 s, while entrapping analyte molecules within hotspots. The proposed method shows general applicability for detecting hydrophobic molecules, exemplified as Nile blue, Nile red, fluconazole, carbendazim, benz[a]anthracene, and bisphenol A. The detection limits range from 10−6to 10−9 M, and the relative standard deviations (RSDs) of signal intensity are less than 10%. Moreover, this method was used to investigate the release behaviors of a hydrophobic pollutant (Nile blue) adsorbed on the nanoplastic surface in the water environment. The results suggest that elevated temperatures, increased salinities, and the coexistence of fulvic acid promote the release of Nile blue. This simple and fast protocol overcomes the difficulties related to hotspot accessibility and detection repeatability for hydrophobic analytes, holding out extensive application prospects in environmental monitoring and chemical analysis. Full article
Show Figures

Figure 1

Back to TopTop