High-Performance Cu1.8Se Nanosheets for Dual-Sensing: H2O2 Electrochemical Detection and SERS Substrate
Abstract
1. Introduction
2. Experiment Section
3. Results and Discussion
3.1. Characteristics of Cu1.8Se NS/Cu Foil
3.2. Detection of H2O2 by an Electrochemical Mean
3.3. SERS Performances
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Palchoudhury, S.; Ramasamy, K.; Han, J.; Chen, P.; Gupta, A. Transition metal chalcogenides for next-generation energy storage. Nanoscale Adv. 2023, 5, 2724–2742. [Google Scholar] [CrossRef]
- Li, Y.; Tang, H.; Zhu, H.; Kakinen, A.; Wang, D.; Andrikopoulos, N.; Sun, Y.; Nandakumar, A.; Kwak, E.; Davis, T.P.; et al. Ultrasmall Molybdenum Disulfide Quantum Dots Cage Alzheimer’s Amyloid Beta to Restore Membrane Fluidity. ACS Appl. Mater. Interfaces 2021, 13, 29936–29948. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Zhao, L.D. Charge and phonon transport in PbTe-based thermoelectric materials. npj Quantum Mater. 2018, 3, 55. [Google Scholar] [CrossRef]
- Zhu, K.; Wei, S.; Zhou, Q.; Chen, S.; Lin, Y.; Zhang, P.; Cao, Y.; Wang, C.; Wang, Y.; Xia, Y.; et al. Interface regulation of Cu2Se via Cu-Se-C bonding for superior lithium-ion batteries. Nano Res. 2023, 16, 2421–2427. [Google Scholar] [CrossRef]
- Malavekar, D.B.; Kale, S.B.; Lokhande, V.C.; Patil, U.M.; Kim, J.H.; Lokhande, C.D. Chemically Synthesized Cu3Se2 Film Based Flexible Solid-State Symmetric Supercapacitor: Effect of Reaction Bath Temperature. J. Phys. Chem. C 2020, 14, 28395–28406. [Google Scholar] [CrossRef]
- Lv, X.W.; Kong, Q.H.; Song, X.L.; Liu, Y.P.; Yuan, Z.Y. Coupling nonstoichiometric Cu2−xSe with stable Cu2Se berzelianite for efficient synergistic electrocatalytic hydrazine-assisted water splitting. Inorg. Chem. Front. 2022, 9, 6182–6189. [Google Scholar] [CrossRef]
- Umapathi, S.; Singh, H.; Masud, J.; Nath, M. Nanostructured copper selenide as an ultrasensitive and selective non-enzymatic glucose sensor. Mater. Adv. 2021, 2, 927. [Google Scholar] [CrossRef]
- Yan, G.; Ni, H.; Li, X.; Qi, X.; Yang, X.; Zou, H. Plasmonic Cu2−xSe Mediated Colorimetric/Photothermal Dual-Readout Detection of Glutathione. Nanomaterials 2023, 13, 1787. [Google Scholar] [CrossRef]
- Lauren, E.M.; Xing, Y.G.; Derrick, C.K.; Jill, E.M. Correlating carrier density and emergent plasmonic features in Cu2−xSe nanoparticles. Nano Lett. 2017, 4, 2414–2419. [Google Scholar]
- Han, K.D.; Hui, Y.X.; Bonnie, A.P.; Luis, F.G.; Haley, P.M.; Boxi, C.L.; Hai, Y.W.; Katherine, E.P. Effects of I2 on Cu2−xSe Nanoparticles: Enabling cation exchange but complicating plasmonics. ACS Mater. Lett. 2020, 2, 140–146. [Google Scholar]
- Zhu, L.; Zhao, Y.; Zheng, W.; Ba, N.; Zhang, G.; Zhang, J.; Li, X.; Xie, H.; Bie, L. One-step room temperature rapid synthesis of Cu2Se nanostructures, phase transformation, and formation of p-Cu2Se/p-Cu3Se2 heterojunctions. CrystEngComm 2016, 18, 5202–5208. [Google Scholar] [CrossRef]
- Chen, Y.C.; Yang, Z.L.; Hsu, Y.K. Unassisted Solar Water Splitting by Dual Cu2O–based Tandem Device with Complementary Wavelength–dependent Quantum Efficiency and Antipodal Conductivity. Renew. Energy 2023, 212, 166–174. [Google Scholar] [CrossRef]
- Xie, S.; Lv, C.; Kong, L.; Li, C.; Wang, C.; Lv, X.; Wu, Q.; Feng, J.; Wang, A.J.; Chen, D.L.; et al. Potential-driven in situ formation of Se-vacancy-rich CuS@Cu2Se to steer the CO2 electroreduction path from HCOOH to C2H5OH. Inorg. Chem. Front. 2024, 11, 8272–8284. [Google Scholar] [CrossRef]
- Hsu, Y.K.; Chen, Y.C.; Lin, Y.G. Spontaneous Formation of CuO Nanosheets on Cu Foil for H2O2 Detection. Appl. Surf. Sci. 2015, 354, 85–89. [Google Scholar] [CrossRef]
- Liu, M.; Liu, R.; Chen, W. Graphene wrapped Cu2O nanocubes: Non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens. Bioelectron. 2013, 45, 206–212. [Google Scholar] [CrossRef]
- Daemi, S.; Ghasemi, S.; Ashkarran, A.A. Electrospun CuO-ZnO nanohybrid: Tuning the nanostructure for improved amperometric detection of hydrogen peroxide as a non-enzymatic sensor. J. Colloid Interface Sci. 2019, 550, 180–189. [Google Scholar] [CrossRef]
- Yang, K.; Zhong, H.; Cheng, Z.P.; Li, X.R.; Zhang, A.R.; Zhang, Y.J.; Qian, H.Y. Magnetic Fe3O4 stacked sphere-like nanocomposite and its application as platform for H2O2 sensing. J. Electroanal. Chem. 2018, 814, 1–6. [Google Scholar] [CrossRef]
- Huang, J.; Zhu, Y.; Zhong, H.; Yang, X.; Li, C. Dispersed CuO nanoparticles on a silicon nanowire for improved performance of nonenzymatic H2O2 detection. ACS Appl. Mater. Interf. 2014, 6, 7055–7062. [Google Scholar] [CrossRef]
- Gu, A.; Wang, G.; Zhang, X.; Fang, B. Synthesis of CuO nanoflower and its application as a H2O2 sensor. Bull. Mater. Sci. 2010, 33, 17–20. [Google Scholar] [CrossRef]
- Cheng, D.; Wang, T.; Zhang, G.; Wu, H.; Mei, H. A novel nonenzymatic electrochemical sensor based on double-shelled CuCo2O4 hollow microspheres for glucose and H2O2. J. Alloys Compd. 2020, 819, 153014. [Google Scholar] [CrossRef]
- Phuong, N.T.T.; Hoang, T.X.; Tran, N.L.N.; Phuc, L.G.; Phung, V.D.; Ta, H.K.T.; Bach, T.N.; Tran, N.H.T.; Trinh, K.T.L. Rapid and sensitive detection of Rhodamine B in food using the plasmonic silver nanocube-based sensor as SERS active substrate. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 263, 120179. [Google Scholar]
- Chen, Y.C.; Bai, Y.M.; Hsu, Y.K. Biomarker Detection for Disease Diagnosis via Versatile Ag2S Nanowires as Electrochemical Sensor and SERS Substrate. J. Alloys Compd. 2021, 881, 160647. [Google Scholar] [CrossRef]
- Moreno, V.; Murtada, K.; Zougagh, M.; Rios, A. Analytical control of Rhodamine B by SERS using reduced graphene decorated with copper selenide. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 223, 117302. [Google Scholar] [CrossRef]
- Dizajghorbani-Aghdam, H.; Miller, T.S.; Malekfar, R.; McMillan, P.F. SERS-active Cu nanoparticles on carbon nitride support fabricated using pulsed laser ablation. Nanomaterials 2019, 9, 1223. [Google Scholar] [CrossRef]
- Sakir, M.; Yilmaz, E.; Onses, M.S. SERS-active hydrophobic substrates fabricated by surface growth of Cu nanostructures. Microchem. J. 2020, 154, 104628. [Google Scholar] [CrossRef]
- Lopez-Lorente, A.I.; Simonet, B.M.; Valcárcel, M.; Mizaikoff, B. Bare gold nanoparticles mediated surface-enhanced Raman spectroscopic determination and quantification of carboxylated single-walled carbon nanotubes. Anal. Chim. Acta 2013, 788, 122–128. [Google Scholar] [CrossRef]
- Bozo, E.; Dombovari, A.; Mohl, M.; Virtanen, V.K.; Saarakkala, S.; Vajtai, R.; Kordas, K. Cu-Pd bimetal and CuPt alloy nanotubes derived from cu nanowires: Novel amplification media for surface-enhanced Raman spectroscopy. IEEE Sens. J. 2019, 20, 143–148. [Google Scholar] [CrossRef]
Sensor Type | Detection Limit (μM) | Linear Range (mM) | Sensitivity (μAmM−1cm−2) | Ref. |
---|---|---|---|---|
Cu2O/GN | 20.8 | 0.3–7.8 | [15] | |
ZnO3−CuO7/CPE | 2.4 | 0.003−0.53 | 1.11 | [16] |
CuO-SiNWs/GCE | 1.6 | 0.01–13.18 | 22.27 | [17] |
Fe3O4/GCE s | 2 | 0.005−4.9 | 205 | [18] |
CuO nanoflowers | 5 | 0.05-4.600 | 116.1 | [19] |
CuCo2O4 | 3.0 | 0.01–8.90 | 94.1 | [20] |
Cu1.8Se NS | 1.25 | 0.00125–9.7375 | 1335 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-C.; Chen, M.; Hsu, Y.-K. High-Performance Cu1.8Se Nanosheets for Dual-Sensing: H2O2 Electrochemical Detection and SERS Substrate. Nanomaterials 2025, 15, 998. https://doi.org/10.3390/nano15130998
Chen Y-C, Chen M, Hsu Y-K. High-Performance Cu1.8Se Nanosheets for Dual-Sensing: H2O2 Electrochemical Detection and SERS Substrate. Nanomaterials. 2025; 15(13):998. https://doi.org/10.3390/nano15130998
Chicago/Turabian StyleChen, Ying-Chu, Michael Chen, and Yu-Kuei Hsu. 2025. "High-Performance Cu1.8Se Nanosheets for Dual-Sensing: H2O2 Electrochemical Detection and SERS Substrate" Nanomaterials 15, no. 13: 998. https://doi.org/10.3390/nano15130998
APA StyleChen, Y.-C., Chen, M., & Hsu, Y.-K. (2025). High-Performance Cu1.8Se Nanosheets for Dual-Sensing: H2O2 Electrochemical Detection and SERS Substrate. Nanomaterials, 15(13), 998. https://doi.org/10.3390/nano15130998