Engineering Hierarchical CuO/WO3 Hollow Spheres with Flower-like Morphology for Ultra-Sensitive H2S Detection at ppb Level
Abstract
1. Introduction
2. Experimental Section
2.1. Synthesis of WO3 Hollow Flower-like Spherical Materials
2.2. Synthesis of CuO/WO3 Hollow Flower-like Spherical Materials
2.3. Characterization
2.4. Gas Sensor Fabrication and Measurement Process
3. Results and Discussion
3.1. Morphological and Composition Characterization
3.2. Gas Sensing Performance
3.3. Gas Sensing Mechanisms
- (1)
- Synergistic effect of p-n heterojunctions for sensitization: The formation of CuO/WO3 heterojunctions creates an internal electric field at the heterojunctions to inhibit the electron–hole complexation, which leads to an increase in the baseline resistance of the sensors, which is beneficial for the detection of reducing gases. On the other hand, the heterojunction interface provides additional sites for H2S gas adsorption and redox reactions [62], which also contributes to the sensitivity.
- (2)
- The working temperature in this study was 175 °C. Previous studies have shown that at lower temperatures, H2S undergoes irreversible displacement reactions directly with CuO, producing conducting CuS by Equation (3) [63]:
- (3)
- Another reason for the improved sensor performance is linked to the fact that the CuO/WO3 composites have a flower-like hollow sphere morphology. The hierarchical structure enables the WO3 sensing material to have a high specific surface area, which provides a site for subsequent CuO loading. CuO doping introduces oxygen vacancies and lattice defects in WO3, which provide abundant surface sites for gas adsorption. These defects act as additional H2S adsorption sites, enhance the chemisorption of reactive oxygen species and further promote redox reactions [65].
- (4)
- Improved selectivity of CuO sensitizing component through specific interactions: CuO is more selective for H2S than for other gases (e.g., toluene, methanol) due to a unique reaction pathway: the CuO to CuS generation is highly specific for H2S, while the interfering gases lack similarly strong chemical interactions with the CuO, thus minimizing cross-response. In addition, the formation of heterojunctions alters the surface electronic properties of WO3, making it more favorable for H2S adsorption than neutral or weakly polar gases [66]. DFT calculations reveal an adsorption energy of −0.445 eV for WO3. In contrast, CuO/WO3 demonstrates a lower adsorption energy (−0.632 eV), indicating that H2S molecules adsorb more readily on CuO/WO3 surfaces, consequently promoting reaction processes (Figure 8) [67].
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.; Xu, P.C.; Xu, T.; Zheng, D.; Li, X.X. ZnO-nanowire size effect induced ultra-high sensing response to ppb-level H2S. Sens. Actuators B Chem. 2017, 240, 264–272. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, D.K.; Zhang, D.X.; Liu, Y.M.; Sun, M.L.; Sun, M.J.; Li, J. Construction of Ag2O/WO3-based hollow microsphere p-n heterojunction for continuous detection of ppb-level H2S gas sensor. J. Alloys Compd. 2024, 1003, 175735. [Google Scholar] [CrossRef]
- Li, J.D.; Tang, Y.L.; Ao, D.Y.; Xiang, X.; Wang, S.Y.; Zu, X.T. Ultra-highly sensitive and selective H2S gas sensor based on CuO with sub-ppb detection limit. Int. J. Hydrogen Energy 2019, 44, 3985–3992. [Google Scholar] [CrossRef]
- Li, D.J.; Zu, X.T.; Ao, D.Y.; Tang, Q.B.; Fu, Y.Q.; Guo, Y.J.; Bilawal, K.; Faheem, M.B.; Li, L.; Li, S.; et al. High humidity enhanced surface acoustic wave (SAW) H2S sensors based on sol-gel CuO films. Sens. Actuators B Chem. 2019, 294, 55–61. [Google Scholar] [CrossRef]
- Na, H.B.; Zhang, X.F.; Deng, Z.P.; Xu, Y.M.; Huo, L.H.; Gao, S. Large-Scale Synthesis of Hierarchically Porous ZnO Hollow Tubule for Fast Response to ppb-Level H2S Gas. ACS Appl. Mater. Interfaces 2019, 11, 11627–11635. [Google Scholar] [CrossRef]
- Xiong, B.; Zhou, R.; Hao, J.R.; Jia, Y.H.; He, Y.; Yeung, E.S. Highly sensitive sulphide mapping in live cells by kinetic spectral analysis of single Au-Ag core-shell nanoparticles. Nat. Commun. 2013, 4, 1708. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, X.F.; Cheng, X.L.; Xu, Y.M.; Gao, S.; Zhao, H.; Huo, L.H. Hierarchical NiO Cube/Nitrogen-Doped Reduced Graphene Oxide Composite with Enhanced H2S Sensing Properties at Low Temperature. ACS Appl. Mater. Interfaces 2017, 9, 26293–26303. [Google Scholar] [CrossRef]
- Beni, A.H.N.; Haghbakhsh, R. Sulfur dioxide capture by deep eutectic solvents: Proposing purely predictive absorption models. J. Hazard Mater. 2025, 490, 137741. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.I.M.; Mahmoud, S.T.; Awwad, F.; Greish, Y.E.; Abu-Hani, A.F.S. Low power consumption and fast response H2S gas sensor based on a chitosan-CuO hybrid nanocomposite thin film. Carbohydr. Polym. 2020, 236, 116064. [Google Scholar] [CrossRef]
- Song, Z.L.; Wei, Z.R.; Wang, B.; Luo, Z.; Xu, S.M.; Zhang, W.K.; Yu, H.X.; Li, M.; Huang, Z.; Zang, J.F.; et al. Sensitive Room-Temperature H2S Gas Sensors Employing SnO2 Quantum Wire/Reduced Graphene Oxide Nanocomposites. Chem. Mater. 2016, 28, 1205–1212. [Google Scholar] [CrossRef]
- Devi, P.; Singh, J.P. A Highly Sensitive Colorimetric Gas Sensor Based on Indium Oxide Nnnostructures for H2S Detection at Room Temperature. IEEE Sens. J. 2021, 21, 18512–18518. [Google Scholar] [CrossRef]
- Kaushik, R.; Ghosh, A.; Singh, A.; Jose, D.A. Colorimetric sensor for the detection of H2S and its application in molecular half-subtractor. Anal. Chim. Acta 2018, 1040, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Jothi, D.; Iyer, S.K. A highly sensitive naphthalimide based fluorescent “turn-on” sensor for H2S and its bio-imaging applications. J. Photochem. Photobiol. A-Chem. 2022, 427, 113802. [Google Scholar] [CrossRef]
- Shingole, M.; Banerjee, S.; Modak, B.; Kolay, S.; Mohanty, J.; Sudarsan, V. Cu-MOF-74 as Fluorescent Probe: Selective Optical Sensor for H2S Gas. ChemPhotoChem 2025, 9, e202400300. [Google Scholar] [CrossRef]
- Gu, W.X.; Zheng, W.W.; Liu, H.; Zhao, Y. Electroactive Cu2O nanocubes engineered electrochemical sensor for H2S detection. Anal. Chim. Acta 2021, 1150, 338216. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, Y.X.; Cui, L.Y.; Zheng, F.J.; Song, Q.J. Electroactive Au@Ag nanoparticles driven electrochemical sensor for endogenous H2S detection. Biosens. Bioelectron. 2018, 117, 53–59. [Google Scholar] [CrossRef]
- Yan, J.; Zhao, Z.X.; Wang, X.Y.; Xie, J. Hydrogen sulfide in seafood: Formation, hazards, and control. Trends Food Sci. Technol. 2024, 148, 104512. [Google Scholar] [CrossRef]
- Girija, K.G.; Somasundaram, K.; Topkar, A.; Vatsa, R.K. Highly selective H2S gas sensor based on Cu-doped ZnO nanocrystalline films deposited by RF magnetron sputtering of powder target. J. Alloys Compd. 2016, 684, 15–20. [Google Scholar] [CrossRef]
- Shinde, S.D.; Patil, G.E.; Kajale, D.D.; Gaikwad, V.B.; Jain, G.H. Synthesis of ZnO nanorods by spray pyrolysis for H2S gas sensor. J. Alloys Compd. 2012, 528, 109–114. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, H.; Zheng, J.; Li, Q.; Xu, R.; Xu, J.; Song, Y.-Y.; Song, P.; Gao, Z.; Zhao, C. Integrating Vacancies and Defect Levels in Heterojunctions to Synergistically Enhance the Performance of H2S Chemiresistors for Periodontitis Diagnosis. ACS Sens. 2025, 10, 3072–3080. [Google Scholar] [CrossRef]
- Li, J.Y.; Na, E.T.; Liang, X.D.; Liang, Q.H.; Fan, M.H.; Chen, H.; Li, G.D.; Zou, X.X. Surface oxygen chemistry of metal oxide semiconductors for gas-sensing applications. Inorg. Chem. Front. 2024, 11, 8602–8626. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, B.Y.; Li, J.; Duan, Z.H.; Yang, Y.J.; Yuan, Z.; Jiang, Y.D.; Tai, H.L. Pd-Decorated ZnO Hexagonal Microdiscs for NH3 Sensor. Chemosensors 2024, 12, 43. [Google Scholar] [CrossRef]
- Zhou, B.D.; Peng, X.Y.; Chu, J.; Malca, C.; Diaz, L.; Zhou, A.F.; Feng, P.X. Type II ZnO-MoS2 Heterostructure-Based Self-Powered UV-MIR Ultra-Broadband p-n Photodetectors. Molecules 2025, 30, 1063. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.J.; Chang, X.T.; Jiang, Y.C.; Gao, W.X.; Sun, S.B. Hydrophobicity-promoted humidity-resistant ethanol sensors based on PTFE/Au/WO3 composite films. Sens. Actuators B Chem. 2025, 430, 137386. [Google Scholar] [CrossRef]
- Ciftyurek, E.; Li, Z.S.; Schierbaum, K. Engineered Porosity ZnO Sensor Enriched with Oxygen Vacancies Enabled Extraordinary Sub-ppm Sensing of Hydrogen Sulfide and Nitrogen Dioxide Air Pollution Gases at Low Temperature in Air. Sensors 2024, 24, 7694. [Google Scholar] [CrossRef]
- Huo, Y.Y.; Qiu, L.M.; Wang, T.Q.; Yu, H.; Yang, W.Y.; Dong, X.T.; Yang, Y. P-N Heterojunction formation: Metal Sulfide@Metal Oxide Chemiresistor for ppb H2S Detection from Exhaled Breath and Food Spoilage at Flexible Room Temperature. ACS Sens. 2024, 9, 3433–3443. [Google Scholar] [CrossRef]
- Yang, Y.N.; Yue, J.W.; Zhang, X.T.; Ren, B.W.; Fu, S.H.; Sun, Y.H.; Luo, Z.X. Accordion-like ZIF-8/MoO3 composite gas sensor for highly selective and sensitive H2S detection. Ceram. Int. 2024, 50, 38253–38262. [Google Scholar]
- Zhang, D.N.; Jiang, J.Y.; Yang, Y.; Li, F.; Yu, H.; Dong, X.T.; Wang, T.Q. SnO2-inserted 2D Layered Ti3C2Tx MXene: From heterostructure construction to ultra-high sensitivity for Ppb-level H2S detection. Sens. Actuators B Chem. 2024, 410, 135727. [Google Scholar] [CrossRef]
- Cai, Z.X.; Li, H.Y.; Ding, J.C.; Guo, X. Hierarchical flowerlike WO3 nanostructures assembled by porous nanoflakes for enhanced NO gas sensing. Sens. Actuators B Chem. 2017, 246, 225–234. [Google Scholar] [CrossRef]
- Can, Y.; Courtois, X.; Duprez, D. Tungsten-Based Catalysts for Environmental Applications. Catalysts 2021, 11, 703. [Google Scholar] [CrossRef]
- Li, Y.Z.; Zhou, W.Q.; Li, D.Q.; Xu, J.K. Multifunctional non-stoichiometric tungsten oxides: Synthesis, properties and application. J. Power Sources 2025, 631, 236222. [Google Scholar] [CrossRef]
- Park, H.; Kim, J.; Ahn, S.; Mirzaei, A.; Kim, J.H.; Park, C. CuO nanoparticles-decorated femtosecond laser-irradiated WS2-WO3 heterojunctions to realize selective H2S gas sensor. Sens. Actuators B Chem. 2025, 427, 137167. [Google Scholar] [CrossRef]
- Zhang, S.B.; Fang, L.; Cao, Z.M.; Dai, X.Y.; Wang, W.; Geng, Q.; Zhou, M.H.; Zhang, S.H.; Dong, F.; Chen, S. In Situ Generatable and Recyclable Oxygen Vacancy-Modified Fe2O3-Decorated WO3 Nanowires with Super Stability for ppb-Level H2S Sensing. ACS Sens. 2024, 9, 5500–5511. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, S.Y.; Xiao, D.K.; Wang, S.J.; Zhang, T.; Yang, X.; Heng, S.Q.; Sun, M.J. CuO/WO3 hollow microsphere P-N heterojunction sensor for continuous cycle detection of H2S gas. Sens. Actuators B Chem. 2023, 374, 132823. [Google Scholar] [CrossRef]
- Tamaki, T.; Maekawa, N.; Miura, N.; Yamazoe, N. CUO-SNO2 Element for Highly Sensitive and Selective Detection of H2S. Sens. Actuators B-Chem. 1992, 9, 197–203. [Google Scholar] [CrossRef]
- Goyal, C.P.; Goyal, D.; Rajan, S.K.; Ramgir, N.S.; Shimura, Y.; Navaneethan, M.; Hayakawa, Y.; Muthamizhchelvan, C.; Ikeda, H.; Ponnusamy, S. Effect of Zn Doping in CuO Octahedral Crystals towards Structural, Optical, and Gas Sensing Properties. Crystals 2020, 10, 188. [Google Scholar] [CrossRef]
- Joshi, S.; Kumar, C.B.R.; Jones, L.A.; Mayes, E.L.H.; Ippolito, S.J.; Sunkara, M.V. Modulating interleaved ZnO assembly with CuO nanoleaves for multifunctional performance: Perdurable CO2 gas sensor and visible light catalyst. Inorg. Chem. Front. 2017, 4, 1848–1861. [Google Scholar] [CrossRef]
- Sun, Z.; Yan, X.; Huang, L.; Zhang, Y.; Hu, Z.; Sun, C.; Yang, X.; Pan, G.; Cheng, Y. AuPd bimetallic functionalized monodisperse In2O3 porous spheres for ultrasensitive trimethylamine detection. Sens. Actuators B Chem. 2023, 381, 133355. [Google Scholar] [CrossRef]
- Jiang, B.; Zhou, T.T.; Zhang, L.; Han, W.J.; Yang, J.Q.; Wang, C.; Sun, Y.F.; Liu, F.M.; Sun, P.; Lu, G.Y. Construction of mesoporous In2O3-ZnO hierarchical structure gas sensor for ethanol detection. Sens. Actuators B Chem. 2023, 393, 134203. [Google Scholar] [CrossRef]
- Ciftyurek, E.; Li, Z.S.; Schierbaum, K. Adsorbed Oxygen Ions and Oxygen Vacancies: Their Concentration and Distribution in Metal Oxide Chemical Sensors and Influencing Role in Sensitivity and Sensing Mechanisms. Sensors 2023, 23, 29. [Google Scholar] [CrossRef]
- Sun, L.J.; Su, H.W.; Xu, D.F.; Wang, L.L.; Tang, H.; Liu, Q.Q. Carbon hollow spheres as cocatalyst of Cu-doped TiO2 nanoparticles for improved photocatalytic H2 generation. Rare Met. 2022, 41, 2063–2073. [Google Scholar] [CrossRef]
- Zhang, H.; Xiao, J.; Chen, J.; Zhang, L.; Zhang, Y.; Pei, X.L. Pd-modified SmFeO3 with hollow tubular structure under light shows extremely high acetone gas sensitivity. Rare Met. 2023, 42, 545–557. [Google Scholar] [CrossRef]
- Barsan, N.; Simion, C.; Heine, T.; Pokhrel, S.; Weimar, U. Modeling of sensing and transduction for p-type semiconducting metal oxide based gas sensors. J. Electroceram. 2010, 25, 11–19. [Google Scholar] [CrossRef]
- Navale, S.; Shahbaz, M.; Majhi, S.M.; Mirzaei, A.; Kim, H.W.; Kim, S.S. CuxO Nanostructure-Based Gas Sensors for H2S Detection: An Overview. Chemosensors 2021, 9, 127. [Google Scholar] [CrossRef]
- Zhang, M.; Lv, X.T.; Wang, T.Q.; Pei, W.Y.; Yang, Y.; Li, F.; Yin, D.D.; Yu, H.; Dong, X.T. CuO-based gas sensor decorated by polyoxometalates electron acceptors: From constructing heterostructure to improved sensitivity and fast response for ethanol detection. Sens. Actuators B Chem. 2024, 415, 136016. [Google Scholar] [CrossRef]
- Datta, N.; Ramgir, N.S.; Kumar, S.; Veerender, P.; Kaur, M.; Kailasaganapathi, S.; Debnath, A.K.; Aswal, D.K.; Gupta, S.K. Role of various interfaces of CuO/ZnO random nanowire networks in H2S sensing: An impedance and Kelvin probe analysis. Sens. Actuators B Chem. 2014, 202, 1270–1280. [Google Scholar] [CrossRef]
- He, M.; Xie, L.L.; Zhao, X.L.; Hu, X.B.; Li, S.H.; Zhu, Z.G. Highly sensitive and selective H2S gas sensors based on flower-like WO3/CuO composites operating at low/room temperature. J. Alloys Compd. 2019, 788, 36–43. [Google Scholar] [CrossRef]
- Kim, H.; Jin, C.; Park, S.; Kim, S.; Lee, C. H2S gas sensing properties of bare and Pd-functionalized CuO nanorods. Sens. Actuators B Chem. 2012, 161, 594–599. [Google Scholar] [CrossRef]
- Annanouch, F.E.; Haddi, Z.; Vallejos, S.; Umek, P.; Guttmann, P.; Bittencourt, C.; Llobet, E. Aerosol-Assisted CVD-Grown WO3 Nanoneedles Decorated with Copper Oxide Nanoparticles for the Selective and Humidity-Resilient Detection of H2S. ACS Appl. Mater. Interfaces 2015, 7, 6842–6851. [Google Scholar] [CrossRef]
- Qin, Y.X.; Zhang, Y.Z.; Lei, J.; Lei, S.Y. High-performance gas sensor based on Ag@SnO2-Co3O4 hollow nanocomposite for fast and highly selective H2S detection. Sens. Actuators B Chem. 2025, 428, 137239. [Google Scholar] [CrossRef]
- Xiao, B.X.; Zhao, Q.; Xiao, C.H.; Yang, T.Y.; Wang, P.; Wang, F.; Chen, X.D.; Zhang, M.Z. Low-temperature solvothermal synthesis of hierarchical flower-like WO3 nanostructures and their sensing properties for H2S. CrystEngComm 2015, 17, 5710–5716. [Google Scholar] [CrossRef]
- Xiao, X.Y.; Zhou, X.R.; Ma, J.H.; Zhu, Y.H.; Cheng, X.W.; Luo, W.; Deng, Y. Rational Synthesis and Gas Sensing Performance of Ordered Mesoporous Semiconducting WO3/NiO Composites. ACS Appl. Mater. Interfaces 2019, 11, 26268–26276. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.R.; Liu, B.; Xiao, S.H.; Wang, X.H.; Sun, L.M.; Li, H.; Xie, W.Y.; Li, Q.H.; Zhang, Q.; Wang, T.H. Low-Temperature H2S Detection with Hierarchical Cr-Doped WO3 Microspheres. ACS Appl. Mater. Interfaces 2016, 8, 9674–9683. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.R.; Zhao, Y.Q.; Zhu, B.L.; Kong, F.H.; Wang, D.; Wu, S.H.; Huang, W.P.; Zhang, S.M. H2S sensing characteristics of Pt-doped α-Fe2O3 thick film. Sens. Actuators B Chem. 2007, 125, 79–84. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, Z.; Zhang, H.M.; Jiao, W.L. Preparation and sensing performance investigation of ZIF-8-derived ZnO-supported Ag nanoparticle assemblies for trace H2S gas detection. Microchem. J. 2025, 212, 113397. [Google Scholar] [CrossRef]
- Kim, J.; Kim, W.; Yong, K. CuO/ZnO Heterostructured Nanorods: Photochemical Synthesis and the Mechanism of H2S Gas Sensing. J. Phys. Chem. C 2012, 116, 15682–15691. [Google Scholar] [CrossRef]
- Shin, J.; Choi, S.W.; Kim, C.; Park, J.; Roh, J.W.; Hwang, J.Y.; Mirzaei, A.; Jin, C.; Choi, M.S. Characterization and H2S gas sensing characteristics of Au-decorated ZnO nanorods prepared by a two-step wet method. J. Alloys Compd. 2025, 1021, 179655. [Google Scholar] [CrossRef]
- Ganapathi, S.K.; Ramgir, N.S.; Datta, N.; Patnaik, V.; Patel, A.; Kaur, M.; Debnath, A.K.; Datta, R.; Saha, T.K.; Aswal, D.K.; et al. Commercial H2S Sensor Based On SnO2: CuO Thin Films. In Proceedings of the 2nd International Symposium on Physics and Technology of Sensors, Pune, India, 7–10 March 2015; IEEE: New York, NY, USA, 2015; pp. 67–69. [Google Scholar]
- Xia, H.; Zhang, D.Z.; Sun, Y.H.; Wang, J.H.; Tang, M.C. Ultrasensitive H2S Gas Sensor Based on SnO2 Nanoparticles Modified WO3 Nanocubes Heterojunction. IEEE Sens. J. 2023, 23, 27031–27037. [Google Scholar] [CrossRef]
- Katoch, A.; Choi, S.W.; Sun, G.J.; Kim, S.S. An approach to detecting a reducing gas by radial modulation of electron-depleted shells in core-shell nanofibers. J. Mater. Chem. A 2013, 1, 13588–13596. [Google Scholar] [CrossRef]
- Wang, F.G.; Yang, S.; Han, S.M.; Sun, P.; Liu, W.X.; Lu, Q.P.; Cao, W.B. Synthesis of Cu-TiO2/CuS p-n heterojunction via in situ sulfidation for highly efficient photocatalytic NO removal. Prog. Nat. Sci.-Mater. Int. 2022, 32, 561–569. [Google Scholar] [CrossRef]
- Liu, H.C.; Wang, F.P.; Hu, K.L.; Zhang, B.; He, L.; Zhou, Q. Superior Hydrogen Sensing Property of Porous NiO/SnO2 Nanofibers Synthesized via Carbonization. Nanomaterials 2019, 9, 1250. [Google Scholar] [CrossRef] [PubMed]
- Henzler, K.; Heilemann, A.; Kneer, J.; Guttmann, P.; Jia, H.; Bartsch, E.; Lu, Y.; Palzer, S. Investigation of reactions between trace gases and functional CuO nanospheres and octahedrons using NEXAFS-TXM imaging. Sci. Rep. 2015, 5, 17729. [Google Scholar] [CrossRef] [PubMed]
- Kneer, J.; Knobelspies, S.; Bierer, B.; Wöllenstein, J.; Palzer, S. New method to selectively determine hydrogen sulfide concentrations using CuO layers. Sens. Actuators B Chem. 2016, 222, 625–631. [Google Scholar] [CrossRef]
- Peng, F.; Yu, W.W.; Lu, Y.; Sun, Y.; Fu, X.L.; Hao, J.M.; Chen, X.; Cong, R.; Dai, N. Enhancement of Low-Temperature Gas-Sensing Performance Using Substoichiometric WO3−x Modified with CuO. ACS Appl. Mater. Interfaces 2020, 12, 41230–41238. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, P.; Sharma, G.; Dhiman, P.; Mola, G.T.; Farghali, M.; Rashwan, A.K.; Nasr, M.; Osman, A.I.; Wang, T.T. Simultaneous hydrogen production and photocatalytic pollutant removal: A review. Environ. Chem. Lett. 2024, 22, 2405–2424. [Google Scholar] [CrossRef]
- Li, X.C.; Zhao, G.P.; Xie, K.; Wang, P.T.; Zhang, C.; Lin, L. Cu-decorated HfS2 and Cu-embedded HfS2 for adsorption and gas sensing of lithium-ion thermal runaway gases: A DFT study. Surf. Interfaces 2024, 46, 104028. [Google Scholar] [CrossRef]
Materials | Concentration (ppm) | Work Temperature (°C) | Response | Response/Recovery Time (s) | Detection Limit (ppb) | Reference |
---|---|---|---|---|---|---|
CuO-WO3 | 5 | 80 | 105.14 | 42/—— | —— | [47] |
Pd-CuO | 100 | 300 | 312 | 670/80 | —— | [48] |
Cu2O-WO3 | 5 | 390 | 27.5 | 2/1100 | 300 | [49] |
Ag@SnO2-Co3O4 | 10 | 125 | 56.36 | 3/539 | 500 | [50] |
Flower-like WO3 | 50 | 160 | 30.96 | 1.7/36.1 | —— | [51] |
WO3-NiO | 50 | 250 | 58 ± 5.1 | 4/66 | 500 | [52] |
Cr-WO3 | 100 | 80 | 153.2 | 336/300 | —— | [53] |
Pt-Fe2O3 | 100 | 160 | 326 | ——/—— | 10 | [54] |
Ag-ZnO | 2.5 | 100 | 104 | 258/49 | 1.1 | [55] |
CuO-ZnO | 50 | 500 | 890 | 170/130 | —— | [56] |
Au-ZnO | 10 | 250 | 89.57 | 1529/532 | 192 | [57] |
SnO2:CuO | 25 | 180 | 162 | 400/300 | —— | [58] |
WO3/SnO2 | 2 | 200 | 55.2 | 25/41 | —— | [59] |
CuO-WO3 | 10 | 175 | 571 | 4/263 | 100 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Yang, X. Engineering Hierarchical CuO/WO3 Hollow Spheres with Flower-like Morphology for Ultra-Sensitive H2S Detection at ppb Level. Chemosensors 2025, 13, 250. https://doi.org/10.3390/chemosensors13070250
Wang P, Yang X. Engineering Hierarchical CuO/WO3 Hollow Spheres with Flower-like Morphology for Ultra-Sensitive H2S Detection at ppb Level. Chemosensors. 2025; 13(7):250. https://doi.org/10.3390/chemosensors13070250
Chicago/Turabian StyleWang, Peishuo, and Xueli Yang. 2025. "Engineering Hierarchical CuO/WO3 Hollow Spheres with Flower-like Morphology for Ultra-Sensitive H2S Detection at ppb Level" Chemosensors 13, no. 7: 250. https://doi.org/10.3390/chemosensors13070250
APA StyleWang, P., & Yang, X. (2025). Engineering Hierarchical CuO/WO3 Hollow Spheres with Flower-like Morphology for Ultra-Sensitive H2S Detection at ppb Level. Chemosensors, 13(7), 250. https://doi.org/10.3390/chemosensors13070250