Phosphonium Salt-Functionalized β-Cyclodextrin Film for Ultrasensitive and Selective Electrochemical Impedance Spectroscopy Detection of Perchlorate in Drinking Water
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Measurements
2.3. Synthesis
2.3.1. Per-Bromide β-Cyclodextrine (β-CDBr7)
2.3.2. Phosphonuim-Modified β-Cyclodextrine (β-CDP)
2.3.3. Transducer Functionalization
2.3.4. EIS Spectroscopy
2.3.5. Analysis of Real Water Sample
2.3.6. Computational Analysis of Data
3. Results
3.1. Synthesis and Structural Characterization
- -
- A1 = integral of aromatic protons (7.8 ppm, 15H per phosphonium group).
- -
- A2 = integral of OH-2/OH-3 secondaries protons (5.5–5.8 ppm, 14H) (Figure S1).
3.2. Thermal Analyses
3.3. Thin Film Surface Properties
3.4. EIS Measurements: Preliminary Study
3.5. Impedimetric Detection of Perchlorate (ClO4−) Anions
3.6. Modelling and Sensing Mechanisms
3.7. Selectivity
3.8. Analysis of Real Water Samples
3.9. Comparative Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mehrotra, P. Biosensors and their applications—A review. J. Oral Biol. Craniofacial Res. 2016, 6, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Steinmaus, C.M. Perchlorate in Water Supplies: Sources, Exposures, and Health Effects. Curr. Environ. Health Rep. 2016, 3, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Urben, P.G. Bretherick’s Handbook of Reactive Chemical Hazards, 8th ed.; Elsevier: Amsterdam, The Netherlands, 2006; ISBN 978-0-08-100971-0. [Google Scholar]
- Kumarathilaka, P.; Oze, C.; Indraratne, S.P.; Vithanage, M. Perchlorate as an emerging contaminant in soil, water and food. Chemosphere 2016, 150, 667–677. [Google Scholar] [CrossRef] [PubMed]
- Panseri, S.; Nobile, M.; Arioli, F.; Biolatti, C.; Pavlovic, R.; Chiesa, L.M. Occurrence of perchlorate, chlorate and polar herbicides in different baby food commodities. Food Chem. 2020, 330, 127205. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Jiang, Y.; Song, J.; Liang, H.; Liu, Y.; Huang, J.; Yin, P.; Wu, D.; Zhang, H.; Liu, X.; et al. The risk of perchlorate and iodine on the incidence of thyroid tumors and nodular goiter: A case-control study in southeastern China. Environ. Health 2022, 21, 4. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Arango, D.; Torres-Rojas, F.; Tapia, N.; Vega, M.; Alvear, C.; Pizarro, G.; Pastén, P.; Cortés, S.; Vega, A.S.; Calderón, R.; et al. Perchlorate and chlorate assessment in drinking water in northern Chilean cities. Environ. Res. 2023, 233, 116450. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Gao, B.; Tan, X.; Zhang, X.; Yue, D.; Yue, Q. Uptake of perchlorate from aqueous solutions by amine-crosslinked cotton stalk. Carbohydr. Polym. 2013, 98, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, A.; Viraraghavan, T. Perchlorate: Health Effects and Technologies for Its Removal from Water Resources. Int. J. Environ. Res. Public Health 2009, 6, 1418–1442. [Google Scholar] [CrossRef] [PubMed]
- Vigliotta, G.; Motta, O.; Guarino, F.; Iannece, P.; Proto, A. Assessment of perchlorate-reducing bacteria in a highly polluted river. Int. J. Hyg. Environ. Health 2010, 213, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; You, H.; Yao, J.; Su, H. Water treatment technologies for perchlorate: A review. Desalination 2012, 298, 1–12. [Google Scholar] [CrossRef]
- Seiler, M.A.; Jensen, D.; Neist, U.; Deister, U.K.; Schmitz, F. Validation data for the determination of perchlorate in water using ion chromatography with suppressed conductivity detection. Environ. Sci. Eur. 2016, 28, 18. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Xu, X.; Tan, X.; Wang, Y.; Ling, J.; Gao, B.; Yue, Q. Column adsorption of perchlorate by amine-crosslinked biopolymer based resin and its biological, chemical regeneration properties. Carbohydr. Polym. 2015, 115, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Han, M.-J.; Li, J.; Meng, X. Surface modification of silver nanofilms for improved perchlorate detection by surface-enhanced Raman scattering. J. Colloid Interface Sci. 2012, 377, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Meng, X. Recent advances in SERS detection of perchlorate. Front. Chem. Sci. Eng. 2017, 11, 448–464. [Google Scholar] [CrossRef]
- Mosier-Boss, P. Review of SERS Substrates for Chemical Sensing. Nanomaterials 2017, 7, 142. [Google Scholar] [CrossRef] [PubMed]
- Itterheimová, P.; Bobacka, J.; Šindelář, V.; Lubal, P. Perchlorate Solid-Contact Ion-Selective Electrode Based on Dodecabenzylbambus[6]uril. Chemosensors 2022, 10, 115. [Google Scholar] [CrossRef]
- Ben Messaoud, N.; Baraket, A.; Dridi, C.; Nooredeen, N.M.; Nooredeen Abbas, M.; Errachid, A. A Highly Sensitive Miniaturized Impedimetric Perchlorate Chemical Sensor. IEEE Sens. J. 2018, 18, 1343–1350. [Google Scholar] [CrossRef]
- Braik, M.; Dridi, C.; Ali, A.; Abbas, M.N.; Ben Ali, M.; Errachid, A. Development of a perchlorate sensor based on Co-phthalocyanine derivative by impedance spectroscopy measurements. Org. Electron. 2015, 16, 77–86. [Google Scholar] [CrossRef]
- Colinas, I.R.; Silva, R.C.; Oliver, S.R.J. Reversible, Selective Trapping of Perchlorate from Water in Record Capacity by a Cationic Metal–Organic Framework. Environ. Sci. Technol. 2016, 50, 1949–1954. [Google Scholar] [CrossRef] [PubMed]
- Colinas, I.R.; Inglis, K.K.; Blanc, F.; Oliver, S.R.J. Anion exchange dynamics in the capture of perchlorate by a cationic Ag-based MOF. Dalton Trans. 2017, 46, 5320–5325. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Sharma, A.; Singh, H.; Suating, P.; Kim, H.S.; Sunwoo, K.; Shim, I.; Gibb, B.C.; Kim, J.S. Revisiting Fluorescent Calixarenes: From Molecular Sensors to Smart Materials. Chem. Rev. 2019, 119, 9657–9721. [Google Scholar] [CrossRef] [PubMed]
- Memon, A.A.; Solangi, A.R.; Memon, S.; Bhatti, A.A.; Bhatti, A.A. Highly Selective Determination of Perchlorate by a Calix[4]arene based Polymeric Membrane Electrode. Polycycl. Aromat. Compd. 2016, 36, 106–119. [Google Scholar] [CrossRef]
- Abbas, M.N.; Radwan, A.L.A.; Bühlmann, P.; Ghaffar, M.A.A.E. Solid-Contact Perchlorate Sensor with Nanomolar Detection Limit Based on Cobalt Phthalocyanine Ionophores Covalently Attached to Polyacrylamide. Am. J. Anal. Chem. 2011, 2, 820–831. [Google Scholar] [CrossRef]
- Braik, M.; Dridi, C.; Ben Ali, M.; Ali, M.; Abbas, M.; Zabala, M.; Bausells, J.; Zine, N.; Jaffrezic-Renault, N.; Errachid, A. Development of a capacitive chemical sensor based on Co(II)-phthalocyanine acrylate-polymer/HfO2/SiO2/Si for detection of perchlorate. J. Sens. Sens. Syst. 2015, 4, 17–23. [Google Scholar] [CrossRef]
- Gaied, A.; Jaballah, N.; Teka, S. A Water-Insoluble β-Cyclodextrin Derivative for Hydroquinone Sensor Applications. J. Appl. Chem. 2015, 3, 1655–1664. [Google Scholar] [CrossRef]
- Teka, S.; Jebnouni, A.; Alrashidi, A.A.O.; Alshammari, O.A.; Jaballah, N.S.; Alhar, M.S.O.; Majdoub, M. β-cyclodextrin encapsulation of anthracene-based polymer: A versatile approach for photoluminescence recovery and improved thin film performance. J. Mol. Struct. 2024, 1308, 138044. [Google Scholar] [CrossRef]
- Teka, S.; Jebnouni, A.; Chemli, M.; Attia, G.; Baatout, Z.; Jaballah, N.S.; Ghorbel, M.; Majdoub, M. Anthracene and β-cyclodextrin-based semi-conducting rotaxanes: Effect of the benzylation on the physico-chemical and electrical properties. J. Mol. Struct. 2023, 1289, 135802. [Google Scholar] [CrossRef]
- Rivero-Barbarroja, G.; López-Fernández, J.; Juárez-Gonzálvez, I.; Fernández-Clavero, C.; Di Giorgio, C.; Vélaz, I.; Garrido, M.J.; Benito, J.M.; Ortiz Mellet, C.; Mendicuti, F.; et al. β-Cyclodextrin-based geometrically frustrated amphiphiles as one-component, cell-specific and organ-specific nucleic acid delivery systems. Carbohydr. Polym. 2025, 347, 122776. [Google Scholar] [CrossRef] [PubMed]
- Teka, S.; Jebnouni, A.; Jaballah, N.S.; Elgharbi, S.; Majdoub, M. Anthracene and β-Cyclodextrin Based Supramolecular Semi-Conducting Thin Film: Effect of the Encapsulation on the Optical and Electrical Properties. ChemistrySelect 2022, 7, e202103865. [Google Scholar] [CrossRef]
- Mansi; Khanna, P.; Yadav, S.; Singh, A.; Khanna, L. Inclusion complexes of novel formyl chromone Schiff bases with β-Cyclodextrin: Synthesis, characterization, DNA binding studies and in-vitro release study. Carbohydr. Polym. 2025, 347, 122667. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xu, F.; Dai, Y.; Zhang, J.; Shi, Y.; Lai, D.; Sriboonvorakul, N.; Hu, J. A Review of Cyclodextrin Encapsulation and Intelligent Response for the Release of Curcumin. Polymers 2022, 14, 5421. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Zhang, T.; Chai, X.; Duan, X.; He, D.; Yu, H.; Liu, X.; Tao, Z. Encapsulation Efficiency and Functional Stability of Cinnamon Essential Oil in Modified β-cyclodextrins: In Vitro and In Silico Evidence. Foods 2022, 12, 45. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Zhang, X.; Jiang, C.; Zhang, W.; Yang, L. The Trace Detection of Nitrite Ions Using Neutral Red Functionalized SH-β-Cyclodextrin @Au Nanoparticles. Sensors 2018, 18, 681. [Google Scholar] [CrossRef] [PubMed]
- Teka, S.; Gaied, A.; Jaballah, N.; Xiaonan, S.; Majdoub, M. Thin sensing layer based on semi-conducting β-cyclodextrin rotaxane for toxic metals detection. Mater. Res. Bull. 2016, 74, 248–257. [Google Scholar] [CrossRef]
- Liu, R.; Shi, X. Preparation of β-Cyclodextrin Functionalized Platform for Monitoring Changes in Potassium Content in Perspiration. Molecules 2023, 28, 7000. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Fu, L.; Chen, F.; Lv, Y.; Zhang, R.; Zhao, S.; Karimi-Maleh, H. Cyclodextrin-based architectures for electrochemical sensing: From molecular recognition to functional hybrids. Anal. Methods 2025, 17, 4300–4320. [Google Scholar] [CrossRef] [PubMed]
- Harley, C.C.; Annibaldi, V.; Yu, T.; Breslin, C.B. The selective electrochemical sensing of dopamine at a polypyrrole film doped with an anionic β−cyclodextrin. J. Electroanal. Chem. 2019, 855, 113614. [Google Scholar] [CrossRef]
- Gadhari, N.S.; Gholave, J.V.; Patil, S.S.; Patil, V.R.; Upadhyay, S.S. Enantioselective high performance new solid contact ion-selective electrode potentiometric sensor based on sulphated γ-cyclodextrin-carbon nanofiber composite for determination of multichiral drug moxifloxacin. J. Electroanal. Chem. 2021, 882, 114981. [Google Scholar] [CrossRef]
- Guchhait, T.; Roy, S.; Das, M.; Jena, S.P. Diversity in synthetic perchlorate anion receptors: Challenges and opportunities. J. Mol. Struct. 2023, 1292, 136195. [Google Scholar] [CrossRef]
- Rajamanikandan, R.; Ilanchelian, M. β-cyclodextrin functionalised silver nanoparticles as a duel colorimetric probe for ultrasensitive detection of Hg2+ and S2− ions in environmental water samples. Mater. Today Commun. 2018, 15, 61–69. [Google Scholar] [CrossRef]
- Nakamura, T.; Takayanagi, H.; Nakahata, M.; Okubayashi, T.; Baba, H.; Ishii, Y.; Watanabe, G.; Tanabe, D.; Nabeshima, T. Amide cyclodextrin that recognises monophosphate anions in harmony with water molecules. Chem. Sci. 2025, 16, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Azath, I.A.; Suresh, P.; Pitchumani, K. Per-6-ammonium-β-cyclodextrin/p-nitrophenol complex as a colorimetric sensor for phosphate and pyrophosphate anions in water. Sens. Actuators B Chem. 2011, 155, 909–914. [Google Scholar] [CrossRef]
- Ye, X.; Jiang, T.; Ma, Y.; To, D.; Wang, S.; Chen, J. A portable, low-cost and high-throughput electrochemical impedance spectroscopy device for point-of-care biomarker detection. Biosens. Bioelectron. X 2023, 13, 100301. [Google Scholar] [CrossRef]
- Gadelle, A.; Defaye, J. Selective Halogenation at Primary Positions of Cyclomaltooligosaccharides and a Synthesis of Per-3,6-anhydro Cyclomaltooligosaccharides. Angew. Chem. Int. Ed. Engl. 1991, 30, 78–80. [Google Scholar] [CrossRef]
- Fischer, L.M.; Tenje, M.; Heiskanen, A.R.; Masuda, N.; Castillo, J.; Bentien, A.; Émneus, J.; Jakobsen, M.H.; Boisen, A. Gold cleaning methods for electrochemical detection applications. Microelectron. Eng. 2009, 86, 1282–1285. [Google Scholar] [CrossRef]
- Baatout, Z.; Teka, S.; Jaballah, N.; Sakly, N.; Sun, X.; Maurel, F.; Majdoub, M. Water-insoluble cyclodextrin membranes for humidity detection: Green synthesis, characterization and sensing performances. J. Mater. Sci. 2018, 53, 1455–1469. [Google Scholar] [CrossRef]
- Gieroba, B.; Kalisz, G.; Krysa, M.; Khalavka, M.; Przekora, A. Application of Vibrational Spectroscopic Techniques in the Study of the Natural Polysaccharides and Their Cross-Linking Process. Int. J. Mol. Sci. 2023, 24, 2630. [Google Scholar] [CrossRef] [PubMed]
- Giannetti, E. Thermal stability and bond dissociation energy of fluorinated polymers: A critical evaluation. J. Fluor. Chem. 2005, 126, 623–630. [Google Scholar] [CrossRef]
- Liu, Y.; Sameen, D.E.; Ahmed, S.; Wang, Y.; Lu, R.; Dai, J.; Li, S.; Qin, W. Recent advances in cyclodextrin-based films for food packaging. Food Chem. 2022, 370, 131026. [Google Scholar] [CrossRef] [PubMed]
- Asan, A.; Isildak, I. Determination of major phenolic compounds in water by reversed-phase liquid chromatography after pre-column derivatization with benzoyl chloride. J. Chromatogr. A 2003, 988, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Regalado, R.J.J.M.; Punzalan, E.A.; Penaloza, D.P., Jr. One-pot preparation of PS/silica hydrophobic coating by solution-casting using D-limonene as dispersing medium. Epa. J. Silic. Based Compos. Mater. 2019, 71, 80–83. [Google Scholar] [CrossRef]
- Neirynck, P.; Schimer, J.; Jonkheijm, P.; Milroy, L.-G.; Cigler, P.; Brunsveld, L. Carborane–β-cyclodextrin complexes as a supramolecular connector for bioactive surfaces. J. Mater. Chem. B 2015, 3, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Sakly, N.; Souiri, M.; Fekih Romdhane, F.; Ben Ouada, H.; Jaffrezic-Renault, N. Platinum electrode functionalized with calix[4]arene thin films for impedimetric detection of sodium ions. Mater. Sci. Eng. C 2002, 21, 47–53. [Google Scholar] [CrossRef]
- Ganesh, V.; Pal, S.K.; Kumar, S.; Lakshminarayanan, V. Self-assembled monolayers (SAMs) of alkoxycyanobiphenyl thiols on gold—A study of electron transfer reaction using cyclic voltammetry and electrochemical impedance spectroscopy. J. Colloid Interface Sci. 2006, 296, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Oztekin, Y.; Ramanaviciene, A.; Ramanavicius, A. Electrochemical Glutathione Sensor Based on Electrochemically Deposited Poly-m-aminophenol. Electroanalysis 2011, 23, 701–709. [Google Scholar] [CrossRef]
- Gold, V.; McNaught, A.; The International Union of Pure and Applied Chemistry (IUPAC). The IUPAC Compendium of Chemical Terminology: The Gold Book, 5th ed.; International Union of Pure and Applied Chemistry (IUPAC): Raleigh, NC, USA, 2025. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, X.; Wu, Y.; Zhao, H.; Chen, B.; Xiong, W. Synthesis and Characterization of Spherical Li2Fe0.5V0.5SiO4/C Composite for High-Performance Cathode Material of Lithium-Ion Secondary Batteries. J. Electrochem. Soc. 2015, 162, A737–A742. [Google Scholar] [CrossRef]
- Luo, T.; Abdu, S.; Wessling, M. Selectivity of ion exchange membranes: A review. J. Membr. Sci. 2018, 555, 429–454. [Google Scholar] [CrossRef]
- Sakly, N.; Chevalier, Y.; Ben Ouada, H.; Jaffrezic-Renault, N. Surface modification of Si/SiO2 by polymeric anion-exchanging membrane: Effect on interfacial morphology and electrochemical properties. Mater. Sci. Eng. C 2008, 28, 923–931. [Google Scholar] [CrossRef]
- Jin, S.; Liu, L.; Li, S.; Zhou, Y.; Huang, C.; Wang, Z.; Zhai, Y. Removal of low concentration of perchlorate from natural water by quaternized chitosan sphere (CGQS): Efficiency and mechanism research. J. Hazard. Mater. 2024, 466, 133595. [Google Scholar] [CrossRef] [PubMed]
- Domi, Y.; Ikeura, K.; Okamura, K.; Shimazu, K.; Porter, M.D. Strong Inclusion of Inorganic Anions into β-Cyclodextrin Immobilized to Gold Electrode. Langmuir 2011, 27, 10580–10586. [Google Scholar] [CrossRef] [PubMed]
- Pomecko, R.; Asfari, Z.; Hubscher-Bruder, V.; Bochenska, M.; Arnaud-Neu, F. A New Phosphonium Calix[4]arene for Selective Anion Recognition: Synthesis and Studies in Solution and in Ion Selective Electrodes. Supramol. Chem. 2007, 19, 459–466. [Google Scholar] [CrossRef]
- Leoterio, D.M.S.; Paim, A.P.S.; Belian, M.F.; Galembeck, A.; Lavorante, A.F.; Pinto, E.; Amorim, C.G.; Araújo, A.N.; Montenegro, M.C.B.S.M. Potentiometric perchlorate determination at nanomolar concentrations in vegetables. Food Chem. 2017, 227, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Gholamian, F.; Sheikh-Mohseni, M.A.; Salavati-Niasari, M. Highly selective determination of perchlorate by a novel potentiometric sensor based on a synthesized complex of copper. Mater. Sci. Eng. C 2011, 31, 1688–1691. [Google Scholar] [CrossRef]
- Gupta, V.K.; Singh, A.K.; Singh, P.; Upadhyay, A. Electrochemical determination of perchlorate ion by polymeric membrane and coated graphite electrodes based on zinc complexes of macrocyclic ligands. Sens. Actuators B Chem. 2014, 199, 201–209. [Google Scholar] [CrossRef]
- Messaoud, N.B.; Baraket, A.; Dridi, C.; Nooredeen, N.M.; Abbas, M.N.; Bausells, J.; Streklas, A.; Elaissari, A.; Errachid, A. Development of a Perchlorate Chemical Sensor Based on Magnetic Nanoparticles and Silicon Nitride Capacitive Transducer. Electroanalysis 2018, 30, 901–909. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, S.; Singh, P.; Hundal, G.; Hundal, M.S.; Kumar, S. A fluorescent chemosensor for detection of perchlorate ions in water. Analyst 2012, 137, 4913. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Kapoor, A.; Raghunathan, M. Rapid and cost-effective detection of perchlorate in water using paper-based analytical devices. Desalination Water Treat. 2023, 314, 130–140. [Google Scholar] [CrossRef]
- Tohora, N.; Mahato, M.; Sahoo, R.; Ahamed, S.; Sultana, T.; Shah, M.S.A.S.; Kumar Das, S. Fabrication of a GUMBOS-based ratiometric organo nanosensor for selective and sensitive detection of perchlorate ions that works in 100% water. J. Photochem. Photobiol. Chem. 2023, 445, 115050. [Google Scholar] [CrossRef]
- Ashvin Iresh Fernando, P.U.; Kosgei, G.K.; Schutt, T.; Jenness, G.; Chen, C.-H.; George, G.W.; Kimble, A.N.; Nelson, W.M.; Henderson, D.L.; Moores, L.C. Synthesis, photochemical properties, and computational analysis of a pyrene-benzimidazole bipodal molecular scaffold for pH and perchlorate sensing. J. Photochem. Photobiol. Chem. 2023, 439, 114588. [Google Scholar] [CrossRef]
Sensitivity (a.u) | CV (%) | Linearity (%) | Linear Range (M) | LOD (10−12 M) | LOQ (10−12 M) |
---|---|---|---|---|---|
0.20213 ± 0.0095 | 3.65 | 98.243 | 10−11–10−4 | 2.23 | 6.75 |
Method | Electrode | Membrane/Molecular Probe | Sensitivity | Linearity (R2) | Linear Range (M) | Detection Limit (M) | Ref. |
---|---|---|---|---|---|---|---|
Impedance | Gold | β-CDP | 0.215 | 0.997 | 10−11–10−4 | 2.23 10−12 | Our work |
Gold | Co(II) MAPc | 0.061 | 0.982 | 9.1 × 10−10−10−3 | 9.1 × 10−10 | [19] | |
PVC | Phosphonium calix[4]arenes | 58 mV | - | 5 × 10−7–10−2 | 10−7 | [63] | |
Potentiometric | PVC | Polysiloxane ether couronne | - | 0.993 | 6.3 × 10−7–10−3 | 4.6 × 10−10 | [64] |
PVC | Hexaaza cyclohexa decane Cu (II) | 59.4 mV | 0.994 | 10−6–10−1 | 4 × 10−7 | [65] | |
PVC | CGE-Macrocyclic Zn (II) | 58.7 mV | 0.992 | 10−7–10−2 | 8.4 × 10−8 | [66] | |
Si3N4 | APTES-MNP/Co(II)Pc-PAA | - | - | 1.3 × 10−10–1.3 × 10−4 | 2 × 10−10 | [67] | |
Capacitance | ITO | HfO2/Co(II)Pc-AP | 0.085 | 0.984 | 10−7–10−2 | 10−7 | [25] |
* | Biphenylbenzimidazolium | - | 0.995 | 10−6–1.8 × 10−4 | 10−7 | [68] | |
Optical | * | Paper-based device | - | 0.97 | 4.02 × 10−8–1.21 × 10−7 | 3.43 × 10−8 | [69] |
* | Pyrene-butyrate GUMBOS | - | 0.996 | 2.51 × 108–4.02 × 10−7 | 7.17 × 10−9 | [70] | |
* | oligo (p-phenylenevinylene) | - | 0.998 | 1.67 × 10−6–11.1 × 10−6 | 6.54 × 10−7 | [71] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baatout, Z.; Jebnouni, A.; Sakly, N.; Teka, S.; Mohamed, N.; Osman, S.; Soury, R.; El Oudi, M.; Alsaqri, S.H.; Jaballah, N.S.; et al. Phosphonium Salt-Functionalized β-Cyclodextrin Film for Ultrasensitive and Selective Electrochemical Impedance Spectroscopy Detection of Perchlorate in Drinking Water. Polymers 2025, 17, 1937. https://doi.org/10.3390/polym17141937
Baatout Z, Jebnouni A, Sakly N, Teka S, Mohamed N, Osman S, Soury R, El Oudi M, Alsaqri SH, Jaballah NS, et al. Phosphonium Salt-Functionalized β-Cyclodextrin Film for Ultrasensitive and Selective Electrochemical Impedance Spectroscopy Detection of Perchlorate in Drinking Water. Polymers. 2025; 17(14):1937. https://doi.org/10.3390/polym17141937
Chicago/Turabian StyleBaatout, Zeineb, Achref Jebnouni, Nawfel Sakly, Safa Teka, Nuzaiha Mohamed, Sayda Osman, Raoudha Soury, Mabrouka El Oudi, Salman Hamdan Alsaqri, Nejmeddine Smida Jaballah, and et al. 2025. "Phosphonium Salt-Functionalized β-Cyclodextrin Film for Ultrasensitive and Selective Electrochemical Impedance Spectroscopy Detection of Perchlorate in Drinking Water" Polymers 17, no. 14: 1937. https://doi.org/10.3390/polym17141937
APA StyleBaatout, Z., Jebnouni, A., Sakly, N., Teka, S., Mohamed, N., Osman, S., Soury, R., El Oudi, M., Alsaqri, S. H., Jaballah, N. S., & Majdoub, M. (2025). Phosphonium Salt-Functionalized β-Cyclodextrin Film for Ultrasensitive and Selective Electrochemical Impedance Spectroscopy Detection of Perchlorate in Drinking Water. Polymers, 17(14), 1937. https://doi.org/10.3390/polym17141937