Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (570)

Search Parameters:
Keywords = DW2008S

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 7272 KiB  
Article
Dynamic Object Detection and Non-Contact Localization in Lightweight Cattle Farms Based on Binocular Vision and Improved YOLOv8s
by Shijie Li, Shanshan Cao, Peigang Wei, Wei Sun and Fantao Kong
Agriculture 2025, 15(16), 1766; https://doi.org/10.3390/agriculture15161766 - 18 Aug 2025
Viewed by 82
Abstract
The real-time detection and localization of dynamic targets in cattle farms are crucial for the effective operation of intelligent equipment. To overcome the limitations of wearable devices, including high costs and operational stress, this paper proposes a lightweight, non-contact solution. The goal is [...] Read more.
The real-time detection and localization of dynamic targets in cattle farms are crucial for the effective operation of intelligent equipment. To overcome the limitations of wearable devices, including high costs and operational stress, this paper proposes a lightweight, non-contact solution. The goal is to improve the accuracy and efficiency of target localization while reducing the complexity of the system. A novel approach is introduced based on YOLOv8s, incorporating a C2f_DW_StarBlock module. The system fuses binocular images from a ZED2i camera with GPS and IMU data to form a multimodal ranging and localization module. Experimental results demonstrate a 36.03% reduction in model parameters, a 33.45% decrease in computational complexity, and a 38.67% reduction in model size. The maximum ranging error is 4.41%, with localization standard deviations of 1.02 m (longitude) and 1.10 m (latitude). The model is successfully integrated into an ROS system, achieving stable real-time performance. This solution offers the advantages of being lightweight, non-contact, and low-maintenance, providing strong support for intelligent farm management and multi-target monitoring. Full article
Show Figures

Figure 1

26 pages, 2062 KiB  
Article
Exogenous Melatonin Induces Salt Stress Tolerance in Cucumber by Promoting Plant Growth and Defense System
by Guangchao Yu, Zhipeng Wang, Ming Wei, Lian Jia, Yue Qu, Yingyi Jiang and Shihan Xiang
Life 2025, 15(8), 1294; https://doi.org/10.3390/life15081294 - 14 Aug 2025
Viewed by 178
Abstract
This study aims to investigate the regulatory effect of exogenous melatonin (MT) on the growth and development of cucumbers subjected to salt stress. Using the XinTaiMiCi material and indoor pot culture method, seven treatments were set up: control group (CK), T0 (salt treatment [...] Read more.
This study aims to investigate the regulatory effect of exogenous melatonin (MT) on the growth and development of cucumbers subjected to salt stress. Using the XinTaiMiCi material and indoor pot culture method, seven treatments were set up: control group (CK), T0 (salt treatment group, 150 mM S + 0 μM MT), T1 (150 mM S + 25 μM MT), T2 (150 mM S + 50 μM MT), T3 (150 mM S + 100 μM MT), T4 (150 mM S + 150 μM MT), and T5 (150 mM S + 200 μM MT). Changes in plant height, stem diameter, leaf area, relative chlorophyll content, antioxidant enzyme activity, reactive oxygen species content, and osmotic adjustment substance content in cucumber seeds and seedlings under different treatments were studied, and a correlation analysis of these indicators was conducted. Meanwhile, the expression of salt stress-related genes was detected in all seven treatment groups. The results showed that, compared to the CK, T0 significantly reduced the hypocotyl length, root length, hypocotyl diameter, root diameter, and fresh and dry weights of cucumber seeds; in the later stage of salt stress treatment, T0 significantly increased the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and malondialdehyde (MDA) and the content of soluble protein in seeds. Additionally, T0 significantly increased the plant height, root length, stem diameter, leaf area, and fresh and dry weights of cucumber seedlings per plant; in the later stage of salt stress treatment, T0 significantly increased the activities of SOD, POD, CAT, and MDA and the content of soluble protein and chlorophyll in leaves. Compared to T0, the application of 50 μmol·L−1 MT under salt stress significantly increased the plant height, stem diameter, root length, leaf area, and fresh and dry weights of cucumber seedlings per plant; significantly increased the activities of SOD, POD, and CAT; decreased the MDA activity; and significantly increased the content of soluble protein and chlorophyll. Under salt stress conditions, the exogenous application of low-concentration melatonin increased the expression levels of salt stress response genes (such as CsSOS, CsNHX, CsHSF, and CsDREB) in cucumber. The germination rate (GR), germination potential (GP), germination index (GI), plant height (PH), root length (RL), leaf area index (LAI), fresh weight (FW), dry weight (DW), soluble protein (SP), relative chlorophyll content (SPAD), POD, CAT, and SOD of cucumber seedlings exhibited significant positive correlations, whereas they were negatively correlated with MDA content. In conclusion, the application of 50 μM MT can effectively alleviate the oxidative and osmotic stress caused by a high-salt environment in cucumber, promote cucumber growth, and improve salt tolerance. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

14 pages, 511 KiB  
Article
Body Temperature, Metabolic, and Circulatory Changes After 8 Days of Water-Only Fasting in Healthy Middle-Aged Men
by Ilona Pokora, Piotr Wyderka, Wiesław Pilis and Karol Pilis
J. Clin. Med. 2025, 14(16), 5735; https://doi.org/10.3390/jcm14165735 - 13 Aug 2025
Viewed by 306
Abstract
Background: Maintaining thermal homeostasis is a basic function of the human body. This homeostasis depends largely on the body’s nutritional status and other conditions related to it. Aim: The present study investigated the impact of 8 days of water-only fasting (8DW-F) on selected [...] Read more.
Background: Maintaining thermal homeostasis is a basic function of the human body. This homeostasis depends largely on the body’s nutritional status and other conditions related to it. Aim: The present study investigated the impact of 8 days of water-only fasting (8DW-F) on selected features of thermal homeostasis, taking into account somatic, metabolic, and circulatory changes in middle-aged men. Methods: A total of 13 healthy men took part in the experiment. Volunteers were examined twice: after a mixed diet (C) and after using 8DW-F. At baseline, the following were recorded: body mass (BM), body fat (FM), fat-free mass (FFM), and total water (TBW), along with basal metabolic rate (BMR) and body surface area (BSA). Then, after 30 min of sitting under thermoneutral conditions, the following measurements were taken: eardrum temperature (Ti), skin temperatures (Tsk), heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), oxygen uptake (VO2), and respiratory exchange ratio (RER). The following were then calculated: average body (MTB) and skin temperature (MTsk), resting metabolic rate (RMR), body to skin temperature gradient (g), and whole-body thermal conductivity (C). Results: The results showed that 8DW-F cause a significant reduction in most somatic variables as well as SBP and BMR (p < 0.001), RMR (p < 0.05) with no changes in Ti, MTsk, MTB, or C and g (p = 0.09). There were also significant correlations between Δ MTB × Δ BMR (p < 0.05) and Δ RMR × Δ VO2 (p < 0.001). Moreover, changes in the C range correlated with Δ RMR (p < 0.005) and Δ DBP (p < 0.05). Conclusions: 8DW-F reduced resting metabolic heat production in the studied men, but sufficient heat conservation ensured that thermal homeostasis was maintained under thermally neutral conditions. Full article
(This article belongs to the Section Sports Medicine)
Show Figures

Figure 1

17 pages, 822 KiB  
Article
From Forest to Fork: Antioxidant and Antimicrobial Potential of Laetiporus sulphureus (Bull.) Murrill in Cooked Sausages
by Aleksandra Novaković, Maja Karaman, Branislav Šojić, Predrag Ikonić, Tatjana Peulić, Jelena Tomić and Mirjana Šipovac
Microorganisms 2025, 13(8), 1832; https://doi.org/10.3390/microorganisms13081832 - 6 Aug 2025
Viewed by 373
Abstract
In response to the growing demand for clean-label preservatives, this study investigates the potential of Laetiporus sulphureus, an edible polypore mushroom, as a multifunctional additive in cooked sausages. The ethanolic extract of L. sulphureus (LsEtOH) was evaluated for its chemical composition, antioxidant [...] Read more.
In response to the growing demand for clean-label preservatives, this study investigates the potential of Laetiporus sulphureus, an edible polypore mushroom, as a multifunctional additive in cooked sausages. The ethanolic extract of L. sulphureus (LsEtOH) was evaluated for its chemical composition, antioxidant capacity, and antimicrobial activity. Leucine (12.4 ± 0.31 mg/g d.w.) and linoleic acid (68.6%) were identified as the dominant essential amino acid and fatty acid. LsEtOH exhibited strong antioxidant activity, with IC50 values of 215 ± 0.05 µg/mL (DPPH•), 182 ± 0.40 µg/mL (NO•), and 11.4 ± 0.01 µg/mL (OH•), and showed a selective inhibition of Gram-positive bacteria, particularly Staphylococcus aureus (MIC/MBC: 0.31/0.62 mg/mL). In cooked sausages treated with 0.05 mg/kg of LsEtOH, lipid peroxidation was reduced (TBARS: 0.26 mg MDA/kg compared to 0.36 mg MDA/kg in the control), microbial growth was suppressed (33.3 ± 15.2 CFU/g in the treated sample compared to 43.3 ± 5.7 CFU/g in the control group), and color and pH were stabilized over 30 days. A sensory evaluation revealed minor flavor deviations due to the extract’s inherent aroma. Encapsulation and consumer education are recommended to enhance acceptance. This is the first study to demonstrate the efficacy of L. sulphureus extract as a natural preservative in a meat matrix, supporting its application as a clean-label additive for shelf life and safety improvement. Full article
(This article belongs to the Special Issue Microbial Biocontrol in the Agri-Food Industry, 2nd Edition)
Show Figures

Figure 1

24 pages, 2751 KiB  
Article
Double Wishbone Suspension: A Computational Framework for Parametric 3D Kinematic Modeling and Simulation Using Mathematica
by Muhammad Waqas Arshad, Stefano Lodi and David Q. Liu
Technologies 2025, 13(8), 332; https://doi.org/10.3390/technologies13080332 - 1 Aug 2025
Viewed by 289
Abstract
The double wishbone suspension (DWS) system is widely used in automotive engineering because of its favorable kinematic properties, which affect vehicle dynamics, handling, and ride comfort; hence, it is important to have an accurate 3D model, simulation, and analysis of the system in [...] Read more.
The double wishbone suspension (DWS) system is widely used in automotive engineering because of its favorable kinematic properties, which affect vehicle dynamics, handling, and ride comfort; hence, it is important to have an accurate 3D model, simulation, and analysis of the system in order to optimize its design. This requires efficient computational tools for parametric study. The development of effective computational tools that support parametric exploration stands as an essential requirement. Our research demonstrates a complete Wolfram Mathematica system that creates parametric 3D kinematic models and conducts simulations, performs analyses, and generates interactive visualizations of DWS systems. The system uses homogeneous transformation matrices to establish the spatial relationships between components relative to a global coordinate system. The symbolic geometric parameters allow designers to perform flexible design exploration and the kinematic constraints create an algebraic equation system. The numerical solution function NSolve computes linkage positions from input data, which enables fast evaluation of different design parameters. The integrated 3D visualization module based on Mathematica’s manipulate function enables users to see immediate results of geometric configurations and parameter effects while calculating exact 3D coordinates. The resulting robust, systematic, and flexible computational environment integrates parametric 3D design, kinematic simulation, analysis, and dynamic visualization for DWS, serving as a valuable and efficient tool for engineers during the design, development, assessment, and optimization phases of these complex automotive systems. Full article
(This article belongs to the Section Manufacturing Technology)
Show Figures

Figure 1

17 pages, 2022 KiB  
Article
Determination of the Mechanisms of Terbium(III) Biosorption by Bacillus Strains with Adsorption Selectivity for Heavy Rare Earth Elements
by Huihong Huang, Kang Pan, Wenchao Jian, Yuwen She, Comfort O. Esumeh and Wei Dong
Microorganisms 2025, 13(8), 1753; https://doi.org/10.3390/microorganisms13081753 - 27 Jul 2025
Viewed by 363
Abstract
Bacillus species have shown the potential to recover rare earth elements (REEs), but strains with adsorption selectivity for terbium(III) remain understudied. In this study, six Bacillus strains with the capability for efficient adsorption of Tb(III) were screened from an ionic rare earth mine [...] Read more.
Bacillus species have shown the potential to recover rare earth elements (REEs), but strains with adsorption selectivity for terbium(III) remain understudied. In this study, six Bacillus strains with the capability for efficient adsorption of Tb(III) were screened from an ionic rare earth mine and were identified based on 16S rRNA gene sequencing. Adsorption experiments showed that Bacillus sp. DW011 exhibited exceptional Tb(III) adsorption efficiency, with an adsorption rate of 90.45% and adsorption selectivity for heavy rare earth elements. Notably, strain DW011 was also found to be tolerant against Tb(III) with the 24 h 50% lethal concentration (LC50) of 2.62 mM. The biosorption mechanisms of DW011 were investigated using adsorption kinetics, SEM-EDS, and FTIR. The results indicated that the adsorption of strain DW011 conforms to the second-order kinetic model, and the teichoic acid–peptidoglycan network (phosphate-dominated) serves as the primary site for heavy REE adsorption, while carboxyl/amino groups in the biomembrane matrix provide secondary sites for LREEs. This study provides new information that Bacillus strains isolated from ionic rare earth mine deposits have potential as green adsorbents and have high selectivity for the adsorption of heavy REEs, providing a sustainable strategy for REE recovery from wastewaters. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

15 pages, 1118 KiB  
Article
Identification of Novel Bioactive Molecules in Black Chiloe’s Giant Garlic (Allium ampeloprasum L.) by Green Microwave-Assisted Extraction and Effect-Directed Analysis Using High-Performance Thin Layer Chromatography-Bioassay and Mass Spectrometry
by Joaquín Fernández-Martínez, David Arráez-Román, Darlene Peterssen, Gerald Zapata, Karem Henríquez-Aedo and Mario Aranda
Antioxidants 2025, 14(8), 913; https://doi.org/10.3390/antiox14080913 - 25 Jul 2025
Viewed by 417
Abstract
Black Chiloe’s giant garlic is a functional food produced by a mild Maillard reaction that contains relevant bioactive molecules like organosulfur compounds (OSCs) and (poly)phenols (PPs). Compared with raw garlic, black garlic has a higher content of PPs and S-allyl cysteine (SAC), a [...] Read more.
Black Chiloe’s giant garlic is a functional food produced by a mild Maillard reaction that contains relevant bioactive molecules like organosulfur compounds (OSCs) and (poly)phenols (PPs). Compared with raw garlic, black garlic has a higher content of PPs and S-allyl cysteine (SAC), a key OSC due to its bioactivities. The objective of the present work was to optimize by chemometric tools a green microwave-assisted extraction (MAE) of SAC and PPs present in black Chiloe’s giant garlic to detect and identify novel bioactive molecules with antioxidant and/or inhibitory activities over cyclooxygenase, α-glucosidase, and acetylcholinesterase enzymes. The MAE factors were optimized using a central composite design, establishing optimal PP and SAC yields at 67 °C, 0% ethanol, 12 min and 30 °C, 40% ethanol, 3 min, respectively. PP and SAC values were 9.19 ± 0.18 mg GAE/g DW and 2.55 ± 0.10 mg SAC/g DW. Applying effect-directed analysis using high-performance thin layer chromatography-bioassay and mass spectrometry, the bioactive molecules present in the MAE extract with antioxidant and inhibitory activities over cyclooxygenase, α-glucosidase, and acetylcholinesterase enzymes were identified as N-fructosyl-glutamyl-S-(1-propenyl)cysteine, N-fructosyl-glutamylphenylalanine, and Harmane. Full article
Show Figures

Figure 1

21 pages, 1507 KiB  
Article
Physicochemical Properties, Antioxidant and Antibacterial Activities and Anti-Hepatocarcinogenic Effect and Potential Mechanism of Schefflera oleifera Honey Against HepG2 Cells
by Jingjing Li, Jie Wang, Yicong Wang and Wenchao Yang
Foods 2025, 14(13), 2376; https://doi.org/10.3390/foods14132376 - 4 Jul 2025
Viewed by 542
Abstract
Schefflera oleifera honey (SH) is produced from the nectar of S. Oleifera by worker bees. Due to its unique properties and potential biological activities, this winter honey has attracted much attention. In this study, the physicochemical characteristics, antioxidant and antibacterial activities, antitumor effect [...] Read more.
Schefflera oleifera honey (SH) is produced from the nectar of S. Oleifera by worker bees. Due to its unique properties and potential biological activities, this winter honey has attracted much attention. In this study, the physicochemical characteristics, antioxidant and antibacterial activities, antitumor effect against HepG2 cells, and its potential mechanisms of SH were systematically evaluated. The results showed that different SH samples differed significantly in their physicochemical characteristics. The 910 chemical components, including 52 kinds of phenols, phenolic acids, and flavonoids, were detected in the methanol extract of SH using UHPLC-MS/MS by non-targeted metabolomics. Based on our limited knowledge, solanine and soyasaponin I are the first determined components in honey, and they may be used as characteristic substances of SH for identification and adulteration. SH had a weaker inhibitory effect against Salmonella typhimurium and Staphylococcus aureus than MH (UMF 10+), analyzed by MBC and MIC assays. Network pharmacology analysis showed that 95 overlapping targets were found between the active ingredients of SH and liver cancer cells (HepG2), which were enriched in KEGG of the PI3K-Akt pathway, Lipid and atherosclerosis, Proteoglycans in cancer, etc. The IC50 of SH against HepG2 cells was 5.07% (dw/v), which is lower than the glucose, fructose, and sucrose contents in SH on HepG2 cells, of 16.24%, 9.60% dw/v, and 9.94% dw/v, respectively. SH significantly down-regulated the expression of EGFR, AKT1, and SRC in HepG2 cells (p < 0.05), determined by an enzyme-linked immunosorbent assay kit, and induced cell cycle arrest and apoptosis by multiple pathways. These results provide a theoretical basis for its potential application in developing functional foods and additives. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

15 pages, 274 KiB  
Article
In Vitro Gastrointestinal Bioaccessibility of the Phenolic Fraction from Agave inaequidens Flower
by Imelda N. Monroy-García, Laura Lucely González-Galván, Catalina Leos-Rivas, Mayra Z. Treviño-Garza, Eduardo Sánchez-García and Ezequiel Viveros-Valdez
Foods 2025, 14(13), 2375; https://doi.org/10.3390/foods14132375 - 4 Jul 2025
Viewed by 408
Abstract
Edible flowers are gaining recognition as rich sources of nutrients and phytochemicals. In Mexico, the flower of Agave inaequidens has been traditionally consumed since pre-Hispanic times. This study investigated its nutritional profile and the in vitro gastrointestinal bioaccessibility of its phenolic fraction. During [...] Read more.
Edible flowers are gaining recognition as rich sources of nutrients and phytochemicals. In Mexico, the flower of Agave inaequidens has been traditionally consumed since pre-Hispanic times. This study investigated its nutritional profile and the in vitro gastrointestinal bioaccessibility of its phenolic fraction. During in vitro digestion (oral, gastric, and intestinal), the total phenolic content of A. inaequidens significantly decreased from 138 to 21 mg GAE/100 g DW (15.22% bioaccessibility), while total flavonoid content dropped from 8 to 4.6 mg CE/100 g DW (57.5% bioaccessibility). Consequently, antioxidant activity, assessed by ABTS, DPPH, and hemolysis inhibition assays, also declined post-digestion. Interestingly, the digestive process modulated the flower’s inhibitory activity against digestive enzymes before and after in vitro digestion: α-amylase inhibition slightly decreased (IC50 1.8 to 2.1 mg/mL), but α-glucosidase (IC50 2.7 to 1.6 mg/mL) and lipase (IC50 > 3 to 1.4 mg/mL) inhibition increased. The A. inaequidens flower is a good source of fiber and low in fat. These findings underscore its potential as a functional food ingredient, offering bioaccessible phenolic compounds with antioxidant and enzyme inhibitory properties. Full article
21 pages, 2754 KiB  
Article
Exploring Growth Phase Effect on Polysaccharide Composition and Metal Binding Properties in Parachlorella hussii
by Karima Guehaz, Zakaria Boual, Giulia Daly, Matilde Ciani, Hakim Belkhalfa and Alessandra Adessi
Polysaccharides 2025, 6(3), 58; https://doi.org/10.3390/polysaccharides6030058 - 2 Jul 2025
Viewed by 469
Abstract
Microalgae-based bioremediation is increasingly recognized as a sustainable, efficient, and straightforward technology. Despite this growing interest, the potential of Parachlorella hussii for metal biosorption remains underexplored. This study is the first report evaluating the metal biosorption activity in Parachlorella hussii ACOI 1508 (N9), [...] Read more.
Microalgae-based bioremediation is increasingly recognized as a sustainable, efficient, and straightforward technology. Despite this growing interest, the potential of Parachlorella hussii for metal biosorption remains underexplored. This study is the first report evaluating the metal biosorption activity in Parachlorella hussii ACOI 1508 (N9), highlighting the impact of the culture age on the monosaccharide composition and its correlation to the metal binding capacity. The capsular strain (N9) was isolated from the hypersaline ecosystem—Lake Chott Aïn El-Beida—in southeastern Algeria. Cultivated in Bold’s Basal medium, the strain produced 0.807 ± 0.059 g L−1 of RPSs and 1.975 ± 0.120 g L−1 of CPSs. Biochemical analysis of the extracts revealed a high total sugar content (% w/w) that ranged from 62.98 ± 4.87% to 95.60 ± 87% and a low protein content (% w/w) that ranged from 0.49 ± 0.08% to 1.35 ± 0.69%, with RPS-D7 and RPS-D14 having high molecular weight (≥2 MDa). HPLC-based monosaccharide characterization demonstrated compositional differences between the exponential and stationary phases, with rhamnose dominating (~55%) in RPS-D14 and with the presence of uronic acids comprising 7–11.3%. Metal removal efficiency was evaluated using the whole biomass in two growth phases. Copper uptake exhibited the highest capacity, reaching 18.55 ± 0.61 mg Cu g−1 DW at D14, followed by zinc removal with 6.52 ± 0.61 mg Zn g−1 DW. Interestingly, removal efficiencies increased to about twofold during the stationary phase, reaching 51.15 ± 1.14% for Cu, 51.08 ± 3.35% for Zn, and 36.55 ± 3.09% for Ni. The positive results obtained for copper/zinc removal highlight the biosorption potential of P. hussii, and notably, we found that the metal removal capacity significantly improved with culture age—a parameter that has been poorly investigated in prior studies. Furthermore, we observed a growth phase-dependent modulation in monosaccharide composition, which correlated with enhanced functional properties of the excreted biomolecules involved in biosorption. This metabolic adjustment suggests an adaptive response that may contribute to the species’ effectiveness in heavy metal uptake, underscoring its novelty and biotechnological relevance. Full article
Show Figures

Figure 1

17 pages, 3551 KiB  
Article
Exploring the Bacterial Microbiome of High-Moisture Plant-Based Meat Substituted Soybean Flour with Mung Bean Protein and Duckweed Powder
by Jutamat Klinsoda, Theera Thurakit, Kullanart Tongkhao, Khemmapas Treesuwan, Kanokwan Yodin and Hataichanok Kantrong
Biology 2025, 14(6), 735; https://doi.org/10.3390/biology14060735 - 19 Jun 2025
Viewed by 835
Abstract
(1) Background: This study aimed to investigate the bacterial microbiomes in the ingredients and final PBM products during a storage period of 28 days at 2–4 °C for food safety and quality. (2) Methods: DNA from raw ingredients (i.e., defatted soy flour, potato [...] Read more.
(1) Background: This study aimed to investigate the bacterial microbiomes in the ingredients and final PBM products during a storage period of 28 days at 2–4 °C for food safety and quality. (2) Methods: DNA from raw ingredients (i.e., defatted soy flour, potato starch, wheat gluten, mung bean protein, and duckweed) and three PBM formulations were extracted and sequenced using 16S rRNA gene sequencing. (3) Results: Alpha diversity (Simpson and Shannon) was high in the raw ingredients (p ≤ 0.05). Beta diversity showed dissimilarities between the samples. Firmicutes and Proteobacteria were the core microflora in these ingredients. The heat-stable microbes in PBM (e.g., Nostocaceae in SF and Cyanobacteriale in MB and DW) survived after extrusion. After the ingredients were stored at room temperature, the bacterial communities shifted, with Paucibacter being the majority population in raw ingredients and PBM in the 2nd batch. The predictions of Potential_Pathogens related to the abundance of Aeromonadaceae and Enterobacteriaceae need to be monitored during storage. (4) Conclusions: Our results showed that the bacterial community in PBM containing 30% MB and 3% DW did not drastically change during 28 days of storage at cold temperatures. Uncovering bacterial microbiomes in the ingredients should be emphasized for quality and safety, as ingredients influence the microbiome in the final products. Full article
(This article belongs to the Section Microbiology)
Show Figures

Graphical abstract

16 pages, 834 KiB  
Article
How Deutsche Welle Shapes Knowledge and Behaviour of Syrian Diaspora
by Mohammad Qudah, Husain A. Murad, Mohammed Habes and Mokhtar Elareshi
Journal. Media 2025, 6(2), 92; https://doi.org/10.3390/journalmedia6020092 - 18 Jun 2025
Viewed by 773
Abstract
This study explores the impact of DW’s news coverage on the perceptions, knowledge, and behavioural changes of the Syrian diaspora in Germany regarding the Syrian crisis. Grounded in the Uses and Gratifications theory, data were collected from 207 Syrian immigrants residing in Germany [...] Read more.
This study explores the impact of DW’s news coverage on the perceptions, knowledge, and behavioural changes of the Syrian diaspora in Germany regarding the Syrian crisis. Grounded in the Uses and Gratifications theory, data were collected from 207 Syrian immigrants residing in Germany between September and November 2023 using a convenience sampling approach. The findings reveal that DW is perceived as a credible and objective news source that provides comprehensive and balanced coverage of the Syrian crisis. Exposure to DW’s reporting significantly enhanced respondents’ understanding of the crisis, enabling them to engage in informed discussions. DW’s coverage motivated behavioural changes, encouraging participation in social media discussions and humanitarian initiatives. This study highlights the critical role of trusted international media in shaping diaspora communities’ perceptions, knowledge, and actions during crises. These findings also highlight DW’s influence as a key information source for the Syrian diaspora, fostering both awareness and proactive engagement with the ongoing crisis. Full article
Show Figures

Figure 1

19 pages, 1473 KiB  
Article
Differential Impact of SiO2 Foliar Application on Lettuce Response to Temperature, Salinity, and Drought Stress
by Ivan Simko, Rebecca Zhao and Hui Peng
Plants 2025, 14(12), 1845; https://doi.org/10.3390/plants14121845 - 16 Jun 2025
Viewed by 772
Abstract
Silicon dioxide (SiO2) foliar application offers a promising strategy for enhancing lettuce (Lactuca sativa L.) resilience under temperature extremes, salinity, and drought stress. This study investigated the effects of SiO2 treatment on three lettuce cultivars exposed to varying temperature, [...] Read more.
Silicon dioxide (SiO2) foliar application offers a promising strategy for enhancing lettuce (Lactuca sativa L.) resilience under temperature extremes, salinity, and drought stress. This study investigated the effects of SiO2 treatment on three lettuce cultivars exposed to varying temperature, salinity, and drought conditions in a controlled growth chamber environment. Silicon treatment (3.66 mM) significantly enhanced plant biomass under suboptimal (15 °C), optimal (20 °C), and salinity stress conditions. Notably, the SiO2 effect was most positive under severe salinity stress (100 mM NaCl), where its application increased plant weight together with chlorophyll and anthocyanin content. When increasing SiO2 concentrations from 0 to 29.30 mM were tested, optimal results to alleviate severe salinity stress were consistently observed at 3.66 mM, with peak performance in fresh weight, plant diameter, chlorophyll, and anthocyanin content. Higher SiO2 concentrations progressively diminished these beneficial effects, with 29.30 mM treatment leading to reduced growth and increased leaf chlorosis. Comprehensive mineral composition analysis revealed complex interactions between silicon treatment and elemental profiles at 100 mM salinity stress. At 3.66 mM SiO2, plants accumulated the highest levels of both K (20,406 mg/kg dry weight, DW) and Na (16,185 mg/kg DW) while maintaining the highest K/Na ratio (1.26). This suggests that Si enhances cellular ion compartmentalization rather than exclusion mechanisms, allowing plants to manage higher total ion content better while minimizing cytoplasmic damage. Drought stress conditions unexpectedly revealed negative impacts from 3.66 mM SiO2 application, with decreased plant fresh weight at moderate (50% soil water content, SWC) and severe (30% SWC) water limitations, though results were statistically significant only under severe drought stress. The study highlights silicon’s potential as a stress mitigation agent, particularly under salinity stress, while emphasizing the need for concentration-specific and stress-specific approaches. These findings suggest that foliar SiO2 application could be a valuable tool for enhancing lettuce crop productivity under both optimal and challenging environmental conditions, with future research warranting field validation and full market maturity assessments. Full article
(This article belongs to the Special Issue The Role of Exogenous Silicon in Plant Response to Abiotic Stress)
Show Figures

Figure 1

25 pages, 3224 KiB  
Article
Surviving the Extremes: The Synergistic Impact of Drought and Salinity on Thymus capitatus Growth, Physiology, and Biochemistry
by Karim Etri, Beáta Gosztola and Zsuzsanna Pluhár
Agronomy 2025, 15(6), 1449; https://doi.org/10.3390/agronomy15061449 - 13 Jun 2025
Viewed by 627
Abstract
Thymus capitatus, a Mediterranean medicinal plant, exhibits complex physiological and biochemical responses to environmental stress. This study investigated the effects of drought (40% SWC), salinity (70% SWC + 90 mM NaCl), and their combination (40% SWC + 90 mM NaCl) on the [...] Read more.
Thymus capitatus, a Mediterranean medicinal plant, exhibits complex physiological and biochemical responses to environmental stress. This study investigated the effects of drought (40% SWC), salinity (70% SWC + 90 mM NaCl), and their combination (40% SWC + 90 mM NaCl) on the morphological, physiological, and biochemical traits of T. capitatus over 39 days. All stress treatments reduced shoot and root biomass, relative water content, chlorophyll, and carotenoids, with combined stress causing the most severe declines. Proline and soluble sugars accumulated, indicating osmotic adjustment. Total polyphenol content remained stable under single stress but increased under combined stress (123.28 mg GAE/g DW), suggesting an enhanced defense response. Hydrogen peroxide levels surged, particularly under combined stress (7.76 µmol H2O2/g FW), reflecting oxidative stress. Essential oil yield declined from 3.22 mL/100 g DW under control conditions to −30% and −34% under drought and combined stress, respectively, while carvacrol content increased (+4.71%) under combined stress, indicating a stress-induced metabolic shift. Antioxidant capacity significantly declined under salt and combined stress, likely due to oxidative stress overwhelming the plant’s defense mechanisms. These findings highlight Thymus capitata’s resilience, with combined stress having the most detrimental impact, followed by drought, while salinity had a more moderate effect. Despite these challenges, the plant retained key bioactive compounds, reinforcing its potential for stress prone environments. Full article
Show Figures

Figure 1

28 pages, 4946 KiB  
Article
Acetate Combined with CO2 as Effective Carbon Sources for the Production of Resistant Starch in a Marine Microalga Tetraselmis subcordiformis
by Haoyu Zhang, Yuhan Shen, Yufei Liu, Xiuyuan Ran, Yongkui Zhang, Jing Chen and Changhong Yao
Foods 2025, 14(11), 2004; https://doi.org/10.3390/foods14112004 - 5 Jun 2025
Viewed by 797
Abstract
Microalgae are considered as sustainable starch producers, yet the carbon sources for this process in terms of starch productivity and functionality require further elucidation. The present study investigated the roles of CO2 and acetate on the starch production in a marine microalga [...] Read more.
Microalgae are considered as sustainable starch producers, yet the carbon sources for this process in terms of starch productivity and functionality require further elucidation. The present study investigated the roles of CO2 and acetate on the starch production in a marine microalga Tetraselmis subcordiformis, and the ordered structure and digestibility of the starches obtained were characterized. CO2 and acetate could serve as efficient carbon sources for T. subcordiformis to accumulate starch, with the maximum starch content, yield, and productivity reaching 66.0%, 2.16 g/L, and 0.71 g/L/day on day 3 and the maximum biomass productivity reaching 0.94 g/L/day on day 2, respectively, when 2.5 g/L sodium acetate and 2% CO2 were simultaneously applied. The addition of acetate under 2% CO2 improved the photosynthetic efficiency and enhanced the activity of ADP-glucose pyrophosphorylase, facilitating the biomass and starch production. The supply of CO2 and acetate changed the amylose/amylopectin ratio by affecting the activity of starch branching enzymes and isoamylases. FTIR and XRD analyzes showed that the supply of CO2 reduced the long- and short-range ordered structure of starch, while acetate promoted the production of additional B- and V-type starch, resulting in a reduced digestibility. The combined supply of 2% CO2 and 5 g/L sodium acetate enabled the most efficient production of functional resistant starch (RS) measured with Englyst’s method, with a maximum RS content and yield reaching 13.7%DW and 0.40 g/L, respectively, on day 3. This study provided novel insights into the efficient production of high value-added functional starch (RS) from microalgae. Full article
Show Figures

Figure 1

Back to TopTop