Determination of the Mechanisms of Terbium(III) Biosorption by Bacillus Strains with Adsorption Selectivity for Heavy Rare Earth Elements
Abstract
1. Introduction
2. Materials and Methods
2.1. Screening and Isolation of Bacillus Strains
2.2. Culture of Bacillus Strains
2.3. Screening of Bacillus Strains with Efficient Adsorption for Tb(III)
2.4. Phylogenetic Characterization of Bacillus Strains
2.5. Screening of Bacillus Strains with Selective Adsorption
2.6. Analytical Methods
2.6.1. Measurement of Tb(III)
2.6.2. Measurement of Mixed Rare Earth
2.6.3. Statistical Analysis
2.7. Characterization of DW011
2.7.1. Test of Tolerance Against Tb(III)
2.7.2. Adsorption Kinetic Models
2.7.3. SEM-EDS Analysis
2.7.4. FTIR Analysis
3. Results and Discussion
3.1. Bacillus Strains with Efficient Adsorption for Tb(III)
3.2. Phylogenetic Characterization of Bacillus Strains
3.3. Bacillus Strains with Selective Adsorption
3.4. Characterization of Strain DW011
3.4.1. Tolerance to Tb(III)
3.4.2. Adsorption Kinetics
3.4.3. SEM-EDS Analysis
3.4.4. FTIR Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, H.; Xia, J.; Yin, D.; Luo, M.; Yan, C.; Du, Y. Rare Earth Incorporated Electrode Materials for Advanced Energy Storage. Coord. Chem. Rev. 2019, 390, 32–49. [Google Scholar] [CrossRef]
- Gutfleisch, O.; Willard, M.A.; Brück, E.; Chen, C.H.; Sankar, S.G.; Liu, J.P. Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient. Adv. Mater. 2011, 23, 821–842. [Google Scholar] [CrossRef]
- Guyonnet, D.; Planchon, M.; Rollat, A.; Escalon, V.; Tuduri, J.; Charles, N.; Vaxelaire, S.; Dubois, D.; Fargier, H. Material Flow Analysis Applied to Rare Earth Elements in Europe. J. Clean. Prod. 2015, 107, 215–228. [Google Scholar] [CrossRef]
- Arslan, S.; Iskender, I.; Navruz, T.S. FEM-Based Optimal Design and Testing of Synchronous Magnetic Coupling for Aerospace Starter/Generator Applications. Eng. Sci. Technol. 2023, 41, 101403. [Google Scholar] [CrossRef]
- Danouche, M.; Bounaga, A.; Oulkhir, A.; Boulif, R.; Zeroual, Y.; Benhida, R.; Lyamlouli, K. Advances in Bio/Chemical Approaches for Sustainable Recycling and Recovery of Rare Earth Elements from Secondary Resources. Sci. Total Environ. 2024, 912, 168811. [Google Scholar] [CrossRef]
- Kulaksız, S.; Bau, M. Rare Earth Elements in the Rhine River, Germany: First Case of Anthropogenic Lanthanum as a Dissolved Microcontaminant in the Hydrosphere. Environ. Int. 2011, 37, 973–979. [Google Scholar] [CrossRef]
- Takahashi, Y.; Hirata, T.; Shimizu, H.; Ozaki, T.; Fortin, D. A Rare Earth Element Signature of Bacteria in Natural Waters? Chem. Geol. 2007, 244, 569–583. [Google Scholar] [CrossRef]
- Herrmann, H.; Nolde, J.; Berger, S.; Heise, S. Aquatic Ecotoxicity of Lanthanum—A Review and an Attempt to Derive Water and Sediment Quality Criteria. Ecotoxicol. Environ. Saf. 2016, 124, 213–238. [Google Scholar] [CrossRef]
- Balusamy, B.; Kandhasamy, Y.G.; Senthamizhan, A.; Chandrasekaran, G.; Subramanian, M.S.; Kumaravel, T.S. Characterization and Bacterial Toxicity of Lanthanum Oxide Bulk and Nanoparticles. J. Rare Earths 2012, 30, 1298–1302. [Google Scholar] [CrossRef]
- Sharma, P.; Jha, A.B.; Dubey, R.S. Addressing Lanthanum Toxicity in Plants: Sources, Uptake, Accumulation, and Mitigation Strategies. Sci. Total Environ. 2024, 929, 172560. [Google Scholar] [CrossRef]
- Yan, L.; Gao, F.; Shi, W.; Geng, B.; Zhang, J.; Mao, J.; Tian, Y.; Ren, L.; Dai, X.; Chen, J.; et al. A Two-Generation Reproductive Toxicity Study of Lanthanum Nitrate in SD Rats. Biol. Trace Elem. Res. 2022, 200, 2268–2282. [Google Scholar] [CrossRef]
- Pagano, G.; Aliberti, F.; Guida, M.; Oral, R.; Siciliano, A.; Trifuoggi, M.; Tommasi, F. Rare Earth Elements in Human and Animal Health: State of Art and Research Priorities. Environ. Res. 2015, 142, 215–220. [Google Scholar] [CrossRef]
- Ni, S.; Chen, Q.; Gao, Y.; Guo, X.; Sun, X. Recovery of Rare Earths from Industrial Wastewater Using Extraction-Precipitation Strategy for Resource and Environmental Concerns. Miner. Eng. 2020, 151, 106315. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, L.; Zheng, X.; Liu, D.; Feng, Z.; Zhang, Y.; Huang, X. Extraction Mechanism and Separation Behaviors of Low-Concentration Nd3+ and Al3+ in P507–H2SO4 System. J. Rare Earths 2022, 40, 952–957. [Google Scholar] [CrossRef]
- Makarova, I.; Soboleva, E.; Osipenko, M.; Kurilo, I.; Laatikainen, M.; Repo, E. Electrochemical Leaching of Rare-Earth Elements from Spent NdFeB Magnets. Hydrometallurgy 2020, 192, 105264. [Google Scholar] [CrossRef]
- López, J.; Reig, M.; Gibert, O.; Cortina, J.L. Recovery of Sulphuric Acid and Added Value Metals (Zn, Cu and Rare Earths) from Acidic Mine Waters Using Nanofiltration Membranes. Sep. Purif. Technol. 2019, 212, 180–190. [Google Scholar] [CrossRef]
- Yang, B.; Wu, S.-Z.; Liu, X.-Y.; Yan, Z.-X.; Liu, Y.-X.; Li, Q.-S.; Yu, F.-S.; Wang, J.-L. Solid-Phase Extraction and Separation of Heavy Rare Earths from Chloride Media Using P227-Impregnated Resins. Rare Met. 2021, 40, 2633–2644. [Google Scholar] [CrossRef]
- Giese, E.C. Biosorption as Green Technology for the Recovery and Separation of Rare Earth Elements. World J. Microbiol. Biotechnol. 2020, 36, 52. [Google Scholar] [CrossRef]
- Lo, Y.-C.; Cheng, C.-L.; Han, Y.-L.; Chen, B.-Y.; Chang, J.-S. Recovery of High-Value Metals from Geothermal Sites by Biosorption and Bioaccumulation. Bioresour. Technol. 2014, 160, 182–190. [Google Scholar] [CrossRef]
- Han, J.; Li, H.; Liu, Y.; Liu, P.; Song, Y.; Wang, Y.; Zhang, L.; Wang, W. Extraction of Extracellular Polymeric Substances (EPS) from Indigenous Bacteria of Rare Earth Tailings and Application to Removal of Thorium Ions (Th4+). Water Sci. Technol. 2022, 87, 83–98. [Google Scholar] [CrossRef]
- Jena, A.; Pradhan, S.; Mishra, S.; Sahoo, N.K. Evaluation of Europium Biosorption Using Deinococcus radiodurans. Environ. Process. 2021, 8, 251–265. [Google Scholar] [CrossRef]
- Bian, Z.; Dong, W.; Li, X.; Song, Y.; Huang, H.; Hong, K.; Hu, K. Enrichment of Terbium(III) under Synergistic Effect of Biosorption and Biomineralization by Bacillus sp. DW015 and Sporosarcina pasteurii. Microbiol. Spectr. 2024, 12, e0076024. [Google Scholar] [CrossRef]
- Bian, Z.; Dong, W.; Ning, Z.; Song, Y.; Hu, K. Recovery of Terbium by Lysinibacillus sp. DW018 Isolated from Ionic Rare Earth Tailings Based on Microbial Induced Calcium Carbonate Precipitation. Front. Microbiol. 2024, 15, 1416731. [Google Scholar] [CrossRef]
- Martinez, R.E.; Pourret, O.; Takahashi, Y. Modeling of Rare Earth Element Sorption to the Gram Positive Bacillus subtilis Bacteria Surface. J. Colloid Interface Sci. 2014, 413, 106–111. [Google Scholar] [CrossRef]
- Bonificio, W.D.; Clarke, D.R. Rare-Earth Separation Using Bacteria. Environ. Sci. Technol. Lett. 2016, 3, 180–184. [Google Scholar] [CrossRef]
- Jin, S.; Jin, W.; Bai, Y.; Dong, C.; Jin, D.; Hu, Z.; Huang, Y. Response of Rice and Bacterial Community to Phosphorus-Containing Materials in Soil-Plant Ecosystem of Rare Earth Mining Area. J. Hazard. Mater. 2020, 381, 121004. [Google Scholar] [CrossRef]
- Heilmann, M.; Breiter, R.; Becker, A.M. Towards Rare Earth Element Recovery from Wastewaters: Biosorption Using Phototrophic Organisms. Appl. Microbiol. Biotechnol. 2021, 105, 5229–5239. [Google Scholar] [CrossRef]
- Reed, D.W.; Fujita, Y.; Daubaras, D.L.; Jiao, Y.; Thompson, V.S. Bioleaching of Rare Earth Elements from Waste Phosphors and Cracking Catalysts. Hydrometallurgy 2016, 166, 34–40. [Google Scholar] [CrossRef]
- Shen, J.; Liang, C.; Zhong, J.; Xiao, M.; Zhou, J.; Liu, J.; Liu, J.; Ren, S. Adsorption Behavior and Mechanism of Serratia marcescens for Eu(III) in Rare Earth Wastewater. Environ. Sci. Pollut. Res. 2021, 28, 56915–56926. [Google Scholar] [CrossRef]
- Paper, M.; Koch, M.; Jung, P.; Lakatos, M.; Nilges, T.; Brück, T.B. Rare Earths Stick to Rare Cyanobacteria: Future Potential for Bioremediation and Recovery of Rare Earth Elements. Front. Bioeng. Biotechnol. 2023, 11, 1130939. [Google Scholar] [CrossRef]
- Wang, W.; Xu, C.; Jin, Y.; Zhang, Z.; Yan, R.; Zhu, D. The Accumulation of Rare-Earth Yttrium Ions by Penicillium sp. ZD28. AMB Express 2020, 10, 25. [Google Scholar] [CrossRef]
- Xie, X.; Tan, X.; Yu, Y.; Li, Y.; Wang, P.; Liang, Y.; Yan, Y. Effectively Auto-Regulated Adsorption and Recovery of Rare Earth Elements via an Engineered E. coli. J. Hazard. Mater. 2022, 424, 127642. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, T.; Zhang, L.; Ke, Z.; Kovarik, L.; Dong, H. Resource Recovery: Adsorption and Biomineralization of Cerium by Bacillus licheniformis. J. Hazard. Mater. 2022, 426, 127844. [Google Scholar] [CrossRef]
- Moriwaki, H.; Koide, R.; Yoshikawa, R.; Warabino, Y.; Yamamoto, H. Adsorption of Rare Earth Ions onto the Cell Walls of Wild-Type and Lipoteichoic Acid-Defective Strains of Bacillus subtilis. Appl. Microbiol. Biotechnol. 2013, 97, 3721–3728. [Google Scholar] [CrossRef]
- Tsuruta, T. Accumulation of Rare Earth Elements in Various Microorganisms. J. Rare Earths 2007, 25, 526–532. [Google Scholar] [CrossRef]
- Dong, W.; Wang, H.; Ning, Z.; Hu, K.; Luo, X. Bioadsorption of Terbium(III) by Spores of Bacillus subtilis. Minerals 2022, 12, 866. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, J.; Shao, S.; Yu, X.; Kang, J.; Qiu, G.; Chen, Z.; Zhao, H.; Shen, L. Comparison of Biosorption Behavior and Mechanism of La3+, Sm3+, Y3+, Nd3+, Er3+ by Aspergillus niger and Bacillus sp. J. Water Process Eng. 2024, 59, 104965. [Google Scholar] [CrossRef]
- Mohanto, S.; Biswas, A.; Gholap, A.D.; Wahab, S.; Bhunia, A.; Nag, S.; Ahmed, M.G. Potential Biomedical Applications of Terbium-Based Nanoparticles (TbNPs): A Review on Recent Advancement. ACS Biomater. Sci. Eng. 2024, 10, 2703–2724. [Google Scholar] [CrossRef]
- Pramanik, S.; Kumari, A.; Sinha, M.K.; Munshi, B.; Sahu, S.K. Valorization of Phosphor Powder of Waste Fluorescent Tubes with an Emphasis on the Recovery of Terbium Oxide (Tb4O7). Sep. Purif. Technol. 2023, 322, 124332. [Google Scholar] [CrossRef]
- Dong, W.; Li, S.; Camilleri, E.; Korza, G.; Yankova, M.; King, S.M.; Setlow, P. Accumulation and Release of Rare Earth Ions by Spores of Bacillus Species and the Location of These Ions in Spores. Appl. Environ. Microbiol. 2019, 85, e00956-19. [Google Scholar] [CrossRef]
- Gupta, N.K.; Gupta, A.; Ramteke, P.; Sahoo, H.; Sengupta, A. Biosorption-a Green Method for the Preconcentration of Rare Earth Elements (REEs) from Waste Solutions: A Review. J. Mol. Liq. 2019, 274, 148–164. [Google Scholar] [CrossRef]
- Jacob, J.M.; Karthik, C.; Saratale, R.G.; Kumar, S.S.; Prabakar, D.; Kadirvelu, K.; Pugazhendhi, A. Biological Approaches to Tackle Heavy Metal Pollution: A Survey of Literature. J. Environ. Manag. 2018, 217, 56–70. [Google Scholar] [CrossRef]
- Wang, D.; Ning, Q.; Deng, Z.; Zhang, M.; You, J. Role of Environmental Stresses in Elevating Resistance Mutations in Bacteria: Phenomena and Mechanisms. Environ. Pollut. 2022, 307, 119603. [Google Scholar] [CrossRef]
- Maleke, M.; Valverde, A.; Vermeulen, J.-G.; Cason, E.; Gomez-Arias, A.; Moloantoa, K.; Coetsee-Hugo, L.; Swart, H.; Van Heerden, E.; Castillo, J. Biomineralization and Bioaccumulation of Europium by a Thermophilic Metal Resistant Bacterium. Front. Microbiol. 2019, 10, 81. [Google Scholar] [CrossRef]
- Qu, C.; Yang, S.; Mortimer, M.; Zhang, M.; Chen, J.; Wu, Y.; Chen, W.; Cai, P.; Huang, Q. Functional Group Diversity for the Adsorption of Lead(Pb) to Bacterial Cells and Extracellular Polymeric Substances. Environ. Pollut. 2022, 295, 118651. [Google Scholar] [CrossRef]
- David, M.; Krishna, P.M.; Sangeetha, J. Elucidation of Impact of Heavy Metal Pollution on Soil Bacterial Growth and Extracellular Polymeric Substances Flexibility. 3 Biotech 2016, 6, 172. [Google Scholar] [CrossRef]
- Takahashi, Y.; Yamamoto, M.; Yamamoto, Y.; Tanaka, K. EXAFS Study on the Cause of Enrichment of Heavy REEs on Bacterial Cell Surfaces. Geochim. Et Cosmochim. Acta 2010, 74, 5443–5462. [Google Scholar] [CrossRef]
- Breuker, A.; Ritter, S.F.; Schippers, A. Biosorption of Rare Earth Elements by Different Microorganisms in Acidic Solutions. Metals 2020, 10, 954. [Google Scholar] [CrossRef]
- Ning, Z.; Dong, W.; Bian, Z.; Huang, H.; Hong, K. Insight into Effects of Terbium on Cell Growth, Sporulation and Spore Properties of Bacillus subtilis. World J. Microbiol. Biotechnol. 2024, 40, 79. [Google Scholar] [CrossRef]
- Haferburg, G.; Merten, D.; Büchel, G.; Kothe, E. Biosorption of Metal and Salt Tolerant Microbial Isolates from a Former Uranium Mining Area. Their Impact on Changes in Rare Earth Element Patterns in Acid Mine Drainage. J. Basic Microbiol. 2007, 47, 474–484. [Google Scholar] [CrossRef]
- Cason, E.D.; Piater, L.A.; Heerden, E. van Reduction of U(VI) by the Deep Subsurface Bacterium, Thermus scotoductus SA-01, and the Involvement of the ABC Transporter Protein. Chemosphere 2012, 86, 572–577. [Google Scholar] [CrossRef]
- Giese, E.C.; Dekker, R.F.H.; Barbosa-Dekker, A.M. Biosorption of Lanthanum and Samarium by Viable and Autoclaved Mycelium of Botryosphaeria rhodina MAMB-05. Biotechnol. Prog. 2019, 35, e2783. [Google Scholar] [CrossRef]
- Giese, E.C.; Jordão, C.S. Biosorption of Lanthanum and Samarium by Chemically Modified Free Bacillus subtilis Cells. Appl. Water Sci. 2019, 9, 182. [Google Scholar] [CrossRef]
- da Costa, T.B.; da Silva, M.G.C.; Vieira, M.G.A. Recovery of Rare-Earth Metals from Aqueous Solutions by Bio/Adsorption Using Non-Conventional Materials: A Review with Recent Studies and Promising Approaches in Column Applications. J. Rare Earths 2020, 38, 339–355. [Google Scholar] [CrossRef]
- Ponou, J.; Wang, L.P.; Dodbiba, G.; Okaya, K.; Fujita, T.; Mitsuhashi, K.; Atarashi, T.; Satoh, G.; Noda, M. Recovery of Rare Earth Elements from Aqueous Solution Obtained from Vietnamese Clay Minerals Using Dried and Carbonized Parachlorella. J. Environ. Chem. Eng. 2014, 2, 1070–1081. [Google Scholar] [CrossRef]
- Liang, C.; Shen, J. Removal of Yttrium from Rare-Earth Wastewater by Serratia marcescens: Biosorption Optimization and Mechanisms Studies. Sci. Rep. 2022, 12, 4861. [Google Scholar] [CrossRef]
- Ghosh, S.B.; Bhattacharya, K.; Nayak, S.; Mukherjee, P.; Salaskar, D.; Kale, S.P. Identification of Different Species of Bacillus Isolated from Nisargruna Biogas Plant by FTIR, UV–Vis and NIR Spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 148, 420–426. [Google Scholar] [CrossRef]
- Hong, Z.N.; Li, J.Y.; Jiang, J.; Liu, Z.D.; Wang, R.H.; Xu, C.Y.; Xu, R.K. In-Situ ATR-FTIR Spectroscopic Investigation of Desorption of Phosphate from Haematite by Bacteria. Eur. J. Soil Sci. 2017, 68, 480–490. [Google Scholar] [CrossRef]
- Bombalska, A.; Mularczyk-Oliwa, M.; Kwaśny, M.; Włodarski, M.; Kaliszewski, M.; Kopczyński, K.; Szpakowska, M.; Trafny, E.A. Classification of the Biological Material with Use of FTIR Spectroscopy and Statistical Analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 78, 1221–1226. [Google Scholar] [CrossRef]
- Arslan, S.; Kütük, N. Symbolic Regression with Feature Selection of Dye Biosorption from an Aqueous Solution Using Pumpkin Seed Husk Using Evolutionary Computation-Based Automatic Programming Methods. Expert Syst. Appl. 2023, 231, 120676. [Google Scholar] [CrossRef]
REE(III) | DW011 | DW012 | DW014 | DW045 | DW051 | DW054 |
---|---|---|---|---|---|---|
Tm | 91.37 ± 0.74 a α * | 51.74 ± 0.16 b α | 42.65 ± 0.90 c α | 40.54 ± 0.98 c β | 54.79 ± 0.47 b β | 44.91 ± 0.66 c α |
Ho | 88.22 ± 0.99 a β | 51.13 ± 0.07 b α | 38.54 ± 0.11 c β | 42.91 ± 0.95 c α | 52.63 ± 0.04 b γ | 43.20 ± 0.29 c α |
Dy | 88.84 ± 0.73 a β | 52.04 ± 0.15 b α | 40.70 ± 0.26 c α | 41.65 ± 1.14 c αβ | 55.90 ± 0.11 b α | 43.49 ± 0.04 c α |
Tb | 88.99 ± 0.73 a β | 49.64 ± 0.27 b β | 37.22 ± 0.42 c β | 39.32 ± 0.23 c γ | 53.06 ± 0.61 b βγ | 43.16 ± 1.15 c α |
Y | 74.25 ± 2.15 a γ | 38.01 ± 0.62 b γ | 24.48 ± 0.56 d γ | 30.38 ± 0.35 c δ | 37.88 ± 0.21 b δ | 26.15 ± 1.39 d β |
Nd | 76.87 ± 0.04 a γ | 33.75 ± 1.34 b δ | 24.12 ± 1.07 c γ | 23.81 ± 0.31 c ε | 38.50 ± 0.27 b δ | 26.42 ± 0.15 c β |
Ce | 73.13 ± 0.57 a γ | 35.05 ± 0.57 b γδ | 21.64 ± 0.84 d γ | 23.57 ± 0.49 c ε | 35.39 ± 0.08 b δ | 27.34 ± 0.61 c β |
La | 51.92 ± 0.07 a δ | 24.82 ± 0.67 b ε | 17.26 ± 0.21 d δ | 14.42 ± 0.21 e ζ | 27.52 ± 0.04 c ε | 23.12 ± 0.75 d γ |
Type | Pseudo-First-Order Kinetic Model | Pseudo-Second-Order Kinetic Model | ||||
---|---|---|---|---|---|---|
qmax (mg/mL) | K1 | qe (mg/mL) | R2 | K2 | qe (mg/mL) | R2 |
28.832 | 0.143 | 2.223 | 0.748 | 0.244 | 28.969 | 0.9998 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Pan, K.; Jian, W.; She, Y.; Esumeh, C.O.; Dong, W. Determination of the Mechanisms of Terbium(III) Biosorption by Bacillus Strains with Adsorption Selectivity for Heavy Rare Earth Elements. Microorganisms 2025, 13, 1753. https://doi.org/10.3390/microorganisms13081753
Huang H, Pan K, Jian W, She Y, Esumeh CO, Dong W. Determination of the Mechanisms of Terbium(III) Biosorption by Bacillus Strains with Adsorption Selectivity for Heavy Rare Earth Elements. Microorganisms. 2025; 13(8):1753. https://doi.org/10.3390/microorganisms13081753
Chicago/Turabian StyleHuang, Huihong, Kang Pan, Wenchao Jian, Yuwen She, Comfort O. Esumeh, and Wei Dong. 2025. "Determination of the Mechanisms of Terbium(III) Biosorption by Bacillus Strains with Adsorption Selectivity for Heavy Rare Earth Elements" Microorganisms 13, no. 8: 1753. https://doi.org/10.3390/microorganisms13081753
APA StyleHuang, H., Pan, K., Jian, W., She, Y., Esumeh, C. O., & Dong, W. (2025). Determination of the Mechanisms of Terbium(III) Biosorption by Bacillus Strains with Adsorption Selectivity for Heavy Rare Earth Elements. Microorganisms, 13(8), 1753. https://doi.org/10.3390/microorganisms13081753