Identification of Novel Bioactive Molecules in Black Chiloe’s Giant Garlic (Allium ampeloprasum L.) by Green Microwave-Assisted Extraction and Effect-Directed Analysis Using High-Performance Thin Layer Chromatography-Bioassay and Mass Spectrometry
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents, Chemicals, and Standards
2.2. Sample Preparation
2.3. Microwave-Assisted Extraction (MAE)
2.4. Total (Poly)phenol Content (TPC)
2.5. Organosulfur Compound (OSC) Determination
2.6. EDA-HPTLC-Bioassay
2.7. Identification of Bioactive Molecules
2.8. Docking and Molecular Dynamics Studies
2.9. Statistical Analysis
3. Results and Discussion
3.1. Optimization of MAE Conditions for PP and OSC Extraction
3.2. Identification of Bioactive Molecules in Black Chiloe’s Giant Garlic
3.3. Docking and Molecular Dynamics Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. World Health Statistics 2022: Monitoring Health for the SDGs, Sustainable Development Goals; World Health Organization: Geneva, Switzerland, 2022; 125p. [Google Scholar]
- Singh, R.B.; Watanabe, S.; Isaza, A.A. Functional Foods and Nutraceuticals in Metabolic and Non-communicable Diseases. In Functional Foods and Nutraceuticals in Metabolic and Non-Communicable Diseases; Academic Press: Cambridge, MA, USA, 2021; pp. 1–821. [Google Scholar] [CrossRef]
- Galarce-Bustos, O.; Pavon, J.; Henriquez-Aedo, K.; Aranda, M. Detection and identification of acetylcholinesterase inhibitors in Annona cherimola Mill. by effect-directed analysis using thin-layer chromatography-bioassay-mass spectrometry. Phytochem. Anal. 2019, 30, 679–686. [Google Scholar] [CrossRef]
- El-Saber Batiha, G.; Magdy Beshbishy, A.; Wasef, L.G.; Elewa, Y.H.A.; Al-Sagan, A.A.; Abd El-Hack, M.E.; Taha, A.E.; Abd-Elhakim, Y.M.; Prasad Devkota, H. Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.): A Review. Nutrients 2020, 12, 872. [Google Scholar] [CrossRef]
- Najda, A.; Błaszczyk, L.; Winiarczyk, K.; Dyduch, J.; Tchórzewska, D. Comparative studies of nutritional and health-enhancing properties in the “garlic-like” plant Allium ampeloprasum var. ampeloprasum (GHG-L) and A. sativum. Sci. Hortic. 2016, 201, 247–255. [Google Scholar] [CrossRef]
- Iciek, M.; Kwiecień, I.; Włodek, L. Biological properties of garlic and garlic-derived organosulfur compounds. Environ. Mol. Mutagen. 2009, 50, 247–265. [Google Scholar] [CrossRef]
- Lu, X.; Ross, C.F.; Powers, J.R.; Aston, D.E.; Rasco, B.A. Determination of total phenolic content and antioxidant activity of garlic (Allium sativum) and elephant garlic (Allium ampeloprasum) by attenuated total reflectance-fourier transformed infrared spectroscopy. J. Agric. Food Chem. 2011, 59, 5215–5221. [Google Scholar] [CrossRef]
- Wong, S.P.; Leong, L.P.; William Koh, J.H. Antioxidant activities of aqueous extracts of selected plants. Food Chem. 2006, 99, 775–783. [Google Scholar] [CrossRef]
- Figliuolo, G.; Di Stefano, D. Is single bulb producing garlic Allium sativum or Allium ampeloprasum? Sci. Hortic. 2007, 114, 243–249. [Google Scholar] [CrossRef]
- Peterssen-Fonseca, D.; Henríquez-Aedo, K.; Carrasco-Sandoval, J.; Cañumir-Veas, J.; Herrero, M.; Aranda, M. Chemometric optimisation of pressurised liquid extraction for the determination of alliin and S-allyl-cysteine in giant garlic (Allium ampeloprasum L.) by liquid chromatography tandem mass spectrometry. Phytochem. Anal. 2021, 32, 1051–1058. [Google Scholar] [CrossRef]
- Hirschegger, P.; Galmarini, C.; Bohanec, B. Characterization of a novel form of fertile great headed garlic (Allium sp.). Plant Breed. 2006, 125, 635–637. [Google Scholar] [CrossRef]
- FAO. Globally Important Agricultural Heritage Systems (GIAHS); Food and Agriculture Organization of the United Nations: Rome, Italy, 2009. [Google Scholar]
- Kim, S.; Kim, D.B.; Jin, W.; Park, J.; Yoon, W.; Lee, Y.; Kim, S.; Lee, S.; Kim, S.; Lee, O.H.; et al. Comparative studies of bioactive organosulphur compounds and antioxidant activities in garlic (Allium sativum L.), elephant garlic (Allium ampeloprasum L.) and onion (Allium cepa L.). Nat. Prod. Res. 2018, 32, 1193–1197. [Google Scholar] [CrossRef]
- Ceccanti, C.; Rocchetti, G.; Lucini, L.; Giuberti, G.; Landi, M.; Biagiotti, S.; Guidi, L. Comparative phytochemical profile of the elephant garlic (Allium ampeloprasum var. holmense) and the common garlic (Allium sativum) from the Val di Chiana area (Tuscany, Italy) before and after in vitro gastrointestinal digestion. Food Chem. 2021, 338, 128011. [Google Scholar] [CrossRef]
- Yudhistira, B.; Punthi, F.; Lin, J.-A.; Syahrullah Sulaimana, A.; Chang, C.-K.; Hsieh, C.-W.; Chang-Wei Hsieh, C. S-Allyl cysteine in garlic (Allium sativum): Formation, biofunction, and resistance to food processing for value-added product development. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2665–2687. [Google Scholar] [CrossRef]
- Park, T.; Oh, J.H.; Lee, J.H.; Park, S.C.; Jang, Y.P.; Lee, Y. Oral Administration of (S)-Allyl-l-Cysteine and Aged Garlic Extract to Rats: Determination of Metabolites and Their Pharmacokinetics. Planta Med. 2017, 83, 1351–1360. [Google Scholar] [CrossRef]
- Bae, S.E.; Cho, S.Y.; Won, Y.D.; Lee, S.H.; Park, H.J. Changes in S-allyl cysteine contents and physicochemical properties of black garlic during heat treatment. LWT—Food Sci. Technol. 2014, 55, 397–402. [Google Scholar] [CrossRef]
- Valls, R.M.; Companys, J.; Calderón-Pérez, L.; Salamanca, P.; Pla-Pagà, L.; Sandoval-Ramírez, B.A.; Bueno, A.; Puzo, J.; Crescenti, A.; Bas, J.M.d.; et al. Effects of an Optimized Aged Garlic Extract on Cardiovascular Disease Risk Factors in Moderate Hypercholesterolemic Subjects: A Randomized, Crossover, Double-Blind, Sustainedand Controlled Study. Nutrients 2022, 14, 405. [Google Scholar] [CrossRef]
- Javed, M.; Ahmed, W. Black garlic: A review of its biological significance. J. Food Biochem. 2022, 46, e14394. [Google Scholar] [CrossRef]
- Kim, J.-S.; Kang, O.-J.; Gweon, O.-C. Comparison of phenolic acids and flavonoids in black garlic at different thermal processing steps. J. Funct. Foods 2013, 5, 80–86. [Google Scholar] [CrossRef]
- Kim, D.; Kim, K.-H.; Yook, H.-S. Comparison of antioxidant activity between black elephant garlic (Allium ampeloprasum) and black normal garlic (Allium sativum L.). J. Korean Soc. Food Sci. Nutr. 2019, 48, 1352–1358. [Google Scholar] [CrossRef]
- Nam, S.-H.; Han, Y.-S.; Sim, K.-H.; Yang, S.-O.; Kim, M.-H. Changes in the Physicochemical Properties, Antioxidant Activity and Metabolite Analysis of Black Elephant Garlic (Allium ampeloprasum L.) during Aging Period. Foods 2023, 12, 43. [Google Scholar] [CrossRef]
- Ai, T.T.; Huong, N.T. Research on the production of black garlic juice. Int. J. Pharm. Sci. Invent. 2018, 7, 7–14. [Google Scholar]
- Kim, D.; Kim, K.-H.; Yook, H.-S. Analysis of active components of giant black garlic. J. Korean Soc. Food Sci. Nutr. 2015, 44, 1672–1681. [Google Scholar] [CrossRef]
- Bae, S.E.; Cho, S.Y.; Won, Y.D.; Lee, S.H.; Park, H.J. A comparative study of the different analytical methods for analysis of S-allyl cysteine in black garlic by HPLC. LWT—Food Sci. Technol. 2012, 46, 532–535. [Google Scholar] [CrossRef]
- Malaphong, C.; Tangwanitchakul, A.; Boriboon, S.; Tangtreamjitmun, N. A simple and rapid HPLC method for determination of S-allyl-L-cystein and its use in quality control of black garlic samples. LWT—Food Sci. Technol. 2022, 160, 113290. [Google Scholar] [CrossRef]
- Tho, D.C.M.V.; Thao, H.P.; Tuan, N.D.; Zemann, A. Quantitative analysis of S-Allylcysteine in black garlic via Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Syst. Rev. Pharm. 2019, 10, 161. [Google Scholar]
- Zhang, Q.-W.; Lin, L.-G.; Ye, W.-C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef]
- Carrasco-Sandoval, J.; Rebolledo, P.; Peterssen-Fonseca, D.; Fischer, S.; Wilckens, R.; Aranda, M.; Henríquez-Aedo, K. A fast and selective method to determine phenolic compounds in quinoa (Chenopodium quinoa Will) seeds applying ultrasound-assisted extraction and high-performance liquid chromatography. Chem. Pap. 2021, 75, 431–438. [Google Scholar] [CrossRef]
- Galarce-Bustos, O.; Fernandez-Ponce, M.T.; Montes, A.; Pereyra, C.; Casas, L.; Mantell, C.; Aranda, M. Usage of supercritical fluid techniques to obtain bioactive alkaloid-rich extracts from cherimoya peel and leaves: Extract profiles and their correlation with antioxidant properties and acetylcholinesterase and alpha-glucosidase inhibitory activities. Food Funct. 2020, 11, 4224–4235. [Google Scholar] [CrossRef] [PubMed]
- Galarce-Bustos, O.; Novoa, L.; Pavon-Perez, J.; Henriquez-Aedo, K.; Aranda, M. Chemometric Optimization of QuEChERS Extraction Method for Polyphenol Determination in Beers by Liquid Chromatography with Ultraviolet Detection. Food Anal. Methods 2019, 12, 448–457. [Google Scholar] [CrossRef]
- Morlock, G.E.; Heil, J.; Bardot, V.; Lenoir, L.; Cotte, C.; Dubourdeaux, M. Effect-Directed Profiling of 17 Different Fortified Plant Extracts by High-Performance Thin-Layer Chromatography Combined with Six Planar Assays and High-Resolution Mass Spectrometry. Molecules 2021, 26, 1468. [Google Scholar] [CrossRef]
- Morlock, G.E.; Belay, A.; Heil, J.; Mehl, A.; Borck, H. Effect-Directed Profiling of Monofloral Honeys from Ethiopia by High-Performance Thin-Layer Chromatography and High-Resolution Mass Spectrometry. Molecules 2022, 27, 3541. [Google Scholar] [CrossRef]
- Aranda, M.; Vega, M.H.; Villegas, R.F. Routine method for quantification of starch by planar chromatography (HPTLC). JPC J. Planar Chromatogr.—Mod. TLC 2005, 18, 285–289. [Google Scholar] [CrossRef]
- Galarce-Bustos, O.; Pavon-Perez, J.; Henriquez-Aedo, K.; Aranda, M. An improved method for a fast screening of alpha-glucosidase inhibitors in cherimoya fruit (Annona cherimola Mill.) applying effect-directed analysis via high-performance thin-layer chromatography-bioassay-mass spectrometry. J. Chromatogr. A 2019, 1608, 460415. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-Sandoval, J.; Falcó, I.; Sánchez, G.; Fabra, M.J.; López-Rubio, A.; Rodriguez, A.; Henríquez-Aedo, K.; Aranda, M. Multivariable optimization of ultrasound-assisted extraction for the determination of phenolic and antioxidants compounds from arrayan (Luma apiculata (DC.) Burret) leaves by microplate-based methods and mass spectrometry. J. Appl. Res. Med. Aromat. Plants 2022, 28, 100356. [Google Scholar] [CrossRef]
- Lopez, K.; Espinoza-Bello, A.; Carrasco, J.; Peña-Farfal, C.; Aranda, M.; Henriquez-Aedo, K. Multivariate optimization of microwave-assisted enzyme digestion of α-casein for generation of bioactive peptides. J. Chil. Chem. Soc. 2023, 68, 5963–5968. [Google Scholar] [CrossRef]
- Oyarzún, P.; Carrasco, J.; Peterssen, D.; Tereucan, G.; Aranda, M.; Henríquez-Aedo, K. A high throughput method for detection of cyclooxygenase-2 enzyme inhibitors by effect-directed analysis applying high performance thin layer chromatography-bioassay-mass spectrometry. J. Chromatogr. A 2023, 1711, 464426. [Google Scholar] [CrossRef]
- Liu, P.; Weng, R.; Sheng, X.; Wang, X.; Zhang, W.; Qian, Y.; Qiu, J. Profiling of organosulfur compounds and amino acids in garlic from different regions of China. Food Chem. 2020, 305, 125499. [Google Scholar] [CrossRef]
- Roig-Zamboni, V.; Cobucci-Ponzano, B.; Iacono, R.; Ferrara, M.C.; Germany, S.; Bourne, Y.; Parenti, G.; Moracci, M.; Sulzenbacher, G. Structure of human lysosomal acid α-glucosidase–a guide for the treatment of Pompe disease. Nat. Commun. 2017, 8, 1111. [Google Scholar] [CrossRef]
- Orlando, B.J.; Malkowski, M.G. Crystal structure of rofecoxib bound to human cyclooxygenase-2. Acta Crystallgr. Sect. F 2016, 72, 772–776. [Google Scholar] [CrossRef] [PubMed]
- Greenblatt, H.M.; Kryger, G.; Lewis, T.; Silman, I.; Sussman, J.L. Structure of acetylcholinesterase complexed with (−)-galanthamine at 2.3 Å resolution. FEBS Lett. 1999, 463, 321–326. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmania, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Vanquelef, E.; Simon, S.; Marquant, G.; Garcia, E.; Klimerak, G.; Delepine, J.C.; Cieplak, P.; Dupradeau, F.Y. RED Server: A web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Res. 2011, 39, W511–W517. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. [Google Scholar] [CrossRef]
- Tian, C.; Kasavajhala, K.; Belfon, K.A.A.; Raguette, L.; Huang, H.; Migues, A.N.; Bickel, J.; Wang, Y.; Pincay, J.; Wu, Q.; et al. ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution. J. Chem. Theory Comput. 2020, 16, 528–552. [Google Scholar] [CrossRef]
- Case, D.A.; Cheatham, T.E., III; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M., Jr.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem. 2005, 26, 1668–1688. [Google Scholar] [CrossRef]
- Miller, B.R., III; McGee, T.D., Jr.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. J. Chem. Theory Comput. 2012, 8, 3314–3321. [Google Scholar] [CrossRef]
- Sasmaz, H.K.; Kadiroglu, P.; Adal, E.; Sevindik, O.; Aksay, O.; Erkin, O.C.; Selli, S.; Kelebek, H. Optimization of black garlic production parameters using response surface methodology: Assessment and characterization of bioactive properties. J. Appl. Res. Med. Aromat. Plants 2023, 34, 100477. [Google Scholar] [CrossRef]
- Chang, T.C.; Jang, H.D. Optimization of Aging Time for Improved Antioxidant Activity and Bacteriostatic Capacity of Fresh and Black Garlic. Appl. Sci. 2021, 11, 2377. [Google Scholar] [CrossRef]
- Chang, W.-C.; Lin, W.-C.; Wu, S.-C. Optimization of the Black Garlic Processing Method and Development of Black Garlic Jam Using High-Pressure Processing. Foods 2023, 12, 1584. [Google Scholar] [CrossRef]
- Pakakaew, P.; Phimolsiripol, Y.; Taesuwan, S.; Kumphune, S.; Klangpetch, W.; Utama-ang, N. The shortest innovative process for enhancing the S-allylcysteine content and antioxidant activity of black and golden garlic. Sci. Rep. 2022, 12, 11493. [Google Scholar] [CrossRef]
- Kang, J.-R.; Lee, S.-J.; Kwon, H.-J.; Kwon, M.-H.; Sung, N.-J. Establishment of Extraction Conditions for the Optimization of the Black Garlic Antioxidant Activity Using the Response Surface Methodology. Korean J. Food Preserv. 2012, 19, 577–585. [Google Scholar] [CrossRef]
- Vinatoru, M.; Mason, T.J.; Calinescu, I. Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. TrAC Trends Anal. Chem. 2017, 97, 159–178. [Google Scholar] [CrossRef]
- Sipahioglu, O.; Barringer, S.A. Dielectric properties of vegetables and fruits as a function of temperature, ash, and moisture content. J. Food Sci. 2003, 68, 234–239. [Google Scholar] [CrossRef]
- Anne, R.; Nithyanandam, R. Optimization of extraction of bioactive compounds from medicinal herbs using response surface methodology. Int. Proc. Chem. Biol. Environ. Eng. 2016, 99, 76–85. [Google Scholar]
- Manoonphol, K.; Suttisansanee, U.; Promkum, C.; Butryee, C. Effect of Thermal Processes on S-Allyl Cysteine Content in Black Garlic. Foods 2023, 12, 1227. [Google Scholar] [CrossRef]
- Chang, W.C.-W.; Chen, Y.-T.; Chen, H.-J.; Hsieh, C.-W.; Liao, P.-C. Comparative UHPLC-Q-Orbitrap HRMS-Based Metabolomics Unveils Biochemical Changes of Black Garlic during Aging Process. J. Agric. Food Chem. 2020, 68, 14049–14058. [Google Scholar] [CrossRef]
- Nikam, T.D.; Nitnaware, K.M.; Ahire, M.L. Alkaloids derived from tryptophan: Harmine and related alkaloids. In Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes; Ramawat, K.G., Mérillon, J.-M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 553–574. [Google Scholar]
- Apostol, C.R.; Hay, M.; Polt, R. Glycopeptide drugs: A pharmacological dimension between “Small Molecules” and “Biologics”. Peptides 2020, 131, 170369. [Google Scholar] [CrossRef]
- Amini, F.; Abbas, K.I.; Ghasemi, J.B. Molecular modeling approach in design of new scaffold of α-glucosidase inhibitor as antidiabetic drug. Biochem. Biophys. Rep. 2025, 42, 101995. [Google Scholar] [CrossRef]
- Feng, Y.; Nan, H.; Zhou, H.; Xi, P.; Li, B. Mechanism of inhibition of α-glucosidase activity by bavachalcone. Food Sci. Technol. 2022, 42, e123421. [Google Scholar] [CrossRef]
- Makarian, M.; Gonzalez, M.; Salvador, S.M.; Lorzadeh, S.; Hudson, P.K.; Pecic, S. Synthesis, kinetic evaluation and molecular docking studies of donepezil-based acetylcholinesterase inhibitors. J. Mol. Struct. 2022, 1247, 131425. [Google Scholar] [CrossRef]
- Riendeau, D.; Percival, M.D.; Boyce, S.; Brideau, C.; Charleson, S.; Cromlish, W.; Ethier, D.; Evans, J.; Falgueyret, J.P.; Ford-Hutchinson, A.W.; et al. Biochemical and pharmacological profile of a tetrasubstituted furanone as a highly selective COX-2 inhibitor. Br. J. Pharmacol. 1997, 121, 105–117. [Google Scholar] [CrossRef]
Runs | T° (°C) | Ethanol (%) | Time (min) | TPC (mg GAE/g DW) | S-Allyl-Cysteine (mg/g DW) |
---|---|---|---|---|---|
1 | 30 | 40 | 3.0 | 8.21 ± 0.41 | 2.87 ± 0.24 |
2 | 90 | 20 | 7.5 | 8.72 ± 0.56 | 2.87 ± 0.01 |
3 | 30 | 0 | 12.0 | 9.01 ± 0.30 | 2.64 ± 0.01 |
4 | 60 | 20 | 7.5 | 9.42 ± 0.37 | 2.25 ± 0.03 |
5 | 30 | 0 | 3.0 | 8.32 ± 0.52 | 2.70 ± 0.15 |
6 | 60 | 40 | 7.5 | 8.68 ± 0.67 | 2.61 ± 0.11 |
7 | 90 | 0 | 3.0 | 8.52 ± 0.31 | 2.45 ± 0.05 |
8 | 60 | 20 | 3.0 | 9.83 ± 0.66 | 2.43 ± 0.08 |
9 | 90 | 40 | 3.0 | 8.76 ± 0.57 | 2.19 ± 0.17 |
10 | 90 | 40 | 12.0 | 8.85 ± 0.23 | 2.16 ± 0.24 |
11 | 30 | 40 | 12.0 | 7.93 ± 0.56 | 1.84 ± 0.11 |
12 | 60 | 20 | 12.0 | 8.64 ± 0.40 | 1.97 ± 0.09 |
13 | 30 | 20 | 7.5 | 8.61 ± 0.49 | 1.94 ± 0.17 |
14 | 90 | 0 | 12.0 | 9.69 ± 0.44 | 2.12 ± 0.20 |
15 | 60 | 20 | 7.5 | 9.79 ± 0.43 | 2.06 ± 0.02 |
16 | 60 | 0 | 7.5 | 9.53 ± 0.39 | 2.05 ± 0.16 |
TPC | SAC | |
---|---|---|
Temperature (30–90 °C) | 67 | 30 |
Ethanol percentage (0–40%) | 0 | 40 |
Time (3–12 min) | 12 | 3 |
Predicted yields (mg/g) | 9.81 | 2.66 |
Experimental yield (mg/g) | 9.19 ± 0.18 | 2.55 ± 0.10 |
Percentage of error (%) | 6.3 | 4.2 |
Lack of fit (p-value) | 0.36 | 0.22 |
Band (RF) | Bioactivity * | Bioactive Molecule | Molecular Formula | Observed m/z (u) | Theorical m/z (u) | Mass Error (ppm) | Fragments m/z (u) |
---|---|---|---|---|---|---|---|
0.30 | Antioxidant and COXi | N-Fructosyl Glutamyl-S-(1-Propenyl) cysteine | C17H28N2O10S | 453.1555 | 453.1543 | 2.65 | 369.1176 208.1655 145.0400 |
0.40 | AGi; | N-Fructosyl Glutamylphenylalanine | C20H28N2O10 | 457.1807 | 457.1822 | −3.28 | 373.1471 208.0655 166.0913 |
0.67 | AChEi | Methyl-β-Carboline | C12H10N2 | 183.0928 | 183.0922 | 3.27 | 115.0553 |
Complex | Molecular Dynamics | IC50 Values | Ref. | ||
---|---|---|---|---|---|
Enzyme | Substrate | ΔGMMGBSA (kcal/mol) | ΔGMMPBSA (kcal/mol) | ||
AG | Acarbose | −8.2 | −6.4 | 93.63 μM | [63] |
N-fructosyl glutamylphenylalanine | −27.5 | −11.8 | - | * | |
AChE | Donepezil | −34.5 | −19.2 | 6.7 nM | [64] |
Harmane | −11.2 | −7.3 | * | ||
COX-2 | Diclofenac | −33.7 | 25.3 | 1.3 nM | [65] |
N-Fructosyl Glutamyl-S-(1-Propenyl) cysteine | −32.4 | −24.4 | - | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Martínez, J.; Arráez-Román, D.; Peterssen, D.; Zapata, G.; Henríquez-Aedo, K.; Aranda, M. Identification of Novel Bioactive Molecules in Black Chiloe’s Giant Garlic (Allium ampeloprasum L.) by Green Microwave-Assisted Extraction and Effect-Directed Analysis Using High-Performance Thin Layer Chromatography-Bioassay and Mass Spectrometry. Antioxidants 2025, 14, 913. https://doi.org/10.3390/antiox14080913
Fernández-Martínez J, Arráez-Román D, Peterssen D, Zapata G, Henríquez-Aedo K, Aranda M. Identification of Novel Bioactive Molecules in Black Chiloe’s Giant Garlic (Allium ampeloprasum L.) by Green Microwave-Assisted Extraction and Effect-Directed Analysis Using High-Performance Thin Layer Chromatography-Bioassay and Mass Spectrometry. Antioxidants. 2025; 14(8):913. https://doi.org/10.3390/antiox14080913
Chicago/Turabian StyleFernández-Martínez, Joaquín, David Arráez-Román, Darlene Peterssen, Gerald Zapata, Karem Henríquez-Aedo, and Mario Aranda. 2025. "Identification of Novel Bioactive Molecules in Black Chiloe’s Giant Garlic (Allium ampeloprasum L.) by Green Microwave-Assisted Extraction and Effect-Directed Analysis Using High-Performance Thin Layer Chromatography-Bioassay and Mass Spectrometry" Antioxidants 14, no. 8: 913. https://doi.org/10.3390/antiox14080913
APA StyleFernández-Martínez, J., Arráez-Román, D., Peterssen, D., Zapata, G., Henríquez-Aedo, K., & Aranda, M. (2025). Identification of Novel Bioactive Molecules in Black Chiloe’s Giant Garlic (Allium ampeloprasum L.) by Green Microwave-Assisted Extraction and Effect-Directed Analysis Using High-Performance Thin Layer Chromatography-Bioassay and Mass Spectrometry. Antioxidants, 14(8), 913. https://doi.org/10.3390/antiox14080913