From Forest to Fork: Antioxidant and Antimicrobial Potential of Laetiporus sulphureus (Bull.) Murrill in Cooked Sausages
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Mushroom Collection and Sample Preparation
2.3. Ethanolic Extraction Procedure
2.4. Crude Protein Determination
2.5. Protein Profiling
2.6. Amino Acid Composition
2.7. Fatty Acid Analysis
2.8. Mineral Element Determination
2.9. Phenolic Profile Analysis
2.10. Total Phenolic Content (TPC) and Total Flavonoid Content (TFC)
2.11. Antioxidant Activity Assays
2.12. Antibacterial Activity
2.13. Sausage Formulation and Processing
2.14. pH and Color Measurement
2.15. Lipid Oxidation Assay (TBARS)
2.16. Microbiological Evaluation
2.17. Sensory Evaluation
- Familiarization with key sensory characteristics relevant to cooked sausages (color and taste);
- Use of standardized terminology in accordance with ISO 5492:2008 to ensure consistency in the description and interpretation of sensory attributes;
- Application of structured quantitative sensory scales based on ISO 4121:2003, including calibration with reference samples to ensure reliable and repeatable scoring.
2.18. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition of L. sulphureus Extract
3.2. In Vitro Antioxidant and Antimicrobial Activities of L. sulphureus Extract
3.3. Preserving Properties of Sausages
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Inguglia, E.S.; Song, Z.; Kerry, J.P.; O’Sullivan, M.G.; Hamill, R.M. Addressing Clean Label Trends in Commercial Meat Processing: Strategies, Challenges and Insights from Consumer Perspectives. Foods 2023, 12, 2062. [Google Scholar] [CrossRef] [PubMed]
- Grand View Research. Clean Label Ingredients Market Size, Share & Trends Analysis Report, 2020–2027. Available online: https://www.grandviewresearch.com/industry-analysis/clean-label-ingredients-market (accessed on 14 July 2025).
- Kalač, P. A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. J. Sci. Food Agric. 2013, 93, 209–218. [Google Scholar] [CrossRef]
- Rašeta, M.; Karaman, M.; Jakšić, M.; Šibul, F.; Kebert, M.; Novaković, A.; Popović, M. Mineral Composition, Antioxidant and Cytotoxic Biopotentials of Wild-Growing Ganoderma Species (Serbia): G. lucidum (Curtis) P. Karst vs. G. applanatum (Pers.) Pat. Free Radic. Biol. Med. 2023, 198, 129–139. [Google Scholar] [CrossRef]
- Lindequist, U.; Niedermeyer, T.H.J.; Jülich, W.D. The pharmacological potential of mushrooms. Evid.-Based Complement. Altern. Med. 2005, 2, 285–299. [Google Scholar] [CrossRef]
- Tao, Y.; Xiao, S.; Cai, J.; Wang, J.; Li, L. Effects of ergothioneine-enriched mushroom extract on oxidative stability, volatile compounds and sensory quality of emulsified sausage. Anim. Biosci. 2021, 34, 1695–1704. [Google Scholar] [CrossRef]
- Fogarasi, M.; Devai, G.; Hegedűsné, K.; Gálik, B.; Soós, G.; Csapo, J.; Spilási, I. Polyphenol-enrichment of Vienna sausages using microcapsules containing acidic aqueous extract of Boletus edulis mushrooms. Foods 2023, 13, 979. [Google Scholar] [CrossRef]
- Santi, M.; Zambonelli, A.; Venturella, G. Edible mushrooms as sources of bioactive compounds in meat product development: Current knowledge and future perspectives. Appl. Sci. 2021, 11, 3998. [Google Scholar] [CrossRef]
- Kovács, D.; Vetter, J. Chemical composition of the mushroom Laetiporus sulphureus (Bull.) Murill. Acta Alimentaria 2015, 44, 104–110. [Google Scholar] [CrossRef]
- Petrović, J.; Stojković, D.; Reis, F.S.; Barros, L.; Glamočlija, J.; Ćirić, A.; Soković, M. Study on chemical, bioactive and food preserving properties of Laetiporus sulphureus (Bull.: Fr.) Murr. Food Funct. 2014, 5, 1441–1451. [Google Scholar] [CrossRef]
- Bulam, S.; Üstün, N.Ş.; Pekşen, A. Nutraceutical and food preserving importance of Laetiporus sulphureus. Turk. J. Agric. Food Sci. Technol. 2019, 7, 94–100. [Google Scholar] [CrossRef]
- Petrović, J.; Glamočlija, J.; Stojković, D.S.; Ćirić, A.; Nikolić, M.; Bukvički, D.; Soković, M.D. Laetiporus sulphureus, edible mushroom from Serbia: Investigation on volatile compounds, in vitro antimicrobial activity and in situ control of Aspergillus flavus in tomato paste. Food Chem. Toxicol. 2013, 59, 297–302. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1995. [Google Scholar]
- Tidona, F.; Sekse, C.; Criscione, A.; Jacobsen, M.; Bordonaro, S.; Marletta, D.; Vegarud, G.E. Antimicrobial Effect of Donkeys’ Milk Digested In Vitro with Human Gastrointestinal Enzymes. Int. Dairy J. 2011, 21, 158–165. [Google Scholar] [CrossRef]
- Torbica, A.M.; Živančev, D.R.; Nikolić, Z.T.; Đorđević, V.B.; Nikolovski, B.G. Advantages of the Lab-on-a-Chip method in the determination of the Kunitz trypsin inhibitor in soybean varieties. J. Agric. Food Chem. 2010, 58, 7980–7985. [Google Scholar] [CrossRef] [PubMed]
- Novaković, A.R.; Karaman, M.A.; Milovanović, I.L.; Torbica, A.M.; Tomić, J.M.; Pejin, B.M.; Sakač, M.B. Nutritional and phenolic profile of small edible fungal species Coprinellus disseminatus (Pers.) J.E. Lange 1938. Food Feed Res. 2018, 45, 119–128. Available online: https://scindeks.ceon.rs/article.aspx?artid=2217-53691807119N (accessed on 14 July 2025). [CrossRef]
- Folch, J.; Lees, M.; Sloane-Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Chromatogr. A 1957, 226, 497–509. [Google Scholar]
- Ackman, R.G. Remarks on official methods employing boron trifluoride in the preparation of methyl esters of the fatty acids of fish oils. J. Am. Oil Chem. Soc. 1998, 75, 541–545. [Google Scholar] [CrossRef]
- Orčić, D.; Francišković, M.; Bekvalac, K.; Svirčev, E.; Beara, I.; Lesjak, M.; Mimica-Dukić, N. Quantitative determination of plant phenolics in Urtica dioica extracts by high-performance liquid chromatography coupled with tandem mass spectrometric detection. Food Chem. 2014, 143, 48–53. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Chang, C.C.; Yang, M.H.; Wen, H.M.; Chern, J.C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar] [CrossRef]
- Espín, J.C.; Soler-Rivas, C.; Wichers, H.J. Characterization of the total free radical scavenger capacity of vegetable oils and oil fractions using 2,2-diphenyl-1-picrylhydrazyl radical. J. Agric. Food Chem. 2000, 48, 648–656. [Google Scholar] [CrossRef]
- Green, L.C.; Wagner, D.A.; Glogowski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.R. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal. Biochem. 1982, 126, 131–138. [Google Scholar] [CrossRef]
- Cheeseman, K.H.; Beavis, A.; Esterbauer, H. Hydroxyl-radical-induced iron-catalysed degradation of 2-deoxyribose. Quantitative determination of malondialdehyde. Biochem. J. 1988, 252, 649–653. [Google Scholar] [CrossRef]
- Karaman, M.; Mimica-Dukić, N.; Knežević, P.; Svirčev, Z.; Matavulj, M. Antibacterial properties of selected lignicolous mushrooms and fungi from northern Serbia. Int. J. Med. Mushrooms 2009, 11, 269–279. [Google Scholar] [CrossRef]
- CIE. Colorimetry: Official Recommendation of the International Commission on Illumination; CIE Publication No. E-1.31; Bureau Central de la CIE: Paris, France, 1976. [Google Scholar]
- Honikel, K. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- Tomović, V.; Jokanović, M.; Petrović, L.; Tomović, M.; Tasić, T.; Ikonić, P.; Šumić, Z.; Šojić, B.; Škaljac, S.; Šošo, M. Sensory, physical and chemical characteristics of cooked ham manufactured from rapidly chilled and earlier deboned M. semimembranosus. Meat Sci. 2013, 93, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Botsoglou, N.A.; Fletouris, D.J.; Papageorgiou, G.E.; Vassilopoulos, V.N.; Mantis, A.J.; Trakatellis, A.G. Rapid, sensitive, and specific thiobarbituric acid method for measuring lipid peroxidation in animal tissue, food, and feedstuff samples. J. Agric. Food Chem. 1994, 42, 1931–1937. [Google Scholar] [CrossRef]
- Mandić, A. Antioxidant Activities of Grape Seed Extracts from White Grape Varieties. Ph.D. Thesis, University of Novi Sad, Novi Sad, Serbia, 2007. [Google Scholar]
- Šojić, B.; Tomović, V.; Kocić-Tanackov, S.; Škaljac, S.; Ikonić, P.; Džinić, N.; Kravić, S. Effect of nutmeg (Myristica fragrans) essential oil on the oxidative and microbial stability of cooked sausage during refrigerated storage. Food Control 2015, 54, 282–286. [Google Scholar] [CrossRef]
- ISO 8586:2012; Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. ISO: Geneva, Switzerland, 2012.
- ISO 5492:2008; Sensory Analysis—Vocabulary. ISO: Geneva, Switzerland, 2008.
- ISO 4121:2003; Sensory Analysis—Guidelines for the Use of Quantitative Response Scales. ISO: Geneva, Switzerland, 2003.
- Meilgaard, M.; Civille, G.V.; Carr, B.T. Sensory Evaluation Techniques, 5th ed.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- FAO/WHO/UNU. Protein and Amino Acid Requirements in Human Nutrition. Report of a Joint FAO/WHO/UNU Expert Consultation; WHO Technical Report Series No. 935; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Agafonova, S.V.; Olennikov, D.N.; Borovskii, G.B.; Penzina, T.A. Chemical composition of fruiting bodies from two strains of Laetiporus sulphureus. Chem. Nat. Compd. 2007, 6, 687–688. [Google Scholar] [CrossRef]
- Khatua, S.; Ghosh, S.; Acharya, K. Laetiporus sulphureus (Bull.: Fr.) Murr. as food and medicine. Pharmacogn. J. 2017, 9 (Suppl. S6), s1–s15. [Google Scholar] [CrossRef]
- Ferreira, I.C.F.R.; Heleno, S.A.; Reis, F.S.; Stojković, D.; Queiroz, M.J.R.P.; Vasconcelos, M.H. Chemical features of edible mushrooms and their bioactive compounds as potential ingredients for functional foods and nutraceuticals. Food Chem. 2015, 179, 25–35. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Y.; Wang, H.; Wang, X.; Qi, X. Purification and characterization of a novel lectin from Laetiporus sulphureus with antiproliferative and apoptosis-inducing activities. Biochimie 2011, 93, 1847–1854. [Google Scholar] [CrossRef]
- Patel, S.; Goyal, A. Recent developments in mushrooms as anti-cancer therapeutics: A review. 3 Biotech 2012, 2, 1–15. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the appropriate age for introduction of complementary feeding of infants. EFSA J. 2009, 7, 1423. [Google Scholar] [CrossRef]
- Kalač, P. Trace Element Contents in European Species of Wild Growing Edible Mushrooms: A Review. Food Chem. 2010, 122, 2–15. [Google Scholar] [CrossRef]
- Fonseca, L.; Legua, P.; Zúñiga, M.; Pardo, J.E.; Saavedra, F.; Carreccio, V.; García, J. Quantification of Minerals in Edible Mushrooms via Optimized Microwave-Assisted Digestion and ICP-OES. Foods 2023, 13, 4051. [Google Scholar] [CrossRef]
- Karaman, M.; Jovin, E.; Malbaša, R.; Matavulj, M.; Popović, M. Medicinal and Edible Lignicolous Fungi as Natural Sources of Antioxidative and Antibacterial Agents. Phytother. Res. 2010, 24, 1473–1481. [Google Scholar] [CrossRef] [PubMed]
- Lenzi, J.; Tesei, A.; Zambelli, V.; Varchi, G.; Ferroni, L.; Pignedoli, F.; Ferretti, E.; Falconi, M.; Benati, D.; Zweyer, M.; et al. Meripilus giganteus Ethanolic Extract Exhibits Pro-Apoptotic and Anti-Proliferative Effects in Leukemic Cell Lines. BMC Complement. Altern. Med. 2018, 18, 306. [Google Scholar] [CrossRef]
- Klaus, A.; Kozarski, M.; Niksic, M.; Jakovljevic, D.; Todorovic, N.; Vrvic, M.M.; van Griensven, L.J.L.D. The edible mushroom Laetiporus sulphureus as a potential source of natural antioxidants. Int. J. Food Sci. Nutr. 2013, 64, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, A.; Lucarini, M.; Souto, E.B.; Cicala, C.; Caiazzo, E.; Izzo, A.A.; Novellino, E.; Santini, A. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytother. Res. 2019, 33, 2221–2243. [Google Scholar] [CrossRef] [PubMed]
- Sova, D.; Petrović, J.; Soković, M.; Glamočlija, J.; Kukić-Marković, J.; Petrović, S. In situ antioxidant and antimicrobial activities of naturally occurring caffeic acid, p-coumaric acid and rutin, using food systems. J. Sci. Food Agric. 2013, 93, 3205–3208. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, H.; Rao, S.; Sun, J.; Ma, C.; Li, J. p-Coumaric acid kills bacteria through dual damage mechanisms. Food Control 2012, 25, 550–554. [Google Scholar] [CrossRef]
- Karaman, M.; Atlagić, K.; Novaković, A.; Šibul, F.; Živić, M.; Stevanović, K.; Pejin, B. Fatty acids predominantly affect anti-hydroxyl radical activity and FRAP value: The case study of two edible mushrooms. Antioxidants 2019, 8, 480. [Google Scholar] [CrossRef]
- Soković, M.; Glamočlija, J.; Marin, P.D.; Brkić, D.; van Griensven, L.J.L.D. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules 2010, 15, 7532–7546. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Bozin, B.; Mimica-Dukić, N.; Simin, N.; Anackov, G. Characterization of the volatile composition and antimicrobial activity of essential oils of some Lamiaceae spices. Food Chem. 2007, 104, 1368–1374. [Google Scholar]
- Li, J.; Zhao, N.; Xu, R.; Li, G.; Dong, H.; Wang, B.; Li, Z.; Fan, M.; Wei, X. Deciphering the antibacterial activity and mechanism of p-coumaric acid against Alicyclobacillus acidoterrestris and its application in apple juice. Int. J. Food Microbiol. 2022, 378, 109822. [Google Scholar] [CrossRef]
- Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 2003, 67, 593–656. [Google Scholar] [CrossRef] [PubMed]
- Poole, K. Mechanisms of bacterial biocide and antibiotic resistance. J. Appl. Microbiol. 2002, 92, 55S–64S. [Google Scholar] [CrossRef] [PubMed]
- Tegos, G.P.; Stermitz, F.R.; Lomovskaya, O.; Lewis, K. Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials. Antimicrob. Agents Chemother. 2002, 46, 3133–3141. [Google Scholar] [CrossRef]
- Heleno, S.A.; Barros, L.; Martins, A.; Morales, P.; Fernandez-Ruiz, V.; Glamočlija, J.; Ferreira, I.C.F.R. Nutritional value, bioactive compounds, antimicrobial activity and bioaccessibility studies with wild edible mushrooms. LWT—Food Sci. Technol. 2015, 63, 799–806. [Google Scholar] [CrossRef]
- Davoli, P.; Mucci, A.; Schenetti, L.; Weber, R.W. Laetiporic acids, a family of non-carotenoid polyene pigments from fruit-bodies and liquid cultures of Laetiporus sulphureus. Phytochemistry 2005, 66, 817–823. [Google Scholar] [CrossRef] [PubMed]
- Stefanello, F.S.; Cavalheiro, C.P.; Ludtke, F.L.; Silva, M.D.S.D.; Fries, L.L.M.; Kubota, E.H. Oxidative and microbiological stability of fresh pork sausage with added sun mushroom powder. Ciênc. Agrotecnol. 2015, 39, 381–389. [Google Scholar] [CrossRef]
- Luangharn, T.; Hyde, K.; Chukeatirote, E. Antibacterial and antioxidant activity of the ethyl acetate extract of two strains of Thai Laetiporus sulphureus mushroom. Food Res. 2024, 8, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Sánchez, R.D.; Torres-Martínez, B.M.; Huerta-Leidenz, N.; Sarturi, J. Effects of Ganoderma lucidum hydroalcoholic extract on the antioxidant status of pork patties during storage and gastro-intestinal digestion. Food Biosci. 2024, 62, 105579. [Google Scholar]
- Wu, X.; Wang, P.; Xu, Q.; Jiang, B.; Li, L.; Ren, L.; Li, X.; Wang, L. Effects of Pleurotus ostreatus on physicochemical properties and residual nitrite of pork sausage. Coatings 2022, 12, 484. [Google Scholar]
- Vargas-Sánchez, R.D.; Torres-Martínez, B.M.; Huerta-Leidenz, N.; Fernandez-Lopez, J.; Torrescano-Urrutia, G.R.; Pérez-Álvarez, J.A.; Sánchez-Escalante, A. Antioxidant and antibacterial effect of Agaricus brasiliensis extract on raw and cooked pork patties during storage. Agriculture 2023, 13, 346. [Google Scholar] [CrossRef]
- Mehta, N.; Kumar, P.; Verma, A.K.; Umaraw, P.; Kumar, Y.; Malav, O.P.; Sazili, A.Q.; Domínguez, R.; Lorenzo, J.M. Microencapsulation as a Noble Technique for the Application of Bioactive Compounds in the Food Industry: A Comprehensive Review. Appl. Sci. 2022, 12, 1424. [Google Scholar] [CrossRef]
- Baker, M.T.; Lu, P.; Parrella, J.A.; Leggette, H.R. Consumer Acceptance toward Functional Foods: A Scoping Review. Int. J. Environ. Res. Public Health 2022, 19, 1217. [Google Scholar] [CrossRef]
Amino Acid | Content (mg/g d.w.) | Classification |
---|---|---|
Valine (Val) | 9.80 ± 0.22 | Essential |
Methionine (Met) | 1.50 ± 0.10 | Essential |
Phenylalanine (Phe) | 5.40 ± 0.07 | Essential |
Isoleucine (Ile) | 5.90 ± 0.11 | Essential |
Leucine (Leu) | 12.4 ± 0.31 | Essential |
Lysine (Lys) | 7.60 ± 0.13 | Essential |
Threonine (Thr) | 8.50 ± 0.17 | Essential |
Histidine (His) | 2.90 ± 0.05 | Essential |
Aspartic acid (Asp) | 16.1 ± 0.22 | Non-Essential |
Glutamic acid (Glu) | 26.2 ± 0.06 | Non-Essential |
Serine (Ser) | 9.30 ± 0.27 | Non-Essential |
Glycine (Gly) | 8.00 ± 0.12 | Non-Essential |
Proline (Pro) | 4.40 ± 0.09 | Non-Essential |
Arginine (Arg) | 23.3 ± 0.16 | Non-Essential |
Alanine (Ala) | 14.4 ± 0.15 | Non-Essential |
Tyrosine (Tyr) | 3.00 ± 0.07 | Non-Essential |
Cysteine (Cys) | 26.8 ± 0.20 | Non-Essential |
Fatty Acid Carbon Numbers | Common Name | % |
---|---|---|
C6:00 | Caproic | 1.24 |
C8:00 | Caprylic | 0.60 |
C14:00 | Myristic | 1.03 |
C15:00 | Pentadecanoic | 1.58 |
C16:00 | Palmitic | 9.68 |
C17:00 | Heptadecanoic | 0.68 |
C17:01 | Heptadecanoic (cis-10) | 0.31 |
C18:00 | Stearic | 1.61 |
C18:1n9c | Oleic | 11.0 |
C18:2n6c | Linoleic | 68.6 |
C18:3n6 | Linolenic | 0.83 |
C20:3n3 | Eicosatrienoic | 0.44 |
C20:4n6 | Arachidonic | 0.45 |
C22:1n9 | Erucic | 1.31 |
C23:00 | Tricosylic | 0.42 |
Macroelement | mg/g d.w. |
---|---|
K | 21.5± 0.30 |
Mg | 0.84 ± 0.02 |
Ca | 0.62 ± 0.01 |
Microelement | mg/kg d.w. |
Cu | 7.00 ± 0.10 |
Zn | 58.3 ± 0.50 |
Mn | 2.11 ± 0.10 |
Fe | 0.09 ± 0.01 |
TPC Total Polyphenols (mg GAE/100 g d.w.) | TFC Total Flavonoid (mg QE/100 g d.w.) | DPPH•, IC50 (µg/mL) | NO•, IC50 (µg/mL) | •OH IC50 (µg/mL) |
---|---|---|---|---|
78.1 ± 0.40 | 6.4 ± 0.10 | 215 ± 0.05 | 182 ± 0.40 | 11.4 ± 0.01 |
S. aureus ATCC25923 | E. faecalis ATCC 19433 | B. subtilis ATCC6633 | E. coli ATCC11229 | S. enteritidis ATCC 13076 | |
---|---|---|---|---|---|
MIC | 0.31 mg/mL | 2.50 mg/mL | 10.0 mg/mL | >10.0 mg/mL | >10.0 mg/mL |
MBC | 0.62 mg/mL | 10.0 mg/mL | 10.0 mg/mL | >10.0 mg/mL | >10.0 mg/mL |
Storage Time (Days) | Batch | pH | CIE L * Value | CIE a * Value | CIE b * Value |
---|---|---|---|---|---|
1 | C | 6.24 ± 0.1 a | 69.3 ± 0.59 a | 15.9 ± 0.28 a | 16.3 ± 0.48 b |
SLs | 6.23 ± 0.1 a | 69.2 ± 0.57 a | 16.5 ± 0.19 ab | 15.1 ± 0.57 a | |
30 | C | 6.26 ± 0.1 b | 69.1 ± 0.67 a | 16.6 ± 0.34 ab | 16.0 ± 0.15 b |
SLs | 6.28 ± 0.1 b | 68.7 ± 0.72 a | 16.9 ± 0.35 b | 14.7 ± 0.46 a |
Storage Time (Days) | Batch | TBARS mg MDA/kg |
---|---|---|
1st | C | 0.25 ± 0.02 ab |
LsS | 0.21 ± 0.02 a | |
30th | C | 0.36 ± 0.02 b |
LsS | 0.26 ± 0.02 ab |
Microorganism | Storage Day | Batch C (CFU/g) | Batch SLs (CFU/g) |
---|---|---|---|
Aerobic mesophilic bacteria | 1 | 26.6 ± 11.5 ᵃ | 16.6 ± 5.7 ᵃ |
30 | 43.3 ± 5.7 ᵇ | 33.3 ± 15.2 ᵃ | |
Yeasts and molds | 1 | Nd | Nd |
30 | Nd | Nd | |
Escherichia coli | 1 | Nd | Nd |
30 | Nd | Nd | |
Clostridium spp. | 1 | Nd | Nd |
30 | Nd | Nd | |
Enterobacteriaceae | 1 | Nd | Nd |
30 | Nd | Nd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novaković, A.; Karaman, M.; Šojić, B.; Ikonić, P.; Peulić, T.; Tomić, J.; Šipovac, M. From Forest to Fork: Antioxidant and Antimicrobial Potential of Laetiporus sulphureus (Bull.) Murrill in Cooked Sausages. Microorganisms 2025, 13, 1832. https://doi.org/10.3390/microorganisms13081832
Novaković A, Karaman M, Šojić B, Ikonić P, Peulić T, Tomić J, Šipovac M. From Forest to Fork: Antioxidant and Antimicrobial Potential of Laetiporus sulphureus (Bull.) Murrill in Cooked Sausages. Microorganisms. 2025; 13(8):1832. https://doi.org/10.3390/microorganisms13081832
Chicago/Turabian StyleNovaković, Aleksandra, Maja Karaman, Branislav Šojić, Predrag Ikonić, Tatjana Peulić, Jelena Tomić, and Mirjana Šipovac. 2025. "From Forest to Fork: Antioxidant and Antimicrobial Potential of Laetiporus sulphureus (Bull.) Murrill in Cooked Sausages" Microorganisms 13, no. 8: 1832. https://doi.org/10.3390/microorganisms13081832
APA StyleNovaković, A., Karaman, M., Šojić, B., Ikonić, P., Peulić, T., Tomić, J., & Šipovac, M. (2025). From Forest to Fork: Antioxidant and Antimicrobial Potential of Laetiporus sulphureus (Bull.) Murrill in Cooked Sausages. Microorganisms, 13(8), 1832. https://doi.org/10.3390/microorganisms13081832