Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (51)

Search Parameters:
Authors = Shaden A. M. Khalifa

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1085 KiB  
Article
Development of a Tandem Mass Spectral Library for the Detection of Triterpenoids in Plant Metabolome Based on Reference Standards
by Bibi Zareena, Syed Usama Y. Jeelani, Adeeba Khadim, Arslan Ali, Jalal Uddin, Satyajit D. Sarker, Matthias Rainer, Shaden A. M. Khalifa, Hesham R. El-Seedi, Muhammad Ramzan and Syed Ghulam Musharraf
Plants 2024, 13(23), 3278; https://doi.org/10.3390/plants13233278 - 22 Nov 2024
Viewed by 1201
Abstract
Plant triterpenoids represent a diverse group of secondary metabolites and are thought to be valuable for therapeutic applications. For drug development, lead optimization, better knowledge of biological pathways, and high-throughput detection of secondary metabolites in plant extracts are crucial. This paper describes a [...] Read more.
Plant triterpenoids represent a diverse group of secondary metabolites and are thought to be valuable for therapeutic applications. For drug development, lead optimization, better knowledge of biological pathways, and high-throughput detection of secondary metabolites in plant extracts are crucial. This paper describes a qualitative method for the rapid and accurate identification of various triterpenoids in plant extracts using the LC-HR-ESI-MS/MS tool in combination with the data-dependent acquisition (DD) approach. A total of 44 isolated, purified, and characterized triterpenoids were analyzed. HR-MS spectra and tandem mass spectra (MS/MS) of each compound were recorded in the positive ionization mode in two different sets of collisional energies, i.e., (25–62.5 eV), and fixed collisional energies (10, 20, 30, and 40 eV). As a result, three triterpenoids were identified in all plant extracts using the retention time, high-resolution mass spectra, and/or MS/MS spectra. The developed method will be helpful with other plant extracts/botanicals, as well as in the search for new triterpenoids in the kingdom Plantae. Full article
Show Figures

Figure 1

29 pages, 5961 KiB  
Review
Updated Review of Metal Nanoparticles Fabricated by Green Chemistry Using Natural Extracts: Biosynthesis, Mechanisms, and Applications
by Hesham R. El-Seedi, Mohamed S. Omara, Abdulrahman H. Omar, Mahmoud M. Elakshar, Yousef M. Shoukhba, Hatice Duman, Sercan Karav, Ahmed K. Rashwan, Awg H. El-Seedi, Hamud A. Altaleb, Haiyan Gao, Aamer Saeed, Ohoud A. Jefri, Zhiming Guo and Shaden A. M. Khalifa
Bioengineering 2024, 11(11), 1095; https://doi.org/10.3390/bioengineering11111095 - 30 Oct 2024
Cited by 16 | Viewed by 5355
Abstract
Metallic nanoparticles have found wide applications due to their unique physical and chemical properties. Green biosynthesis using plants, microbes, and plant/microbial extracts provides an environmentally friendly approach for nanoparticle synthesis. This review discusses the mechanisms and factors governing the biosynthesis of metallic nanoparticles [...] Read more.
Metallic nanoparticles have found wide applications due to their unique physical and chemical properties. Green biosynthesis using plants, microbes, and plant/microbial extracts provides an environmentally friendly approach for nanoparticle synthesis. This review discusses the mechanisms and factors governing the biosynthesis of metallic nanoparticles such as silver, gold, and zinc using various plant extracts and microorganisms, including bacteria, fungi, and algae. The phytochemicals and biomolecules responsible for reducing metal ions and stabilizing nanoparticles are discussed. Key process parameters like pH, temperature, and precursor concentration affecting particle size are highlighted. Characterization techniques for confirming the formation and properties of nanoparticles are also mentioned. Applications of biosynthesized nanoparticles in areas such as antibacterial delivery, cancer therapy, biosensors, and environmental remediation are reviewed. Challenges in scaling up production and regulating nanoparticle properties are addressed. Power Point 365 was used for creating graphics. Overall, green biosynthesis is an emerging field with opportunities for developing eco-friendly nanomanufacturing platforms using abundant natural resources. Further work on optimizing conditions, standardizing protocols, and exploring new biosources is needed to realize the full potential of this approach. Full article
(This article belongs to the Section Biochemical Engineering)
Show Figures

Graphical abstract

27 pages, 4952 KiB  
Review
Green Innovation and Synthesis of Honeybee Products-Mediated Nanoparticles: Potential Approaches and Wide Applications
by Shaden A. M. Khalifa, Aya A. Shetaia, Nehal Eid, Aida A. Abd El-Wahed, Tariq Z. Abolibda, Abdelfatteh El Omri, Qiang Yu, Mohamed A. Shenashen, Hidayat Hussain, Mohamed F. Salem, Zhiming Guo, Abdulaziz M. Alanazi and Hesham R. El-Seedi
Bioengineering 2024, 11(8), 829; https://doi.org/10.3390/bioengineering11080829 - 14 Aug 2024
Cited by 8 | Viewed by 4230
Abstract
Bee products, abundant in bioactive ingredients, have been utilized in both traditional and contemporary medicine. Their antioxidant, antimicrobial, and anti-inflammatory properties make them valuable for food, preservation, and cosmetics applications. Honeybees are a vast reservoir of potentially beneficial products such as honey, bee [...] Read more.
Bee products, abundant in bioactive ingredients, have been utilized in both traditional and contemporary medicine. Their antioxidant, antimicrobial, and anti-inflammatory properties make them valuable for food, preservation, and cosmetics applications. Honeybees are a vast reservoir of potentially beneficial products such as honey, bee pollen, bee bread, beeswax, bee venom, and royal jelly. These products are rich in metabolites vital to human health, including proteins, amino acids, peptides, enzymes, sugars, vitamins, polyphenols, flavonoids, and minerals. The advancement of nanotechnology has led to a continuous search for new natural sources that can facilitate the easy, low-cost, and eco-friendly synthesis of nanomaterials. Nanoparticles (NPs) are actively synthesized using honeybee products, which serve dual purposes in preventive and interceptive treatment strategies due to their richness in essential metabolites. This review aims to highlight the potential role of bee products in this line and their applications as catalysts and food preservatives and to point out their anticancer, antibacterial, antifungal, and antioxidant underlying impacts. The research used several online databases, namely Google Scholar, Science Direct, and Sci Finder. The overall findings suggest that these bee-derived substances exhibit remarkable properties, making them promising candidates for the economical and eco-friendly production of NPs. Full article
Show Figures

Graphical abstract

15 pages, 1844 KiB  
Article
Efficacy and Tolerability of a Scutellaria lateriflora L. and Cistus × incanus L.-Based Chewing Gum on the Symptoms of Gingivitis: A Monocentric, Randomized, Double-Blind, Placebo-Controlled Clinical Trial
by Alessandro Di Minno, Hammad Ullah, Lorenza Francesca De Lellis, Daniele Giuseppe Buccato, Alessandra Baldi, Paola Cuomo, Hesham R. El-Seedi, Shaden A. M. Khalifa, Xiang Xiao, Roberto Piccinocchi, Gaetano Piccinocchi, Roberto Sacchi and Maria Daglia
Nutrients 2024, 16(6), 862; https://doi.org/10.3390/nu16060862 - 16 Mar 2024
Cited by 1 | Viewed by 3169
Abstract
Preclinical studies have shown that the combination of Cistus × incanus L. and Scutellaria lateriflora L. extracts exerts beneficial effects on oral health against gingivitis. Thus, this study aimed to assess the tolerability of a chewing gum and its efficacy on gingivitis in [...] Read more.
Preclinical studies have shown that the combination of Cistus × incanus L. and Scutellaria lateriflora L. extracts exerts beneficial effects on oral health against gingivitis. Thus, this study aimed to assess the tolerability of a chewing gum and its efficacy on gingivitis in a double-blind, placebo-controlled clinical trial. Enrolled subjects (n = 60, 18–70 years) were randomized to receive two chewing gums or a placebo daily for 3 months. At baseline (t0) and monthly (t1, t2, and t3) timepoints, the Quantitative Gingival Bleeding Index (QGBI), the Modified Gingival Index (MGI), and the Oral Health 15 items (OH-15)] were employed to assess potential improvements in gingivitis. Pain was self-quantified via the Visual Analogue Scale (VAS), and the Clinical Global Impression Scale for Severity of illness (CGI-S) helped in evaluating the oral general conditions. This study is listed on the ISRCTN registry. At t3, the QGBI, MGI, OH-15, VAS, and CGI-S values decreased in the treated but not in the placebo group (β = 0.6 ± 0.1, t176 = 3.680, p < 0.001; β = 0.87 ± 0.21, t115 = 4.263, p < 0.001; β = 5.3 ± 2.5, t172 = 2.086, p = 0.038; β = 3.16 ± 0.51, t88 = 6.253, p < 0.001; and β = 1.09 ± 0.32, t83 = 3.419, p < 0.001, respectively). A significant improvement in gingival health occurred after a 3-month intervention with the chewing gums containing S. lateriflora and C. incanus extracts. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

18 pages, 1696 KiB  
Review
Exploring the Therapeutic Potential of Royal Jelly in Metabolic Disorders and Gastrointestinal Diseases
by Hesham R. El-Seedi, Suzy Salama, Aida A. Abd El-Wahed, Zhiming Guo, Alessandro Di Minno, Maria Daglia, Chuan Li, Xiao Guan, Daniele Giuseppe Buccato, Shaden A. M. Khalifa and Kai Wang
Nutrients 2024, 16(3), 393; https://doi.org/10.3390/nu16030393 - 29 Jan 2024
Cited by 9 | Viewed by 5412
Abstract
Metabolic disorders, encompassing diabetes mellitus, cardiovascular diseases, gastrointestinal disorders, etc., pose a substantial global health threat, with rising morbidity and mortality rates. Addressing these disorders is crucial, as conventional drugs often come with high costs and adverse effects. This review explores the potential [...] Read more.
Metabolic disorders, encompassing diabetes mellitus, cardiovascular diseases, gastrointestinal disorders, etc., pose a substantial global health threat, with rising morbidity and mortality rates. Addressing these disorders is crucial, as conventional drugs often come with high costs and adverse effects. This review explores the potential of royal jelly (RJ), a natural bee product rich in bioactive components, as an alternative strategy for managing metabolic diseases. RJ exhibits diverse therapeutic properties, including antimicrobial, estrogen-like, anti-inflammatory, hypotensive, anticancer, and antioxidant effects. This review’s focus is on investigating how RJ and its components impact conditions like diabetes mellitus, cardiovascular disease, and gastrointestinal illnesses. Evidence suggests that RJ serves as a complementary treatment for various health issues, notably demonstrating cholesterol- and glucose-lowering effects in diabetic rats. Specific RJ-derived metabolites, such as 10-hydroxy-2-decenoic acid (10-HDA), also known as the “Queen bee acid,” show promise in reducing insulin resistance and hyperglycemia. Recent research highlights RJ’s role in modulating immune responses, enhancing anti-inflammatory cytokines, and suppressing key inflammatory mediators. Despite these promising findings, further research is needed to comprehensively understand the mechanisms underlying RJ’s therapeutic effects. Full article
(This article belongs to the Special Issue Diet and Nutrition: Metabolic Diseases)
Show Figures

Figure 1

23 pages, 2366 KiB  
Article
In Vitro Anti-Diabetic, Anti-Inflammatory, Antioxidant Activities and Toxicological Study of Optimized Psychotria malayana Jack Leaves Extract
by Sharifah Nurul Akilah Syed Mohamad, Alfi Khatib, Siti Zaiton Mat So’ad, Qamar Uddin Ahmed, Zalikha Ibrahim, Tanzina Sharmin Nipun, Humaryanto Humaryanto, Mohamed F. AlAjmi, Shaden A. M. Khalifa and Hesham R. El-Seedi
Pharmaceuticals 2023, 16(12), 1692; https://doi.org/10.3390/ph16121692 - 5 Dec 2023
Cited by 5 | Viewed by 3240
Abstract
Psychotria malayana Jack (Family: Rubiaceae, local name: Salung) is a traditional herb used to treat diabetes. A previous study by our research group demonstrated that P. malayana methanolic and water extract exhibits significant potential as an effective agent for managing diabetes. Further research [...] Read more.
Psychotria malayana Jack (Family: Rubiaceae, local name: Salung) is a traditional herb used to treat diabetes. A previous study by our research group demonstrated that P. malayana methanolic and water extract exhibits significant potential as an effective agent for managing diabetes. Further research has been performed on the extraction optimization of this plant to enhance its inhibitory activity against α-glucosidase, a key enzyme associated with diabetes, and to reduce its toxicity. The objectives of this study are to evaluate the anti-diabetic, anti-inflammatory, and antioxidant properties of the optimized P. malayana leaf extract (OE), to evaluate its toxicity using a zebrafish embryo/larvae model, and to analyze its metabolites. The anti-diabetic effects were assessed by investigating α-glucosidase inhibition (AGI), while the inflammation inhibitory activity was performed using the soybean lipoxygenase inhibitory (SLOXI) test. The assessment of antioxidant activity was performed utilizing FRAP and DPPH assays. The toxicology study was conducted using the zebrafish embryo/larvae (Danio rerio) model. The metabolites present in the extracts were analyzed using GC-MS and LC-MS. OE demonstrated significant AGI and SLOXI activities, represented as 2.02 and 4.92 µg/mL for IC50 values, respectively. It exhibited potent antioxidant activities as determined by IC50 values of 13.08 µg/mL (using the DPPH assay) and 95.44 mmol TE/mg DW (using the FRAP assay), and also demonstrated an LC50 value of 224.29 µg/mL, which surpasses its therapeutic index of 111.03. OE exhibited a higher therapeutic index compared to that of the methanol extract (13.84) stated in the previous state of the art. This suggests that OE exhibits a lower level of toxicity, making it safer for use, and has the potential to be highly effective in its anti-diabetic activity. Liquid chromatography–mass spectrometry (LC-MS) and gas chromatography–mass spectrometry (GC-MS) demonstrated the presence of several constituents in this extract. Among them, several compounds, such as propanoic acid, succinic acid, D-tagatose, myo-inositol, isorhamnetin, moracin M-3′-O-β-D-glucopyranoside, procyanidin B3, and leucopelargonidin, have been reported as possessing anti-diabetic and antioxidant activities. This finding offers great potential for future research in diabetes treatment. Full article
(This article belongs to the Special Issue Zebrafish as a Powerful Tool for Drug Discovery 2023)
Show Figures

Figure 1

15 pages, 2259 KiB  
Article
Total Lipid Extracts of Honeybee Drone Larvae Are Modulated by Extraction Temperature and Display Consistent Anti-Inflammatory Potential
by Yiming Luo, Yuyang Guo, Wen Zhao, Shaden A. M. Khalifa, Hesham R. El-Seedi, Xiaoling Su and Liming Wu
Foods 2023, 12(22), 4058; https://doi.org/10.3390/foods12224058 - 8 Nov 2023
Cited by 3 | Viewed by 2109
Abstract
Honeybee drone larvae are male bees that develop from unfertilized eggs and play a role in colony reproduction. The nutritional value of honeybee drone larvae is due to their high protein, lipid, and other nutrient contents, making them a profitable food source for [...] Read more.
Honeybee drone larvae are male bees that develop from unfertilized eggs and play a role in colony reproduction. The nutritional value of honeybee drone larvae is due to their high protein, lipid, and other nutrient contents, making them a profitable food source for humans in some cultures. Drone larvae lipids (DLLs) contribute to drone development; however, few studies have explored their substantial compositions and bioactive functions. In this study, we carried out DLL lipidomics analysis using UPLC-Q-Exactive-Orbitrap–MS prior to in vitro anti-inflammatory activity analysis. The results highlighted the importance of the extraction temperature on the DLL composition. A total of 21 lipids were found in the DLL extract, mostly categorized into five groups: nine phospholipids, three sphingolipids, two neutral lipids, one plant glycoglycerolipid, four lipid acyl, and others. Drying extraction at −20 °C produced more sphingolipids, phospholipids, and unsaturated fatty acids. Of 37 fatty acids, 18 were displayed at −20 °C degrees, as shown by GC–MS quantitative analysis. Myristic (246.99 ± 13.19 μg/g), palmitic (1707.87 ± 60.53 μg/g), stearic (852.32 ± 24.17 μg/g), and oleic (2463.03 ± 149.61 μg/g) acids were the predominant fatty acids. Furthermore, we examined the significant in vitro anti-inflammatory effects of DLL (−20 °C) using lipopolysaccharide (LPS)-challenged RAW264.7 cells. Nitric oxide (NO) and reactive oxygen (ROS) production and mRNA expression of IL-6, IL-10, COX-2, and iNOS were significantly decreased, demonstrating the anti-inflammatory function of DLL. Overall, this study provided insight into the lipid composition of DLL, revealed the influence of temperature, and explored the functionality of DLL (−20 °C), allowing for further application of DLLs as functional foods. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Graphical abstract

34 pages, 3975 KiB  
Review
Review of Marine Cyanobacteria and the Aspects Related to Their Roles: Chemical, Biological Properties, Nitrogen Fixation and Climate Change
by Hesham R. El-Seedi, Mohamed F. El-Mallah, Nermeen Yosri, Muaaz Alajlani, Chao Zhao, Muhammad A. Mehmood, Ming Du, Hammad Ullah, Maria Daglia, Zhiming Guo, Shaden A. M. Khalifa and Qiyang Shou
Mar. Drugs 2023, 21(8), 439; https://doi.org/10.3390/md21080439 - 3 Aug 2023
Cited by 12 | Viewed by 7328
Abstract
Marine cyanobacteria are an ancient group of photosynthetic microbes dating back to 3.5 million years ago. They are prolific producers of bioactive secondary metabolites. Over millions of years, natural selection has optimized their metabolites to possess activities impacting various biological targets. This paper [...] Read more.
Marine cyanobacteria are an ancient group of photosynthetic microbes dating back to 3.5 million years ago. They are prolific producers of bioactive secondary metabolites. Over millions of years, natural selection has optimized their metabolites to possess activities impacting various biological targets. This paper discusses the historical and existential records of cyanobacteria, and their role in understanding the evolution of marine cyanobacteria through the ages. Recent advancements have focused on isolating and screening bioactive compounds and their respective medicinal properties, and we also discuss chemical property space and clinical trials, where compounds with potential pharmacological effects, such as cytotoxicity, anticancer, and antiparasitic properties, are highlighted. The data have shown that about 43% of the compounds investigated have cytotoxic effects, and around 8% have anti-trypanosome activity. We discussed the role of different marine cyanobacteria groups in fixing nitrogen percentages on Earth and their outcomes in fish productivity by entering food webs and enhancing productivity in different agricultural and ecological fields. The role of marine cyanobacteria in the carbon cycle and their outcomes in improving the efficiency of photosynthetic CO2 fixation in the chloroplasts of crop plants, thus enhancing the crop plant’s yield, was highlighted. Ultimately, climate changes have a significant impact on marine cyanobacteria where the temperature rises, and CO2 improves the cyanobacterial nitrogen fixation. Full article
(This article belongs to the Special Issue Bioactive Product from Marine Cyanobacteria)
Show Figures

Figure 1

18 pages, 2433 KiB  
Article
Combination of Chemically Characterized Pomegranate Extract and Hydrophilic Vitamins against Prolonged Fatigue: A Monocentric, Randomized, Double-Blind, Placebo-Controlled Clinical Trial
by Hammad Ullah, Eduardo Sommella, Alessandro Di Minno, Roberto Piccinocchi, Daniele Giuseppe Buccato, Lorenza Francesca De Lellis, Costanza Riccioni, Alessandra Baldi, Hesham R. El-Seedi, Shaden A. M. Khalifa, Gaetano Piccinocchi, Pietro Campiglia, Roberto Sacchi and Maria Daglia
Nutrients 2023, 15(13), 2883; https://doi.org/10.3390/nu15132883 - 26 Jun 2023
Cited by 2 | Viewed by 5014
Abstract
Prolonged fatigue is associated with non-pathological causes and lacks an established therapeutic approach. The current study is aimed at assessing the efficacy of a new food supplement (Improve™) based on a chemically characterized pomegranate extract and hydro-soluble vitamins (B complex and C). UHPLC-HRMS [...] Read more.
Prolonged fatigue is associated with non-pathological causes and lacks an established therapeutic approach. The current study is aimed at assessing the efficacy of a new food supplement (Improve™) based on a chemically characterized pomegranate extract and hydro-soluble vitamins (B complex and C). UHPLC-HRMS analysis of pomegranate extract showed the presence of 59 compounds, with gallotannins and ellagitannins being the most abundant phytochemicals. For the clinical study, 58 subjects were randomized into two groups, 1 and 2 (n = 29, each), which received either the food supplement or placebo. The effects of the food supplement against fatigue were assessed via validated questionnaires, recorded at time intervals t0 (at baseline), t1 (after 28 days), t2 (56 days), and t3 (after follow-up) in combination with the analysis of biochemical markers at t0 and t2. Fatigue severity scale (FSS) questionnaire scores were significantly decreased at the t2 and t3 time intervals in subjects treated with the food supplements, while the effect of the food supplement on a 12-Item Short Form Survey (SF-12) was not considerable. Moreover, the food supplement did not significantly affect biochemical parameters associated with fatigue and stress conditions. This study shows that the food supplement tested reduces prolonged fatigue following two months of supplementation in healthy subjects with mild prolonged fatigue. Full article
(This article belongs to the Section Clinical Nutrition)
Show Figures

Figure 1

20 pages, 2194 KiB  
Article
Sidr Honeys Physical and Chemical Characterization, a Comprehensive Approach through LC-MS/MS, NMR, and GC-MS Analysis
by Aida A. Abd El-Wahed, Eman H. Rashwan, Mohamed F. AlAjmi, Shaden A. M. Khalifa, Aamer Saeed, Chao Zhao, Yahya Al Naggar, Zhiming Guo, Syed G. Musharraf, Kai Wang, Hesham R. El-Seedi and Nermeen Yosri
Separations 2023, 10(7), 372; https://doi.org/10.3390/separations10070372 - 24 Jun 2023
Cited by 13 | Viewed by 5007
Abstract
Honey intake is advantageous to human health due to its antioxidant, anticancer, anti-inflammatory, and antimicrobial properties, all of which are attributed to the rich bioactive compound contents. Moreover, hepatoprotective, wound healing, and gastrointestinal protective properties have been documented. Honey’s nutritional value is significantly [...] Read more.
Honey intake is advantageous to human health due to its antioxidant, anticancer, anti-inflammatory, and antimicrobial properties, all of which are attributed to the rich bioactive compound contents. Moreover, hepatoprotective, wound healing, and gastrointestinal protective properties have been documented. Honey’s nutritional value is significantly affected by its chemical composition, which varies depending on botanical and geographical origin. In particular, after Manuka honey, Sidr honey from the Ziziphus species is the most popular. The chemical compositions, physicochemical properties, bioactive compounds, and sensory characteristics of two Sidr honey samples from Egypt and Saudi Arabia were investigated in the current study. Moisture content, electrical conductivity (EC), pH, free acidity (FA), total acidity, lactone hydroxymethylfurfural (HMF) content, and diastase (α-amylase) activity were measured. By using high-performance liquid chromatography (HPLC), mass spectrometry (LC-MS/MS), nuclear magnetic resonance (1HNMR), and solid-phase micro-extraction (SPME) coupled with gas chromatography (GC-MS) analyses, the sugar profile, non-volatile, and volatile compounds were also identified. The physicochemical analysis revealed the following results for Sidr honey from Saudi Arabia and Egypt, respectively: a moisture content of 18.03 ± 0.05% and 19.03 ± 0.06%, EC values of 1.18 ± 0.05 and 1.16 ± 0.01 mS/cm, pH values of 4.87 ± 0.08 and 5.10 ± 0.01, FA of 37.50 ± 0.05 and 36.50 ± 0.05 meq/kg, total acidity of 41.06 ± 0.05 and 37.50 ± 0.05 meq/kg, lactone of 3.49 ± 0.005 and 1 ± 0.0 meq/kg, HMF of 20.92 ± 0.02 and 11.33 ± 0.01 mg/kg, and diastase of 59.97 ± 0.05 and 8.64 ± 0.06g/100 g. Honey from Saudi Arabia and Egypt displayed 22.51 ± 0.05 and 26.62 ± 0.16 % glucose, 40.33 ± 0.06 and 35.28 ± 0.01% fructose, 8.94 ± 0.17, and 8.87 ± 0.01% sucrose, and 8.22 ± 0.006 and 8.13 ± 0.01% maltose, respectively. According to the International Honey Commission (IHC) and GCC Standardization Organization (GSO) regulations, the levels of glucose, fructose, sucrose, and maltose were near the standard levels. Flavonoids, sugars, vitamins, and nitrogen contents were additionally measured using LC-MS/MS, whereas GC-MS was employed to identify aldehydes, ketones, phenols, acids, esters, anthraquinone, hydrocarbons, and nitrogenous compounds. The results of a study on the effect of honey’s geographic origin on its broad quality are summarized. As a result, knowing its optimal chemical and physical characteristics served as the criterion and indicator of the honey’s quality. Full article
Show Figures

Figure 1

25 pages, 3483 KiB  
Article
Comparative MS- and NMR-Based Metabolome Mapping of Egyptian Red and White Squill Bulbs F. Liliaceae and in Relation to Their Cytotoxic Effect
by Omar M. Khattab, Dina M. El-Kersh, Shaden A. M. Khalifa, Nermeen Yosri, Hesham R. El-Seedi and Mohamed A. Farag
Plants 2023, 12(11), 2078; https://doi.org/10.3390/plants12112078 - 23 May 2023
Cited by 6 | Viewed by 2528
Abstract
Urginea maritima L. (squill) species is widely spread at the Mediterranean region as two main varieties, i.e., white squill (WS) and red squill (RS), that are recognized for several health potentials. The major secondary metabolite classes of the squill are cardiac glycosides, mainly, [...] Read more.
Urginea maritima L. (squill) species is widely spread at the Mediterranean region as two main varieties, i.e., white squill (WS) and red squill (RS), that are recognized for several health potentials. The major secondary metabolite classes of the squill are cardiac glycosides, mainly, bufadienolides, flavonoids, and anthocyanins. Herein, a multiplex MS and NMR metabolomics approach targeting secondary and aroma compounds in WS and RS was employed for varieties classification. Solid-phase micro extraction-gas chromatography/mass spectroscopy (SPME-GC/MS), ultra-high-performance liquid chromatography/mass spectrometry (UPLC/MS), as well as nuclear magnetic resonance (NMR) provided fingerprinting and structural confirmation of the major metabolites for both types of the squill. For comparison of the different platforms’ classification potential, multivariate data analysis was employed. While Bufadienolides, viz. “hydroxy-scilliglaucosidin-O-rhamnoside, desacetylscillirosidin-O-rhamnoside and bufotalidin-O-hexoside” as well as oxylipids, were enriched in WS, flavonoids, i.e., dihydro-kaempferol-O-hexoside and its aglycon, taxifolin derivative, were predominant in RS. A cytotoxicity screening against three cancer cell lines, including breast adenocarcinoma (MCF-7), lung (A-549), and ovarian (SKOV-3) cell lines was conducted. Results revealed that WS was more effective on A-549 and SKOV-3 cell lines (WS IC50 0.11 and 0.4 µg/mL, respectively) owing to its abundance of bufadienolides, while RS recorded IC50 (MCF7 cell line) 0.17 µg/mL since is is rich inflavonoids. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

16 pages, 4078 KiB  
Article
In Vivo Toxicity Assessment of the Probiotic Bacillus amyloliquefaciens HTI-19 Isolated from Stingless Bee (Heterotrigona itama) Honey
by Fatin Aina Zulkhairi Amin, Mohamad Zulhafiz Shafiq Cheng, Suriana Sabri, Norsharina Ismail, Kim Wei Chan, Norhaizan Mohd Esa, Mohd Azmi Mohd Lila, Saulol Hamid Nur-Fazila, Shaden A. M. Khalifa, Hesham R. El-Seedi and Norhasnida Zawawi
Nutrients 2023, 15(10), 2390; https://doi.org/10.3390/nu15102390 - 19 May 2023
Cited by 4 | Viewed by 3205
Abstract
This study evaluated the acute and sub-acute toxicity of B. amyloliquefaciens HTI-19 (isolated from stingless bee honey) in female Sprague Dawley rats. In an acute toxicity study, the rats received a low dosage (1 × 109 CFU·mL−1), medium dosage (3 [...] Read more.
This study evaluated the acute and sub-acute toxicity of B. amyloliquefaciens HTI-19 (isolated from stingless bee honey) in female Sprague Dawley rats. In an acute toxicity study, the rats received a low dosage (1 × 109 CFU·mL−1), medium dosage (3 × 109 CFU·mL−1), or high dosage (1 × 1010 CFU·mL−1) of B. amyloliquefaciens HTI-19 daily orally by syringe-feeding for 14 days. For the subacute toxicity study, rats received a low dosage (1 × 109 CFU·mL−1) or a high dosage (1 × 1010 CFU·mL−1) for 28 days. The probiotic feeding in acute and sub-acute toxicity studies showed no mortality or significant abnormalities in rats throughout the experimental period. In week 2 of the acute study, the body weight of the rats showed a significant increase (p < 0.05) compared to the control. By gross and microscopic examination of organs, no evidently significant changes were observed in the morphology of organs. Serum biochemical tests and blood hematology tests also revealed no treatment-related changes. Overall, these data indicated that oral administration of B. amyloliquefaciens HTI-19 up to 1 × 109 CFU·mL−1 for 28 days can be considered safe. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Graphical abstract

15 pages, 2453 KiB  
Article
In Vitro Antimicrobial and Antibiofilm Properties and Bioaccessibility after Oral Digestion of Chemically Characterized Extracts Obtained from Cistus × incanus L., Scutellaria lateriflora L., and Their Combination
by Hammad Ullah, Alessandro Di Minno, Anna De Filippis, Eduardo Sommella, Daniele Giuseppe Buccato, Lorenza Francesca De Lellis, Hesham R. El-Seedi, Shaden A. M. Khalifa, Roberto Piccinocchi, Massimiliano Galdiero, Pietro Campiglia and Maria Daglia
Foods 2023, 12(9), 1826; https://doi.org/10.3390/foods12091826 - 28 Apr 2023
Cited by 10 | Viewed by 2676
Abstract
Periodontal diseases are oral inflammatory diseases ranging from gingivitis to chronic periodontitis. Porphyromonas gingivalis is one of the major pathogens responsible for severe and chronic periodontitis. Plant extracts with antimicrobial activity could be considered possible alternatives to chlorhexidine, an antiseptic substance used in [...] Read more.
Periodontal diseases are oral inflammatory diseases ranging from gingivitis to chronic periodontitis. Porphyromonas gingivalis is one of the major pathogens responsible for severe and chronic periodontitis. Plant extracts with antimicrobial activity could be considered possible alternatives to chlorhexidine, an antiseptic substance used in oral hygiene thatcan cause bacteria resistance. Here, two commercial extracts obtained from Cistus × incanus L. and Scutellaria lateriflora L. were chemically characterized usingUltra-High-Performance Liquid Chromatography (UHPLC) coupled with a Q-Exactive Hybrid Quadrupole Orbitrap Mass Spectrometer. The extracts were studied for their bioaccessibility after simulated in vitro oral digestion, their antimicrobial activity against P. gingivalis, their protective effects against cellular invasion by P. gingivalis, and their antibiofilm activity. The extracts were found to contain very complex mixtures of polyphenols, which were quite stable after in vitro simulated oral digestion and demonstrated mild, dose-dependent inhibitory activity against P. gingivalis growth. This activity increased with the combination of the two extracts. Moreover, the combination of the extracts induced a reduction in P. gingivalis HaCaT invasiveness, and the reduction in biofilm came to around 80%. In conclusion, a combination of C. incanus and S. lateriflora showed promising effects useful in the treatment of gingivitis. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

27 pages, 5063 KiB  
Article
Chemical Profiling and Nutritional Evaluation of Bee Pollen, Bee Bread, and Royal Jelly and Their Role in Functional Fermented Dairy Products
by Amira M. G. Darwish, Aida A. Abd El-Wahed, Mohamed G. Shehata, Hesham R. El-Seedi, Saad H. D. Masry, Shaden A. M. Khalifa, Hatem M. Mahfouz and Sobhy A. El-Sohaimy
Molecules 2023, 28(1), 227; https://doi.org/10.3390/molecules28010227 - 27 Dec 2022
Cited by 29 | Viewed by 5788
Abstract
Honeybee products, as multicomponent substances, have been a focus of great interest. The present work aimed to perform the nutritional and chemical profiling and biochemical characterization of bee pollen (BP), bee bread (BB), and royal jelly (RJ) and study their applications in the [...] Read more.
Honeybee products, as multicomponent substances, have been a focus of great interest. The present work aimed to perform the nutritional and chemical profiling and biochemical characterization of bee pollen (BP), bee bread (BB), and royal jelly (RJ) and study their applications in the fortification of functional fermented dairy products. Their effects on starter cultures and the physicochemical and sensorial quality of products were monitored. A molecular networking analysis identified a total of 46 compounds in the three bee products that could be potential medicines, including flavonoids, fatty acids, and peptides. BB showed the highest protein and sugar contents (22.57 and 26.78 g/100 g), which cover 45.14 and 53.56% of their daily values (DVs), with considerable amounts of the essential amino acids threonine and lysine (59.50 and 42.03%). BP, BB, and RJ can be considered sources of iron, as 100 g can cover 141, 198.5, and 94.94% of DV%, respectively. BP was revealed to have the highest phenolic and flavonoid contents (105.68 and 43.91 µg/g) and showed a synergetic effect when mixed with RJ, resulting in increased antioxidant activity, while BB showed a synergetic effect when mixed with RJ in terms of both antioxidant and proteolytic powers (IC50 7.54, 11.55, 12.15, 12.50, and 12.65 cP compared to the control (10.55 cP)), reflecting their organoleptic properties and highlighting these health-oriented products as promising natural products for human health care. Full article
(This article belongs to the Special Issue Quality Control of Bee Products: Functional and Chemical Properties)
Show Figures

Figure 1

18 pages, 5573 KiB  
Article
UPLC-MS/MS Analysis of Naturally Derived Apis mellifera Products and Their Promising Effects against Cadmium-Induced Adverse Effects in Female Rats
by Alaa Amr, Aida Abd El-Wahed, Hesham R. El-Seedi, Shaden A. M. Khalifa, Maria Augustyniak, Lamia M. El-Samad, Ahmed E. Abdel Karim and Abeer El Wakil
Nutrients 2023, 15(1), 119; https://doi.org/10.3390/nu15010119 - 27 Dec 2022
Cited by 15 | Viewed by 4057
Abstract
Honeybee products arouse interest in society due to their natural origin and range of important biological properties. Propolis (P) and royal jelly (RJ) attract scientists’ attention because they exhibit antioxidant, anti-inflammatory, anti-bacterial, anti-tumor, and immunomodulatory abilities. In this study, we tested whether P [...] Read more.
Honeybee products arouse interest in society due to their natural origin and range of important biological properties. Propolis (P) and royal jelly (RJ) attract scientists’ attention because they exhibit antioxidant, anti-inflammatory, anti-bacterial, anti-tumor, and immunomodulatory abilities. In this study, we tested whether P and RJ could mitigate the adverse effects of cadmium (Cd) exposure, with particular emphasis on the reproductive function in female rats. In this line, one week of pretreatment was established. Six experimental groups were created, including (i) the control group (without any supplementation), (ii) the Cd group (receiving CdCl2 in a dose of 4.5 mg/kg/day), (iii) the P group (50 mg of P/kg/day), (iv) RJ group (200 mg of RJ/kg/day), (v) P + Cd group (rats pretreated with P and then treated with P and Cd simultaneously), (vi) RJ + Cd group (animals pretreated with RJ before receiving CdCl2 simultaneously with RJ). Cd treatment of rats adversely affected a number of measured parameters, including body weight, ovarian structure and ultrastructure, oxidative stress parameters, increased ovarian Cd content and prolonged the estrous cycle. Pretreatment and then cotreatment with P or RJ and Cd alleviated the adverse effects of Cd, transferring the clusters in the PCA analysis chart toward the control group. However, clusters for cotreated groups were still distinctly separated from the control and P, or RJ alone treated groups. Most likely, investigated honeybee products can alter Cd absorption in the gut and/or increase its excretion through the kidneys and/or mitigate oxidative stress by various components. Undoubtedly, pretreatment with P or RJ can effectively prepare the organism to overcome harmful insults. Although the chemical composition of RJ and P is relatively well known, focusing on proportion, duration, and scheme of treatment, as well as the effects of particular components, may provide interesting data in the future. In the era of returning to natural products, both P and RJ seem valuable materials for further consideration as anti-infertility agents. Full article
(This article belongs to the Special Issue Bee Products in Human Health)
Show Figures

Figure 1

Back to TopTop