Comparative MS- and NMR-Based Metabolome Mapping of Egyptian Red and White Squill Bulbs F. Liliaceae and in Relation to Their Cytotoxic Effect
Abstract
1. Introduction
2. Results and Discussion
2.1. Identification of Volatile Organic Compounds (VOCs)
2.2. Secondary Metabolites Profiling via UHPLC/MS
2.2.1. Bufadienolides
Hydroxyoxobufaenolide
2.2.2. Flavonoids
Identification of Flavanols/Flavonols
Identification of Flavones/Flavanones
Identification of Coumarins
2.2.3. Phenolic Acids
2.2.4. Amino Acids and Fatty Acids
2.3. Multivariate Data Analysis of UPLC-MS Dataset
2.4. NMR Metabolites Fingerprinting
2.4.1. Fatty Acids
2.4.2. Sugars
2.4.3. Amino Acids
2.4.4. Bufadienolides
2.4.5. Coumarins and Flavonoids
2.5. Quantification of Major Metabolites via 1H-NMR
2.6. Cytotoxic Screening Activity
3. Materials and Methods
3.1. Plant Material
3.2. Secondary Metabolites Extraction and Preparation of NMR and MS Analysis Sample
3.3. SPME/GC-MS
3.4. UHPLC/MS
Multivariate Data Analysis of UPLC-MS & GC-MS Dataset
3.5. Identification of Major Metabolites via NMR Analysis
Quantification of Major Metabolites via 1H-NMR
3.6. Bioassays
3.6.1. Cell Culture
3.6.2. Cytotoxic Screening Assay
3.6.3. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bozorgi, M.; Amin, G.; Shekarchi, M.; Rahimi, R. Traditional medical uses of Drimia species in terms of phytochemistry, pharmacology and toxicology. J. Tradit. Chin. Med. 2017, 37, 124–139. [Google Scholar] [CrossRef]
- El-Seedi, H.R.; Burman, R.; Mansour, A.; Turki, Z.; Boulos, L.; Gullbo, J.; Goransson, U. The traditional medical uses and cytotoxic activities of sixty-one Egyptian plants: Discovery of an active cardiac glycoside from Urginea maritima. J. Ethnopharmacol. 2013, 145, 746–757. [Google Scholar] [CrossRef] [PubMed]
- BayazıT, V.; Konar, V. Analgesic Effects of Scilliroside, Proscillaridin-A and Taxifolin from Squill Bulb (Urginea maritima) on Pains. Dig. J. Nanomater. Biostruct. (DJNB) 2010, 5, 457–465. [Google Scholar]
- Dizaye, K.; Hamed, B. Cardiovascular studies of white squill (Urginea maritima) extract. Zanco J. Med. Sci. 2010, 14, 20–27. [Google Scholar]
- Leblanc, F.J.; Lee, C.O. A study of the toxic principles of red squill. J. Am. Pharm. Assoc. 1939, 28, 151–154. [Google Scholar]
- Santos, C.V.d.; Kerkhoff, J.; Tomazelli, C.A.; Wenceslau, C.F.; Sinhorin, A.P.; de Jesus Rodrigues, D.; Carneiro, F.S.; Bomfim, G.F. Vasoconstrictor and hemodynamic effects of a methanolic extract from Rhinella marina toad poison. Toxicon 2022, 218, 57–65. [Google Scholar] [CrossRef]
- Wang, H.-Y.L.; O’Doherty, G.A. Modulators of Na/K-ATPase: A patent review. Expert Opin. Ther. Pat. 2012, 22, 587–605. [Google Scholar] [CrossRef]
- Aswal, S.; Kumar, A.; Semwal, R.B.; Chauhan, A.; Kumar, A.; Lehmann, J.; Semwal, D.K. Drimia indica: A plant used in traditional medicine and its potential for clinical uses. Medicina 2019, 55, 255. [Google Scholar] [CrossRef][Green Version]
- Wu, C.-H.; Tao, W.; Yamaguchi, Y.; Yue, C.; Han, L.-F.; Zhang, Y. A new phenylpropanol glycoside and its five known analogues from Boschniakia rossica. Chin. Herb. Med. 2013, 5, 5–8. [Google Scholar]
- Metin, M.; Bürün, B. Effects of the high doses of Urginea maritima (L.) baker extract on chromosomes. Caryologia 2010, 63, 367–375. [Google Scholar] [CrossRef][Green Version]
- Bozorgi, M.; Amin, G.; Kasebzade, S.; Shekarchi, M. Development and validation of a HPLC-UV method for determination of Proscillaridin A in Drimia maritima. Res. J. Pharmacogn. 2016, 3, 1–7. [Google Scholar]
- Singh, V.; Soni, L.K.; Dobhal, S.; Jain, S.K.; Parasher, P.; Dobhal, M.P. Phytochemicals and Pharmacological Properties of Urginea Species. Chem. Sci. Rev. Lett. 2016, 5, 79–95. [Google Scholar]
- Krenn, L.; Kopp, B.; Steurer, S.; Schubert-Zsilavecz, M. 9-Hydroxyscilliphaeoside, a new bufadienolide from Urginea maritima. J. Nat. Prod. 1996, 59, 612–613. [Google Scholar] [CrossRef]
- Rasheed, D.M.; Porzel, A.; Frolov, A.; El Seedi, H.R.; Wessjohann, L.A.; Farag, M.A. Comparative analysis of Hibiscus sabdariffa (roselle) hot and cold extracts in respect to their potential for α-glucosidase inhibition. Food Chem. 2018, 250, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Worley, B.; Powers, R. PCA as a practical indicator of OPLS-DA model reliability. Curr. Metab. 2016, 4, 97–103. [Google Scholar] [CrossRef][Green Version]
- Okada, T.; Mochamad Afendi, F.; Altaf-Ul-Amin, M.; Takahashi, H.; Nakamura, K.; Kanaya, S. Metabolomics of medicinal plants: The importance of multivariate analysis of analytical chemistry data. Curr. Comput.-Aided Drug Des. 2010, 6, 179–196. [Google Scholar] [CrossRef]
- Jha, S. Bufadienolides. In Phytochemicals in Plant Cell Cultures; Elsevier: Amsterdam, The Netherlands, 1988; pp. 179–191. [Google Scholar]
- Feng, W.; Hao, Z.; Li, M. Isolation and Structure Identification of Flavonoids. In Flavonoids, from Biosynthesis to Human Health; Justino, G.C., Ed.; Intech Open: Rijeka, Croatia, 2017; pp. 17–43. [Google Scholar]
- Barrueto, F.; Kirrane, B.M.; Cotter, B.W.; Hoffman, R.S.; Nelson, L.S. Cardioactive steroid poisoning: A comparison of plant-and animal-derived compounds. J. Med. Toxicol. 2006, 2, 152–155. [Google Scholar] [CrossRef][Green Version]
- Iizuka, M.; Warashina, T.; Noro, T. Bufadienolides and a new lignan from the bulbs of Urginea maritima. Chem. Pharm. Bull. 2001, 49, 282–286. [Google Scholar] [CrossRef][Green Version]
- Crouch, N.R.; du Toit, K.; Mulholland, D.A.; Drewes, S.E. Bufadienolides from bulbs of Urginea lydenburgensis (Hyacinthaceae: Urgineoideae). Phytochemistry 2006, 67, 2140–2145. [Google Scholar] [CrossRef]
- Shimada, K.; Umezawa, E.; Nambara, T.; Kupchan, S.M. Isolation and characterization of cardiotonic steroids from the bulb of Urginea altissima Baker. Chem. Pharm. Bull. 1979, 27, 3111–3114. [Google Scholar] [CrossRef][Green Version]
- Kopp, B.; Krenn, L.; Draxler, M.; Hoyer, A.; Terkola, R.; Vallaster, P.; Robien, W. Bufadienolides from Urginea maritima from Egypt. Phytochemistry 1996, 42, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Wu, J.; Pan, H.; Wang, L. Chemical Profile and Multicomponent Quantitative Analysis for the Quality Evaluation of Toad Venom from Different Origins. Molecules 2019, 24, 3595. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mohamed, G.A.; Ibrahim, S.R.M.; Shaala, L.A.; Alshali, K.Z.; Youssef, D.T.A. Urgineaglyceride A: A new monoacylglycerol from the Egyptian Drimia maritima bulbs. Nat. Prod. Res. 2014, 28, 1583–1590. [Google Scholar] [CrossRef]
- Koorbanally, N.A.; Koorbanally, C.; Harilal, A.; Mulholland, D.A.; Crouch, N.R. Bufadienolides from Drimia robusta and Urginea epigea (Hyacinthaceae). Phytochemistry 2004, 65, 3069–3073. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Yu, Y.; Wang, X.; Yang, L.; Zhang, H.; Ji, H.; Li, Z.; Hou, J.; Wu, W.; Guo, D. Simultaneous Determination of Bufalin and Its Nine Metabolites in Rat Plasma for Characterization of Metabolic Profiles and Pharmacokinetic Study by LC–MS/MS. Molecules 2019, 24, 1662. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kakouri, E.; Kanakis, C.; Trigas, P.; Tarantilis, P.A. Characterization of the chemical composition of Drimia numidica plant parts using high-resolution mass spectrometry: Study of their total phenolic content and antioxidant activity. Anal. Bioanal. Chem. 2019, 411, 3135–3150. [Google Scholar] [CrossRef]
- Knittel, D.N.; Stintzing, F.C.; Kammerer, D.R. Metabolic fate of cardiac glycosides and flavonoids upon fermentation of aqueous sea squill (Drimia maritima L.) extracts. J. Pharm. Biomed. Anal. 2015, 110, 100–109. [Google Scholar] [CrossRef]
- Bose, C.; Chakrabarty, A. 4,5-Dihydro-14-[beta]-Hydroxy Scilladienolide-3-O-[beta]-D-Glucopyranoside (AC-3) from the Stems of Milletia ovalifolia. Asian J. Chem. 2002, 14, 671. [Google Scholar]
- Fang, S.; Tao, H.; Xia, K.; Guo, W. Proscillaridin A induces apoptosis and inhibits the metastasis of osteosarcoma in vitro and in vivo. Biochem. Biophys. Res. Commun. 2019, 521, 880–886. [Google Scholar] [CrossRef]
- Triana-Martínez, F.; Picallos-Rabina, P.; Da Silva-Álvarez, S.; Pietrocola, F.; Llanos, S.; Rodilla, V.; Soprano, E.; Pedrosa, P.; Ferreirós, A.; Barradas, M. Identification and characterization of Cardiac Glycosides as senolytic compounds. Nat. Commun. 2019, 10, 4731. [Google Scholar] [CrossRef][Green Version]
- Da Costa, E.M.; Armaos, G.; McInnes, G.; Beaudry, A.; Moquin-Beaudry, G.; Bertrand-Lehouillier, V.; Caron, M.; Richer, C.; St-Onge, P.; Johnson, J.R. Heart failure drug proscillaridin A targets MYC overexpressing leukemia through global loss of lysine acetylation. J. Exp. Clin. Cancer Res. 2019, 38, 251. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Shimada, R.; Xu, K.; Han, L.; Si, N.; Zhao, H.; Bian, B.; Hayashi, H.; Okazaki, M.; Takagi, N. Multiple cytotoxic effects of gamabufotalin against human glioblastoma cell line U-87. Chem.-Biol. Interact. 2019, 314, 108849. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Ma, H.; Zhou, J.; Zhu, Z.; Lv, X.; Li, Q.; Wang, H.; Yan, Y.; Luo, N.; Di, L. High Resolution Mass Profile of Bufadienolides and Peptides Combing with Anti-Tumor Cell Screening and Multivariate Analysis for the Quality Evaluation of Bufonis Venenum. Molecules 2019, 24, 1943. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Pohl, T.; Koorbanally, C.; Crouch, N.R.; Mulholland, D.A. Bufadienolides from Drimia robusta and Urginea altissima (Hyacinthaceae). Phytochemistry 2001, 58, 557–561. [Google Scholar] [CrossRef]
- Krenn, L.; Stapf, V.; Kopp, B. Bufadienolides from Drimia robusta BAK. Sci. Pharm. 2000, 68, 421–427. [Google Scholar] [CrossRef][Green Version]
- Pinheiro, P.F.; Justino, G.C. Structural analysis of flavonoids and related compounds—A review of spectroscopic applications. In Phytochemicals—A Global Perspective of Their Role in Nutrition and Health; Rao, V., Ed.; IntechOpen: Rijeka, Croatia, 2012; pp. 33–56. [Google Scholar]
- Ye, M.; Yang, W.-Z.; Liu, K.-D.; Qiao, X.; Li, B.-J.; Cheng, J.; Feng, J.; Guo, D.-A.; Zhao, Y.-Y. Characterization of flavonoids in Millettia nitida var. hirsutissima by HPLC/DAD/ESI-MSn. J. Pharm. Anal. 2012, 2, 35–42. [Google Scholar]
- Ragab, E.A.; Raafat, M. A new monoterpene glucoside and complete assignments of dihydroflavonols of Pulicaria jaubertii: Potential cytotoxic and blood pressure lowering activity. Nat. Prod. Res. 2016, 30, 1280–1288. [Google Scholar] [CrossRef]
- Knittel, D.N.; Stintzing, F.C.; Kammerer, D.R. Simultaneous determination of bufadienolides and phenolic compounds in sea squill (Drimia maritima (L.) Stearn) by HPLC-DAD-MS n as a means to differentiate individual plant parts and developmental stages. Anal. Bioanal. Chem. 2014, 406, 6035–6050. [Google Scholar] [CrossRef]
- Fernandez, M.; Vega, F.A.; Arrupe, T.; Renedo, J. Flavonoids of squill, Urginea maritima. Phytochemistry 1972, 11, 1534. [Google Scholar] [CrossRef]
- Belhaddad, O.E.; Charef, N.; Amamra, S.; Zerargui, F.; Baghiani, A.; Khennouf, S.; Arrar, L. Chromatographic fractionation, antioxidant and antibacterial activities of Urginea maritima methanolic extract. Pak. J. Pharm. Sci. 2017, 30, 127–134. [Google Scholar]
- March, R.E.; Lewars, E.G.; Stadey, C.J.; Miao, X.-S.; Zhao, X.; Metcalfe, C.D. A comparison of flavonoid glycosides by electrospray tandem mass spectrometry. Int. J. Mass Spectrom. 2006, 248, 61–85. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Gadimli, A.I.; Isaev, J.I.; Kashchenko, N.I.; Prokopyev, A.S.; Kataeva, T.N.; Chirikova, N.K.; Vennos, C. Caucasian Gentiana Species: Untargeted LC-MS Metabolic Profiling, Antioxidant and Digestive Enzyme Inhibiting Activity of Six Plants. Metabolites 2019, 9, 271. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cui, W.; He, Z.; Zhang, Y.; Fan, Q.; Feng, N. Naringenin Cocrystals Prepared by Solution Crystallization Method for Improving Bioavailability and Anti-hyperlipidemia Effects. AAPS PharmSciTech 2019, 20, 115. [Google Scholar] [CrossRef]
- Shimokawa, Y.; Akao, Y.; Hirasawa, Y.; Awang, K.; Hadi, A.H.A.; Sato, S.; Aoyama, C.; Takeo, J.; Shiro, M.; Morita, H. Gneyulins A and B, stilbene trimers, and noidesols A and B, dihydroflavonol-C-glucosides, from the bark of Gnetum gnemonoides. J. Nat. Prod. 2010, 73, 763–767. [Google Scholar] [CrossRef]
- Abbas, S.; Bashir, S.; Khan, A.; Mehmood, M.H.; Gilani, A.H. Gastrointestinal stimulant effect of Urginea indica Kunth. and involvement of muscarinic receptors. J. Phytother. Res. 2012, 26, 704–708. [Google Scholar] [CrossRef]
- Bashir, S.; Abbas, S.; Gilani, A.H.; Khan, A. Studies on bronchodilator and cardiac stimulant activities of Urginea indica. J. Bangladesh J. Pharmacol. 2013, 8, 249–254. [Google Scholar] [CrossRef][Green Version]
- Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef]
- Méndez-Líter, J.A.; Tundidor, I.; Nieto-Domínguez, M.; de Toro, B.F.; Santana, A.G.; de Eugenio, L.I.; Prieto, A.; Asensio, J.L.; Sánchez, C.; Martínez, M.J. Transglycosylation products generated by Talaromyces amestolkiae GH3 β-glucosidases: Effect of hydroxytyrosol, vanillin and its glucosides on breast cancer cells. Microb. Cell Factories 2019, 18, 97. [Google Scholar] [CrossRef]
- Seong, Y.-A.; Hwang, D.; Kim, G.-D. The anti-inflammatory effect of Gnaphalium affine through inhibition of NF-κB and MAPK in lipopolysaccharide-stimulated RAW264.7 cells and analysis of its phytochemical components. Cell Biochem. Biophys. 2016, 74, 407–417. [Google Scholar] [CrossRef]
- Jaakola, L.; Määttä, K.; Pirttilä, A.M.; Törrönen, R.; Kärenlampi, S.; Hohtola, A. Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. Plant Physiol. 2002, 130, 729–739. [Google Scholar] [CrossRef][Green Version]
- Emwas, A.-H.; Roy, R.; McKay, R.T.; Tenori, L.; Saccenti, E.; Gowda, G.N.; Raftery, D.; Alahmari, F.; Jaremko, L.; Jaremko, M. NMR spectroscopy for metabolomics research. Metabolites 2019, 9, 123. [Google Scholar] [CrossRef][Green Version]
- Kim, H.K.; Choi, Y.H.; Verpoorte, R. NMR-based metabolomic analysis of plants. Nat. Protoc. 2010, 5, 536–549. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Wu, H.; Tjeerdema, R.S.; Viant, M.R. Evaluation of metabolite extraction strategies from tissue samples using NMR metabolomics. Metabolomics 2007, 3, 55–67. [Google Scholar] [CrossRef]
- Khattab, A.R.; Rasheed, D.M.; El-Haddad, A.E.; Porzel, A.; Wessjohann, L.A.; Farag, M.A. Assessing phytoequivalency of four Zingiberaceae spices (galangals, turmeric and ginger) using a biochemometric approach: A case study. Ind. Crops Prod. 2022, 188, 115722. [Google Scholar] [CrossRef]
- Saket, K.; Afshari, J.T.; Saburi, E.; Yousefi, M.; Salari, R. Therapeutic aspects of Squill; an evidence-based review. Curr. Drug Discov. Technol. 2020, 17, 318–324. [Google Scholar] [CrossRef]
- Cunha-Filho, G.A.; Resck, I.S.; Cavalcanti, B.C.; Pessoa, C.Ó.; Moraes, M.O.; Ferreira, J.R.O.; Rodrigues, F.A.R.; dos Santos, M.L. Cytotoxic profile of natural and some modified bufadienolides from toad Rhinella schneideri parotoid gland secretion. Toxicon 2010, 56, 339–348. [Google Scholar] [CrossRef]
- Tempone, A.G.; Pimenta, D.C.; Lebrun, I.; Sartorelli, P.; Taniwaki, N.N.; de Andrade Jr, H.F.; Antoniazzi, M.M.; Jared, C. Antileishmanial and antitrypanosomal activity of bufadienolides isolated from the toad Rhinella jimi parotoid macrogland secretion. Toxicon 2008, 52, 13–21. [Google Scholar] [CrossRef]
- Mahringer, A.; Karamustafa, S.; Klotz, D.; Kahl, S.; Konkimalla, V.B.; Wang, Y.; Wang, J.; Liu, H.-Y.; Boechzelt, H.; Hao, X. Inhibition of P-glycoprotein at the blood–brain barrier by phytochemicals derived from traditional Chinese medicine. Cancer Genom. -Proteom. 2010, 7, 191–205. [Google Scholar]
- Li, R.-Z.; Fan, X.-X.; Duan, F.-G.; Jiang, Z.-B.; Pan, H.-D.; Luo, L.-X.; Zhou, Y.-L.; Li, Y.; Yao, Y.-J.; Yao, X.-J. Proscillaridin A induces apoptosis and suppresses non-small-cell lung cancer tumor growth via calcium-induced DR4 upregulation. Cell Death Dis. 2018, 9, 696. [Google Scholar] [CrossRef][Green Version]
- Manganyi, M.C.; Tlatsana, G.S.; Mokoroane, G.T.; Senna, K.P.; Mohaswa, J.F.; Ntsayagae, K.; Fri, J.; Ateba, C.N. Bulbous Plants Drimia: “A Thin Line between Poisonous and Healing Compounds” with Biological Activities. Pharmaceutics 2021, 13, 1385. [Google Scholar] [CrossRef]
- Farag, M.A.; Gad, H.A.; Heiss, A.G.; Wessjohann, L.A. Metabolomics driven analysis of six Nigella species seeds via UPLC-qTOE-MS and GC-MS coupled to chemometrics. Food Chem. 2014, 151, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.A.; El-Kersh, D.M.; Ehrlich, A.; Choucry, M.A.; El-Seedi, H.; Frolov, A.; Wessjohann, L.A. Variation in Ceratonia siliqua pod metabolome in context of its different geographical origin, ripening stage and roasting process. Food Chem. 2019, 283, 675–687. [Google Scholar] [CrossRef] [PubMed]
- Fabre, N.; Rustan, I.; de Hoffmann, E.; Quetin-Leclercq, J. Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. J. Am. Soc. Mass Spectrom. 2001, 12, 707–715. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Maghraby, Y.R. Nanoencapsulation of Jania rubens’ Phytochemicals: Antioxidant Properties for Food Applications. Ph.D. Thesis, American University in Cairo, New Cairo, Egypt, 2021. [Google Scholar]
- Smith, C.A.; Want, E.J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 2006, 78, 779–787. [Google Scholar] [CrossRef]
- Farag, M.A.; Khaled, S.E.; El Gingeehy, Z.; Shamma, S.N.; Zayed, A. Comparative Metabolite Profiling and Fingerprinting of Medicinal Cinnamon Bark and Its Commercial Preparations via a Multiplex Approach of GC–MS, UV, and NMR Techniques. Metabolites 2022, 12, 614. [Google Scholar] [CrossRef]
Peak # | Rt (min) | KI | Name | Abundance % | Cas-No | |
---|---|---|---|---|---|---|
WS | RS | |||||
Monoterpene hydrocarbon | ||||||
G1 | 7.13 | 909.1 | α-Pinene | 2.09 | 8.04 | 7785-26-4 |
G2 | 8.12 | 965.6 | β-Myrcene | 6.74 | 8.73 | 123-35-3 |
G4 | 8.46 | 985.3 | 3-Carene | 2.32 | 7.81 | 13466-78-9 |
G5 | 8.47 | 985.6 | 2-Thujene | 2.32 | 7.29 | 28634-89-1 |
G6 | 8.75 | 1002.4 | p-Cymene | 1.96 | _ | 99-87-6 |
G7 | 8.81 | 1005.9 | Limonene | 4.89 | 7.81 | 5989-27-5 |
G8 | 9.27 | 1035.2 | α-Phellandrene | 1.72 | _ | 99-83-2 |
G9 | 9.70 | 1063 | Isoterpinolene | 1.91 | 8.15 | 586-63-0 |
G10 | 9.71 | 1063.3 | 4-Carene | 1.74 | _ | 29050-33-7 |
Total monoterpene hydrocarbon | 25.69 | 47.82 | ||||
Oxygenated monoterpene | ||||||
G15 | 11.47 | 1182.9 | Estragole | 2.29 | _ | 140-67-0 |
Total oxygenated monoterpene | 2.29 | |||||
Sesquiterpene hydrocarbon | ||||||
G21 | 15.12 | 1471.1 | β-Bisabolene | 8.22 | _ | 495-61-4 |
Total sesquiterpene hydrocarbon | 8.22 | |||||
Oxygenated hydrocarbon | ||||||
G12 | 10.03 | 1084.1 | Nonanal | 2.64 | _ | 124-19-6 |
G14 | 11.44 | 1181.4 | Decanal | 2.49 | _ | 112-31-2 |
G26 | 21.50 | 1841.9 | Palmitic acid, methyl ester | 7.02 | _ | 112-39-0 |
Total oxygenated hydrocarbon | 12.15 | |||||
Aromatic | ||||||
G19 | 14.79 | 1444.4 | 2-Methyl-4-hydroxyacetophenone | 1.75 | _ | 875-59-2 |
Total aromatic | 1.75 | |||||
Heterocyclic | ||||||
G3 | 8.17 | 968.8 | Furan-2-pentyl- | 4.57 | _ | 3777-69-3 |
Total heterocyclic | 4.57 | |||||
Hydrocarbon | ||||||
G11 | 9.81 | 1069.5 | Decane | 2.64 | 6.31 | 124-18-5 |
G13 | 11.22 | 1166 | Tridecane | 4.92 | 6.03 | 629-50-5 |
G16 | 12.16 | 1235.5 | 4,7-Dimethylundecane | 2.84 | 5.97 | 17301-32-5 |
G20 | 14.87 | 1451 | Pentadecane | 5.97 | 6.43 | 544-76-3 |
G24 | 17.72 | 1644 | Hexadecane | _ | 7.29 | 544-76-3 |
G25 | 19.83 | 1754.6 | Heptadecane | 3.39 | 5.22 | 629-50-5 |
Total hydrocarbon | 19.76 | 37.26 | ||||
Unknown | ||||||
G17 | 12.52 | 1261.8 | Unknown | 4.78 | 6.66 | _ |
G18 | 13.73 | 1357.6 | Unknown | 18.11 | _ | _ |
G22 | 15.23 | 1480.8 | Unknown | 1.86 | _ | 624-24-8 |
G23 | 16.13 | 1546 | Unknown | _ | 8.27 | _ |
Total unknown | 24.955 | 14.93 | ||||
Total volatiles | 100.0 | 100.0 |
Code | tR (m.) | UV | Elemental Composition | Error ppm | Exact Mass (M+H)+/ (M−H)− | Identified Fragments (MS2) | Identified Metabolite | Class | WS | RS |
---|---|---|---|---|---|---|---|---|---|---|
L1 | 0.4 | 280–300 | (C21H17O6)⁺ | 8 | 365.1049 | 203, 185 | Unknown glycoside | Unknown | + | − |
L2 | 0.4 | 280–300 | (C27H27O11)+ | 3.7 | 527.1567 | 365, 347, 203, 185 | Unknown Glycoside (dihexose) | Unknown | + | − |
L3 | 0.4 | 280–300 | (C21H31O12)+ | 6.5 | 475.1779 | 133, 116 | Hydroxycinnamyl-O-dihexoside | Phenolic | + | + |
L4 | 0.4 | 280–300 | (C12H21O10)+ | 2.9 | 325.112 | 145, 127 | Disacharide (cellobiosan) | Sugar | + | + |
L5 | 0.5 | 280–300 | (C33H37O16)+ | 5 | 689.2041 | 527, 365, 347, 203, 185 | Unknown glycoside (dihexoside) | Unknown | + | − |
L6 | 0.6 | 280 | (C18H31O15)+ | 2.2 | 487.1668 | 325, 271, 163, 145, 127 | Agarotriose | Sugar | + | + |
L7 | 0.6 | 280 | (C24H41O20)+ | 4.4 | 649.2157 | 325, 289, 271, 253, 223,163, 145, 127 | Polysaccharide (agarotriose dimer) | Sugar | − | + |
L8 | 0.7 | 280 | (C9H12NO3)+ | 3.1 | 182.0806 | 165, 147, 136, 123 | Tyrosine | Amino acid | + | + |
L9 | 1.2 | 280 | (C9H12NO2)+ | 6.2 | 166.0852 | 120, 103 | Phenylalanine | Amino acid | + | + |
L10 | 1.6 | 280 | (C11H16NO2)+ | 2.6 | 194.1171 | 148 | Amino acid derivative | Amino acid | − | + |
N1 | 1.7 | 280 | (C14H19O8)− | 3.4 | 315.1075 | 153 | Isorahmantin | Flavonol | − | + |
L11 | 2.3 | 280 | (C11H10NO2)+ | 4.6 | 188.0697 | 170, 146 | Tryptophan derivative | Amino acid | − | + |
L12 | 2.5 | 280 | (C11H13N2O2)⁺ | 6.1 | 205.0959 | 188, 170, 146, 118 | Tryptophan | Amino acid | + | + |
L13 | 2.8 | 282 | (C15H15O7)+ | −1.8 | 307.0818 | 289, 271, 261, 243, 188, 151, 139 | Leucocyanidin | − | + | |
N2 | 2.9 | 280 | (C20H19O10)− | 0.7 | 419.0988 | 165 | Juglanin | Flavonoid | − | + |
N3 | 3.1 | 282–340 | (C21H23O11)− | 1.9 | 451.1246 | 289, 271, 243, 227, 199, 177, 151 | Catechin-O-hexoside | Flavanol | − | + |
L14 | 3.3 | 283–340 | (C15H15O6)+ | 1.6 | 291.0859 | 273, 245, 151, 139 | Catechin | Flavanol | − | + |
N4 | 3.3 | 283–340 | (C21H23O11)− | 1.9 | 451.1246 | 271, 243, 227, 199, 177, 151 | Catechin-O-hexoside isomer | Flavanol | − | + |
L15 | 3.5 | 283–340 | (C15H11O6)+ | 1.1 | 287.0547 | 259, 231, 149 | Kaempferol | Flavone | − | + |
N5 | 3.6 | 282–296–340 | (C20H27O14)− | 0 | 491.1406 | 209, 191, 167, 123 | Vanillic acid-O-dihexoside | Phenolic acid | − | + |
L16 | 3.7 | 282–296–340 | (C27H33O16)+ | 5.1 | 613.1746 | 271, 243, 215 | Dihydrokaempeferol-O-dihexoside | Flavanol | − | + |
N6 | 3.8 | 282–296–340 | (C27H31O16)− | 1.6 | 611.1608 | 287, 269, 259, 243, 215 | Dihydrokaempeferol-O-dihexoside (aromadendrin-O-dihexoside) | Flavanol | − | + |
N7 | 3.9 | 282–296–340 | (C33H41O21)− | 0.4 | 773.2142 | 287, 269, 259, 243, 215 | Dihydrokaempeferol-O-trihexoside (aromadendrin-O-trihexoside) | Flavanol | − | + |
L17 | 4.2 | 291–330 | (C15H13O6)+ | −0.9 | 289.0709 | 271, 253, 243, 215, 149 | Dihydrokaempferol | Flavanol | − | + |
N8 | 4.2 | 291–330 | (C36H33O18)− | 0.3 | 753.167 | 465, 437, 315, 303, 285, 259, 245, 219 | Dihydroquercitin-O-hexosidederivative (taxifolin-O-hexoside derivative) | Flavanol | − | + |
L18 | 4.3 | 291–330 | (C21H23O11)+ | 2.2 | 451.1245 | 289, 271, 247 | Dihydrokaempferol-O-hexoside | Flavanol | − | + |
L19 | 4.3 | 291–330 | (C38H45O25)+ | 1.8 | 901.2228 | 451, 289, 271, 243 | Dihydrokaempferol-O-hexoside dimer | Flavanol | − | + |
L20 | 4.3 | 291–330 | (C15H11O5)+ | −0.2 | 271.0601 | 243, 215, 149 | Apigenin | Flavone | − | + |
L21 | 4.3 | 291–330 | (C14H11O4)+ | 2.2 | 243.0646 | 215, 149 | Unknown | Unknown | − | + |
N9 | 4.3 | 291–330 | (C42H43O22)− | −5.8 | 899.2304 | 449, 342, 287, 259 | Dihydrokaempeferol-O-hexoside dimer | Flavanol | − | + |
N10 | 4.4 | 291–330 | (C21H21O11)− | 6.3 | 449.1122 | 287, 269, 259, 243, 225, 151 | Dihydro kaempeferol-O-hexoside (aromadendrin-O-hexoside | Flavanol | − | + |
L22 | 4.6 | 283–296–340 | (C15H13O7)+ | 1.8 | 305.065 | 287, 259, 231, 153 | Dihydroquercitin | Flavanol | − | + |
N11 | 4.6 | 283–296–340 | (C37H45O26)− | 2.1 | 905.2205 | 450, 285, 261, 243, 191 | Kampferol derivative | Flavonol | - | + |
L23 | 4.7 | 283–296–340 | (C15H11O8)+ | 0 | 319.0812 | 301, 273, 269, 245 | Myricetin | Flavonol | − | + |
L24 | 4.7 | 283–296–340 | (C16H15O7)+ | −0.3 | 319.0813 | 313, 307, 286, 273, 245, 217, 185, 149, 137 | Dihydroisorhmentin or Methyltaxifolin | Flavonoid | − | + |
N12 | 4.6 | 283–296–340 | (C22H23O12)− | 2.9 | 479.1181 | 317, 306, 299, 289 | Noidesol A/B | Flavonoid | − | + |
L25 | 4.8 | 283–296-340 | (C20H29O13)+ | 1 | 477.1598 | 169, 151 | Vanillin rhamnoglucoside | Phenolic acid | − | + |
4.9 | 283–296-340 | (C20H27O13)− | 0.6 | 475.1457 | 209, 167, 123 | Vanillin rhamnoglucoside | Phenolic acid | − | + | |
L26 | 4.8 | 283–296-340 | (C8H9O4)+ | 2.8 | 169.049 | 151, 127, 109 | Vanillic acid | Phenolic acid | − | + |
N13 | 4.8 | 283–296-340 | (C15H11O6)− | 0.9 | 287.0559 | 201, 125 | Dihydrokaempeferol | Dihydroflavonol | − | + |
L27 | 4.9 | 283–296-340 | (C14H19O9)+ | 4.8 | 331.1008 | 169 | Vanillic acid-O-hexoside | Phenolic acid | − | + |
N14 | 4.9 | 283–296-340 | (C21H29O12)− | 1.9 | 473.1651 | 209, 191, 167, 123 | Dimethoxy hydrocinnamic acid (dimethoxyphenyl propionic acid)-dipentoside | Phenolic acid | − | + |
L28 | 5.1 | 282 | (C21H23O10)+ | 3.2 | 435.1272 | 271, 255, 151, 119 | (Apigenin-O-hexoside) | Flavanone | − | + |
L29 | 5.1 | 282 | (C9H7O3)+ | 2.7 | 163.0385 | 135, 119, 107 | Hydroxycoumarin | Coumarin | − | + |
L30 | 5.1 | 282 | (C42H37O15)+ | 1.3 | 781.2117 | 409, 317, 287, 247, 169 | Unknown glycoside of L31 | Unknown | − | + |
N15 | 5.1 | 280 | (C9H5O3)− | 3.7 | 161.0244 | 133, 117, 105 | Hydroxycoumarin | Coumarin | − | + |
N16 | 5.4 | 283–340 | (C21H21O12)− | 0.7 | 465.1035 | 285, 275, 259, 231, 217, 152, 125 | Kaempferol-O-hexoside | Flavonol | − | + |
L31 | 5.5 | 283–340 | (C36H27O10)+ | 3.6 | 619.1621 | 329, 317, 287, 271, 247, 229, 181, 169 | Unknown aglycone of L30 | Unknown | − | + |
N17 | 5.5 | 283–340 | (C42H43O24)− | 4.4 | 931.2208 | 465, 303, 285, 275, 259, 231, 217, 152, 125 | Dihydroquercitin-O-hexoside (dimer) | Flavanol | − | + |
N18 | 5.6 | 283–340 | (C27H31O17)− | 0.2 | 627.1544 | 303,285, 217, 189, 151, 125 | Dihydroquercitin-O- dihexoside | Flavanol | − | + |
N19 | 5.6 | 283–340 | (C29H29O15)− | 0.1 | 617.1497 | 314, 285, 221, 209, 167, 125 | Kampferol derivative | Flavanol | − | + |
L32 | 5.7 | 283–340 | (C27H31O17)+ | 6.3 | 627.1517 | 303 | Quercitin-O-dihexoside | Flavonol | − | + |
N20 | 5.7 | 283–340 | (C27H29O17)− | 0.2 | 625.1411 | 463, 301, 125 | Quercitin-O-dihexoside | Flavonol | − | + |
L33 | 5.9 | 283–340 | (C27H31O15)+ | 6.7 | 595.1617 | 415, 397, 379, 361, 271 | Apigenin-O-dihexoside | Flavanone | − | + |
L34 | 6 | 299 | (C24H27O4)+ | 0.5 | 379.1902 | 351, 333, 315, 239 | Monohydroxy-19-oxobufa-4,20,22-trienolide | Bufadienolide | + | − |
L35 | 6.1 | 299 | (C24H29O5)+ | 0.3 | 397.2 | 381, 363, 345, 317 | 3-Dehydroscilliglaucosidin (scilliglaucosidine) | Bufadienolide | + | − |
L36 | 6.2 | 299 | (C30H41O11)+ | 1.1 | 577.2637 | 417, 399, 381, 363, 345, 335 | Desacetylscillirosidin-O-thevetoside | Bufadienolide | + | + |
N21 | 6.2 | 280–298-340 | (C15H11O7)− | 2.6 | 303.0502 | 294, 207, 181, 154, 99, 51 | Dihydroquercitin | Flavanol | − | + |
N22 | 6.3 | 280–298-340 | (C27H31O15)− | 2.3 | 595.1654 | 271, 151, 125 | Naringenin-O-dihexoside | Flavanoid | − | + |
N23 | 6.3 | 280–298-340 | (C21H19O12)− | 1.7 | 463.08 | 301, 300, 271, 151 | Quercitin-O-hexoside | Flavonol | − | + |
L37 | 6.5 | 299 | (C24H31O6)+ | 2 | 415.2107 | 397, 379, 351, 333 | Trihydroxy-oxobufa-trienolide (hydroxy-scilliglaucosidin) | Bufadienolide | + | − |
L38 | 6.6 | 298 | (C30H45O10)+ | 0.1 | 565.3008 | 403, 385, 367, 331, 272 | Gammabufotalin-O-glucoside | Bufadienolide | + | − |
L39 | 6.6 | 298 | (C24H35O5)+ | 3 | 403.247 | 385,367, 253 | Gamabufotalin | Bufadienolide | + | + |
L40 | 6.6 | 280–298–340 | (C15H11O7)+ | 0.8 | 303.05 | 191 | Quercitin | Flavonol | − | + |
L41 | 6.6 | 280–298–340 | (C21H21O12)+ | 2.8 | 465.1015 | 308, 303 | Quercitin-O-hexoside | Flavonol | − | + |
L42 | 6.8 | 298 | (C30H43O10)+ | 1.2 | 563.2844 | 545, 365, 347, 337, 323, 267, 252, 213 | Scillirubroside | Bufadienolide | + | − |
L43 | 6.9 | 298 | (C24H31O4)⁺ | 2.8 | 383.2228 | 365, 348, 251 | Scillirubrosidin-H2O(scillirubroside-hexoside-H2O) | Bufadienolide | + | + |
L44 | 7 | 298 | (C24H29O6)⁺ | 1.2 | 413.1954 | 395, 69, 351, 333 | Trihydroxy-oxobufa-tetra-enolide | Bufadienolide | + | − |
L45 | 7 | 298 | (C43H45O11)+ | 2.2 | 737.294 | 413, 395, 377, 359, 331 | Trihydroxy-oxobufa-tetra-enolide-O-di-hexoside | Bufadienolide | + | − |
L46 | 7.2 | 299 | (C30H41O11)+ | 3.8 | 577.2621 | 415, 397, 379, 351, 333 | Hydroxyscilliglaucoside | Bufadienolide | + | + |
N24 | 7.7 | 280–298–340 | (C21H19O11)− | 3.7 | 447.0916 | 285, 255, 227 | Kaempferol-O-glucoside (hexoside) | Flavonol | − | + |
L47 | 7.8 | 299 | (C36H51O15)+ | 8.1 | 723.3164 | 561, 415, 397, 379, 361 | Trihydroxy-oxobufa-trienolide-O-rhamnosdie-glucoside/Scilliglaucosidin-O-rhamnoside-glucoside | Bufadienolide | + | − |
L48 | 7.9 | 299 | (C24H33O6)+ | 1.8 | 417.2279 | 399, 381, 363, 345, 335, 145 | Desacetylscillirosidin/Hydroxyscilliphaeosidin/Bufotalidin | Bufadienolide | + | − |
L49 | 7.9 | 299 | (C24H33O6)+ | 1.8 | 417.2279 | 399, 381, 363, 335, | Desacetylscillirosidin/Hydroxyscilliphaeosidin/Bufotalidin isomer | Bufadienolide | + | − |
L50 | 8 | 299 | (C30H41O10)⁺ | 1.1 | 561.269 | 415, 379, 361, 351 | Trihydroxy-oxobufa-trienolide-O-rhamoside/Hydroxy-scilliglaucosidin-O-rhamnoside | Bufadienolide | + | + |
N25 | 8.1 | 280–298–340 | (C22H21O12)− | 1.9 | 477.103 | 315, 314, 299, 285, 271, 243 | Isorhamnetin 3-hexoside | Flavonol | − | + |
L51 | 8.3 | 299 | (C30H43O10)⁺ | 2.1 | 563.2839 | 417, 399, 381, 363, 345, 315, 278 | Desacetylscillirosidin-O-rhamnoside/Hydroxyscilliphaeosidin-O-rhamnoside | Bufadienolide | + | − |
L52 | 8.3 | 299 | (C30H43O10)⁺ | 2.1 | 563.2839 | 417, 399, 381, 363, 333 | Bufotalidin-O-rhamnoside | Bufadienolide | + | − |
L53 | 8.5 | 299 | (C24H31O5)+ | 0.9 | 399.2169 | 381, 363, 345, 223.,157 | Scilliglaucosidin | Bufadienolide | + | + |
L54 | 8.7 | 298 | (C26H37O8)+ | 0.1 | 477.248 | 417, 399, 381, 363, 345 | Hydroxy-scillirosidin+2H | Bufadienolide | + | − |
L55 | 8.8 | 298 | (C30H45O9)+ | 0.8 | 549.3053 | 403, 385, 367, 349, 193, 179 | Gamabufotalin-O-rhamnoside | Bufadienolide | + | − |
L56 | 8.9 | 298 | (C24H33O5)+ | 1.9 | 401.2315 | 383, 347, 197 | Scillirubrosidin or scilliphosidin | Bufadienolide | + | + |
L57 | 8.9 | 298 | (C30H43O9)+ | 2.9 | 547.2886 | 401,383, 347 | Scilliphaeoside “Scillipheosidin-O-rhamnoside” | Bufadienolide | + | + |
L58 | 8.9 | 299 | (C36H53O14)+ | 2.6 | 709.3411 | 547, 417, 367, 349, 287 | Scillipheoside-O-glucoside | Bufadienolide | + | + |
L59 | 8.9 | 285 | (C34H27O12)+ | 0.1 | 627.1498 | 401, 383, 365, 303, 269, 193 | Scillirubrosidin-O-hexoside or scilliphosidin-o-hexoside | Bufadienolide | − | + |
N26 | 8.9 | 299 | (C36H67O26)− | 1.5 | 915.3912 | 869, 707, 545, 399, 355, 221, 161, 113 | Unknown | Unknown | − | + |
L60 | 9.3 | 283 | (C36H55O14)+ | 4.6 | 711.3554 | 549, 531, 403, 367, 349, 253, 199 | Gamabufotalin-rhamnoglucoside | Bufadienolide | − | + |
L61 | 9.6 | 298 | (C24H27O3)⁺ | 2.5 | 363.1946 | 345, 335, 317, 273 | Unknown | Unknown | + | − |
L62 | 10 | 299 | (C30H41O10)⁺ | 1.1 | 561.269 | 399, 381, 363, 345, 223, 157 | Scilliglaucoside | Bufadienolide | + | + |
L63 | 10 | 399 | (C33H49O12)+ | 2.7 | 637.3201 | 477, 417, 399, 381, 363, 345 | Hydroxyscilliroside | Bufadienolide | + | − |
L64 | 10 | 299 | (C24H31O3)+ | 4.1 | 367.2253 | 349, 287, 175, 133 | Scillaridin A | Bufadienolide | + | + |
L65 | 11 | 298 | (C39H59O17)+ | 7.2 | 799.3651 | 477, 399, 381, 363, 345 | Hydroxyscilliphaeosidin-O-thevetoside-glucoside-Ac | Bufadienolide | + | − |
L66 | 11 | 282 | (C36H45O19)+ | 4.5 | 781.2514 | 325, 241, 163, 145, 115 | Unknown | Unknown | − | + |
L67 | 12 | 298 | (C33H55O8)+ | 3.1 | 579.387 | 417, 237, 255 | Bufotalidin-O-hexoside | Bufadienolide | + | + |
L68 | 12 | 298 | (C30H41O9)⁺ | 4.6 | 545.272 | 399, 381, 363, 353, 345, 335, 317 | Scilliglaucosidin-O-rhmnoside | Bufadienolide | + | − |
L69 | 12 | 299 | (C36H51O14)+ | 8.4 | 707.3214 | 545,399, 381, 363, 335, 317, 275, 223 | Scilliglaucosidin-O-rhmnoside-O-hexoside | Bufadienolide | + | − |
L70 | 12 | 299 | (C24H33O4)+ | 0 | 385.2373 | 367, 349, 289, 253 | Scillarenin | Bufadienolide | + | + |
L71 | 12 | 283 | (C24H29O3)+ | −1.9 | 365.2118 | 349, 287, 175, 147 | Unknown aglycone of L42 | Bufadienolide | − | + |
L72 | 12 | 296 | (C26H35O6)+ | 2.9 | 443.2415 | 425, 383, 365, 347, 319, 269, 239, 225, 197 | Cinobufagin or acetylmarinobufogenin | Bufadienolide | − | + |
L73 | 12 | 296 | (C45H51O10)+ | 0.6 | 751.3472 | 589, 443, 425, 365, 347, 285, 225, 173 | Cinobufagin or acetylmarinobufogenin-O-rhamnoside-glucoside | Bufadienolide | − | + |
L74 | 12 | 299 | (C17H29O7)+ | 0.4 | 345.1906 | 281, 263, 253, 193 | Unknown | Unknown | + | − |
L75 | 12 | 283 | (C19H38NO5)+ | 3.8 | 360.2731 | 342, 324, 306, 278, 260, 240, 222 | 3-Hydroxydodecanoylcarnitine | Acylcarnitine | − | + |
L76 | 12 | 298 | (C33H49O11)+ | 3.2 | 621.3249 | 461, 401, 383, 365, 319, 251, 213 | Scilliroside | Bufadienolide | + | − |
L77 | 12 | 296 | (C32H45O11)+ | 5.8 | 605.2921 | 591, 572, 537, 529, 462, 443, 417, 337, 256, 237, 207, 165, 145, 135, 108 | Cinobufagin-O-hexoside or acetylmarinobufogenin-O-hexoside | Bufadienolide | − | + |
L78 | 12 | 298 | (C24H35O6)+ | 4.5 | 419.2409 | 401, 383, 365, 347, 213 | Hellebrigenol (19-hydroxytelocinobufagin) | Bufadienolide | + | − |
L79 | 12 | 298 | (C38H57O16)+ | 5.3 | 769.36 | 607, 461, 401 383, 365, 347, 305 | Scillirosidin-rhamnoside-glucoside+2H | Bufadienolide | + | − |
L80 | 12 | 299 | (C39H65O13)⁺ | 12.8 | 741.4325 | 579, 461, 419, 401, 383, 365 | Hellebrigenin-3-O-D-diglucopyranoside. | Bufadienolide | + | + |
L81 | 12 | 300 | (C38H59O19)+ | -1.4 | 819.3692 | 367, 349, 273, 255, 237 | Unknown | Unknown | − | + |
L82 | 12 | 299 | (C24H35O4)+ | 7.6 | 387.25 | 385, 367, 349, 331, 199 | Bufalin | Bufadienolide | − | + |
L83 | 12 | 300 | (C30H45O8)+ | 1.4 | 533.3102 | 515, 387, 367, 349, 274, 255, 199 | Dihydro-Proscillaridin (rhamnosylbufalin) | Bufadienolide | − | + |
L84 | 12 | 298 | (C39H59O16)⁺ | 5.3 | 783.3697 | 621, 543, 461, 401, 383, 365, 347,251 | Scilliroside-O-glucoside | Bufadienolide | + | − |
L85 | 12 | 299 | (C38H61O20)+ | 1.3 | 837.3761 | 515, 387, 349, 255, 237 | Bufalin derivative | Bufadienolide | − | + |
L86 | 12 | 299 | (C36H53O13)+ | 4 | 693.3394 | 531, 385, 367, 349, 287 | Proscillaridin A-O-glucoside | Bufadienolide | + | + |
L87 | 12 | 299 | 7 | 362.2876 | 344, 308, 224 | Unknown fat | Fat | − | + | |
L88 | 12 | 299 | (C26H37O7)+ | 3.3 | 461.2549 | 401, 383, 365, 337, 329, 305, 285 | Dihydroscillirosidin | Bufadienolide | + | − |
L89 | 12 | 298 | (C38H55O14)+ | 10.7 | 735.351 | 573, 461, 385, 367, 349, 331, 287 | Scillaren A acetate-O-rhamnoside-hexoside | Bufadienolide | + | − |
L90 | 12 | 299 | (C32H47O11)⁺ | 3.4 | 607.3092 | 547, 401, 383, 365, 347 | Acetyl-scilliphaeoside-rhamnoside | Bufadienolide | + | − |
L91 | 13 | 298 | (C30H43O8)+ | 1.7 | 531.2943 | 513, 385, 367, 349, 321, 303, 253, 215 | Proscillaridin A | Bufadienolide | + | + |
L92 | 13 | 298 | C44H65O19 | 13.7 | 897.3992 | 735, 573, 385, 367, 349, 331, 287 | Scillaren A acetate-O-rhamnoside-dihexoside | Bufadienolide | + | − |
L93 | 13 | 282 | (C16H13O5)+ | 4.9 | 285.0744 | 191 | Acacetin or prunetin | Flavonoid | − | + |
L94 | 13 | 282 | (C17H17O6)+ | 2.8 | 317.1011 | 299, 271, 121 | Dihydroxy-dimethoxyflavanone | Flavonoid | − | + |
L95 | 13 | 286 | (C20H42NO6)+ | 2.3 | 392.2997 | 356, 338, 278, 261, 232 | N-tetradecyl-D-gluconamide | Amide | − | + |
L96 | 13 | 280 | (C20H42NO5)+ | 1.7 | 376.3051 | 340, 262, 245, 219 | 2-(14-Aminotetradecyl)-6-(hydroxymethyl) oxane-3,4,5-triol | Fatty alcohol | − | + |
L97 | 13 | 280 | (C19H38NO4)+ | 1.6 | 344.279 | 326, 308, 280, 224 | 19-(hydroxyamino)-19-oxo-nonadecanoic acid | Fatty acid | − | + |
L98 | 13 | 280 | (C19H36NO3)+ | 3.5 | 326.2678 | 308, 252 | Dodecadienyl carnitine | Fatty acyl-L-carnitine | − | + |
L99 | 13 | 280 | (C20H40NO4)+ | 2.1 | 358.2944 | 340, 322, 294 | Tridecanoyl carnitine | Fatty acyl-L-carnitine | − | + |
L100 | 13 | 280 | (C18H40NO4)+ | 3.7 | 334.294 | 316, 298, 280, 251, 238 | 1-(hydroperoxyamino) octadecane-1,18-diol | Fatty alcohol | − | + |
L101 | 14 | 299 | (C32H45O9)+ | 4.4 | 573.3033 | 367, 349, 331, 253, 133 | Scillaridin-acetate-O-rhamnoside | Bufadienolide | + | − |
L102 | 14 | 298 | (C16H27O4)+ | 3.9 | 283.1893 | 270, 265 | Fumagillol | Sesquiterpenoid | + | − |
L103 | 14 | 298 | (C17H27O5)+ (C16H27O3)+ | 2.1 | 311.1847 (−46 Formate) | 265, 247, 209 | (4E,6Z)-3-Hydroxy-4,6,15-hexadecatrienoic acid | Acid | + | − |
L104 | 14 | 282 | (C19H40NO4)+ | 5.1 | 346.2934 | 328, 310, 282, 264, 226 | Monomethyl phytosphingosine | Sphingolipid | − | + |
L105 | 14 | 298 | (C17H29O6)+ | 3.7 | 329.1946 | 265, 237, 209, 191, | Spiculisporic acid | Acid | + | − |
L106 | 14 | 282 | (C20H42NO4)+ | 1.3 | 360.3104 | 342, 324, 296 | N-acetyl phytosphingosine | Sphingolipid | − | + |
L107 | 14 | 282 | (C17H17O5)+ | 4.6 | 301.1057 | 282, 267 | Unknown | Unknown | − | + |
L108 | 14 | 289 | (C18H40NO3)+ | 4.2 | 318.2989 | 300, 282, 270, 264 | Phytosphingosine | Sphingolipid | − | + |
L109 | 14 | 289 | (C19H21O5)+F | 2.5 | 329.1375 | 207, 121 | Hirsutanone | − | + | |
L110 | 14 | - | (C30H23O10)+ | 1.8 | 543.1296 | 273, 255, 213 | Unknown | Unknown | + | − |
L111 | 14 | - | (C18H40NO2)⁺ | 4.7 | 302.3039 | 284, 266, 254 | Sphinganine | Sphingolipid | + | + |
L112 | 14 | - | (C17H31O5)⁺ | 5.1 | 315.215 | 265 | Unknown | Unknown | + | − |
L113 | 14 | 280 | (C27H45O3)+ | 2.3 | 417.3354 | 273, 255, 161 | 24-Hydroperoxycholesta-5,25-dien-3beta-ol | Fatty acid | − | + |
L114 | 15 | - | (C18H31O2)+ | 0.3 | 279.2318 | 261, 223, 173 | Octadecatrienoic acid | Fatty acid | + | + |
N27 | 15 | - | (C18H31O3)− | 2.2 | 295.2279 | 195, 277 | Coriolic acid | Fatty acid | − | + |
L116 | 16 | - | (C48H81O8)⁺ | 11.5 | 733.4379 | 367,253 | Dimer of unknown fatty acid | Fatty acid | + | + |
L117 | 16 | - | (C18H29O3)+ | 5.2 | 293.2096 | 275, 223, 95 | Licanic acid | Fatty acid | + | − |
L118 | 17 | - | (C21H39O4)+ | 0.1 | 355.2843 | 337, 263 | Glyceryl 2-linoleate | Fatty acid | + | − |
N28 | 17 | - | (C18H29O2)− | 3.1 | 277.2164 | 250, 226, 171, 150, 109, 77, 53 | Linolenic acid | Fatty acid | − | + |
L119 | 17 | - | (C18H27O)⁺ | 1.1 | 259.2054 | 175 | Unknown | Unknown | + | − |
L120 | 17 | - | (C18H33O2)+ | 0.4 | 281.2476 | 263, 245, 189, | Linoleic acid | Fatty acid | + | + |
L121 | 17 | - | (C20H33O3)+ | 1.7 | 321.243 | 305, 265, 245, 179 | 8-Hydroxyicosa-5,9,11,14-tetraenoic acid | Fatty acid | + | − |
L122 | 17 | - | (C36H65O4)⁺ | 3.9 | 561.4899 | 543, 307, 245, 175 | Linoleic acid dimer | Fatty acid | + | − |
L123 | 17 | - | (C21H41O4)+ | 5.4 | 357.298 | 339, 265, 247, 205, 135, 124, 112, 75 | Glyceryl Monooleate | Fatty acid | + | + |
N29 | 17 | - | (C18H31O2)− | 0.9 | 279.2327 | 201, 167, 141, 127, 89, 70, 54 | Linoleic acid | Fatty acid | + | + |
L124 | 17.7 | - | (C16H31O)+ | 6.7 | 239.2353 | 109, 95 | Hexadeca-10,12-dien-1-ol | Fatty acid | + | + |
L125 | 17.7 | - | (C16H33O2)+ | 3.3 | 257.2467 | 237, 120, 103 | Hexadecanoic acid | Fatty acid | + | + |
L126 | 17.8 | - | (C18H35O2)⁺ | 5.9 | 283.2615 | 265, 247, 191, 153, 137, 121 | Palmitic acid | Fatty acid | + | − |
L127 | 17.8 | - | (C18H33O)+ | 6.1 | 265.251 | 247, 205, 191, 149 | Linolenyl alcohol | Fatty alcohol | + | + |
N30 | 17.8 | - | (C18H33O2)− | 0.8 | 281.24 | 185, 155, 95, 58 | Oleic acid | Fatty acid | + | + |
N31 | 17.8 | - | C19H35O4 | 10 | 327.2505 | 281, 185, 95 | Chaetomellic acid A | Fatty acid | + | − |
L128 | 18 | - | (C14H23O16)+ | 1.6 | 447.0988 | 359, 341, 324, 225, 207, 149 | Unknown | Unknown | − | + |
L129 | 18 | - | (C22H39O4)+ | 0.1 | 367.2843 | 349, 331,293, 251, 205, 179, 133 | 16,17-dihydroxydocosa-7,10,13-trienoic acid | Fatty acid | + | + |
L130 | 18 | - | (C22H37O3)+ | 2.6 | 349.2728 | 331, 293, 183, 165 | Anacardic acid | Phenolic lipid | + | + |
Metabolite | Assignment | δ 1H in ppm | δ 1H COSEY (ppm) | δ 13C in ppm | HMBC Correlations δ 13C in ppm |
---|---|---|---|---|---|
Fatty acid (M1–M3) | Olefinic carbons | 5.23–5.34 | 2.05 | 128.0–131.3 | 29.4 (bis allylic CH2), 27.9 allylic CH2 |
allylic CH2 | 2.07 m | 5.34 | 27.9 | Olefinic 128.0–131.0, (CH2)n 31.5 | |
ω-9 Fatty acid (M1) | t-CH3 | 0.91 (t, J = 6.9 Hz) | 1.3 (CH2)n | 14.1 | 23.9 C-2, 31.5(CH2)n |
(CH2)n | 1.3 (br. s) | 0.89 (t-CH3), 1.61 (H-3), 2.09 (allylic CH2) | 30.4 | 32.0 (CH2)n | |
C-2 | 2.27 (t, J = 7.4 Hz) | 1.59 | 34.7 | C-1 178.8, C-32.4, (CH2)n 31.6 | |
C-3 | 1.59 m | 2.27 | 25.8 | C-1 177.8, (CH2)n 30.4 | |
ω-6 Fatty acid (M2) | Bis allylic CH2 | 2.77 (t, J = 6.9 Hz) | 5.33 | 24.7 | Olefinic carbons 131.2, |
ω-3 Fatty acid (M3) | Bis allylic CH2 | 2.87 | 5.33 | 26.3 | Olefinic carbons 131.2, |
t-CH3 | 0.97 | 2.07 (allylic CH2) | 19.5 | 21.6 C-2 | |
Sugars | |||||
Rhamnoside (M4) | C-6 | 1.23 | 3.77 | 19.5 | (C-4) 69.8, (C-5) 72.8 |
C-1 | 5.44 | - | 93. 8 | (C-2) 73.8 | |
C-5 | 3.77 | - | 72.7 | - | |
C-4 | 3.78 | - | 69.1 | - | |
β-Glucose (M5) | C-1 | 4.48 (d, J = 7.8 Hz) | 3.11, 3.27, 3.32 | 97.9 | - |
C-2 | 3.11 | 76.1 | (C-3) 77.8, (C-1)97.9 | ||
C-3 | 3.35 | 77.8 | - | ||
C-5 | 3.28 | 77.7 | (C-6) 62.2 | ||
C-6 | 3.65 | 62.1 | - | ||
α-Glucose (M6) | C-1 | 5.10 (d, J = 3.7 Hz) | 3.35 | 93.7 | (C-4) 72.7, (C-3)74.61 |
C-2 | 3.35 | 73.5 | 74.2 (C-3) | ||
C-3 | 3.84 | 74.2 | - | ||
C-4 | 3.77 | 72.7 | (C-6) 62.5 | ||
C-6 | 3.86 | 62.5 | - | ||
Sucarose (M7) | C-1 | 5.48 (t, J = 3.6 Hz) | 3.35, 3.42, 3.69 | 93.3 | (C-3) 74.3, (C-1′) 105.0 |
C-2 | 3.42 | 3.69 | 72.9 | (C-3) 74.3 | |
C-3 | 3.69 | 3.35 | 74.2 | (C-2) 72.9 | |
C-4 | 3.35 | 72.8 | (C-3) 74.3 | ||
C-2′ | 4.08 | - | 87.9 | (C-1′) 105.0 | |
C-3′ | 4.03 | - | 76.8 | (C-5′) 63.1, (C-1′) 105.0 | |
C-4′ | 3.75 | - | 83.6 | (C-6′) 63.9 | |
C-5′ | 3.76 | - | 63.1 | (C-1′) 105.0, (C-4′) 83.6 | |
C-6′ | 3.62 | - | 63.9 | (C-1′) 105.0 | |
Amino acids | |||||
Alanine (M8) | C-3 | 1.47 (d, J = 7.2) | 3.64 | 16.9 | 51.5, 174.9 |
C-2 | 3.64 | 1.47 | 51.4 | - | |
Aaspartic acid (M9) | C-3a | 2.96 | 2.71, 3.85 | 35.3 | (C-2) 52.6, (C-4) 172.9, (C-1)174.9 |
C-3b | 2.71 | - | 35.3 | (C-2) 52.6, (C-4) 172.9, (C-1)174.9 | |
C-2 | 3.85 | - | 52.6 | (C-4) 172.9, (C-1) 174.9 | |
Glycine (M10) | C-2a | 3.88 | - | 43.6 | |
C-2b | 4.01 | - | 43.6 | (C-1) 174.7 | |
Tyrosine (M11) | C-3 | 2.98–3.31 | 40.0 | (C-4) 127.2 | |
C-2 | 4.14 | 50.6 | |||
C-6, C-8 | 6.77 | 7.13 | 116.5 | (C-4) 127.2 | |
C-5, C-9 | 7.13 | 6.77 | 131.3 | (C-7) 157.6 | |
Tryptophan (M12) | C-2 | 3.89 | - | 56.5 | (C-3) 24.9, (C-1) 173.4 |
C-8 | 7.05 (t, J = 7.5 Hz) | 7.12, 7.37 | 119.8 | (C-7) 112.2, (C-11) 128.3 | |
C-9 | 7.12 (overlap) | 7.69 | 122.5 | (C-6) 138.2, (C-8) 119.0 | |
C-5 | 7.20 (s) | - | 124.9 | (C-4) 102.1, (C-6) 138.2 | |
C-10 | 7.69 (d, J = 7.9 Hz) | 7.37 | 118.9 | (C-9) 122.5, (C-6)138.2 | |
C-7 | 7.37 (d, J = 8.2 Hz) | - | 112.2 | - | |
Bufadienolides | |||||
Bufalin and Scilliridin (M13, M14) | C-21 | 7.98 (d, J = 2.6 Hz) | 6.25 | 149.9 | |
C-22 | 6.27 (d, J = 3.0 Hz) | 7.97 | 115.2 | 122.4, 164.3 (C-20, 23) | |
C-24 | 7.43 (s) | 150.3 | 122.4, 164.2 (C-20, 23) | ||
C-17 | 2.59 | 51.7 | 124.2 (C-20) | ||
C-8 | 1.83 | 1.68 | 42.8 | 84.0, 49.0 (C-14, 13) | |
C-9 | 1.68 | 1.83 | 43.1 | ||
Bufalin (M13) | C-18 | 0.714 | 12.1 | (C-13) 49.0, (C-17) 51.0, (C-14) 84.0 | |
C-19 | 0.98 | 19.0 | (C-1) 35.0, (C-2) 37.0, (C-9) 57.0 | ||
C-3 | 3.93 | 73.5 | (C-1) 35.0 | ||
Scilliridin (M14) | |||||
C-3 | 5.96 | 128.6 | (C-5)141.0 | ||
C-4 | 5.75 | 127.3 | - | ||
C-6 | 5.71 | 127.5 | (C-5) 141.0 | ||
C-19 | 1.02 3H | 19.2 | (C-10) 38.3, (C-9) 51.9, (C-6) 141.4 | ||
C-18 | 0.81 | 17.7 | (C-13) 49.0, (C-17) 51.0, (C-14) 84.0 | ||
Flavanoids | |||||
kaempeferol derv. (M15) | C (3′, 5′) | δ 6.98 (d, J = 8.5 Hz, 2H) | - | - | |
C (2′, 6′) | 6.56 (d, J = 8.4 Hz, 2H) | - | - | ||
C-8 | 6.04 (d, J = 1.8 Hz, H) | - | - | ||
C-6 | 6.04 (d, J = 1.8 Hz, H) | - | - | ||
Coumarins | |||||
6-Hydroxy coumarin (M16) | C-3 | 6.19 (d, J = 9.4 Hz) | 7.84 | 112.1 | (C-10) 112.9, 157.0 |
C-4 | 7.84 (d, J = 9.4 Hz) | 6.19 | 145.8 | (C-2) 157.0 | |
C-8 | 6.72 (d, J = 2.3 Hz) | 103.1 | (C-6) 157.6 | ||
C-6 | 6.80 (dd, J = 8.5, 2.3 Hz) | 7.47 | 114.25 | (C-7) 154 | |
C-5 | 7.47 overlap (d, J = 8.5 Hz) | 6.80 | 130.43 | (C-4) 145.79 |
RS (MCF7) IC50 | WS (MCF7) IC50 | Dox.(MCF7) IC50 | RS (A-549) IC50 | WS (A-549) IC50 | Dox. (A-549) IC50 | RS (SKOV-3) IC50 | WS (SKOV-3) IC50 | Dox. (SKOV-3)IC50 |
---|---|---|---|---|---|---|---|---|
0.165 ± 0.007 * | 0.326 ± 0.005 | 0.2 ± 0.004 * | 0.271 ± 0.005 * | 0.108 ± 0.003 * | 0.56 ± 0.003 * | 0.912 ± 0.021 | 0.690 ± 0.018 | 0.2 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khattab, O.M.; El-Kersh, D.M.; Khalifa, S.A.M.; Yosri, N.; El-Seedi, H.R.; Farag, M.A. Comparative MS- and NMR-Based Metabolome Mapping of Egyptian Red and White Squill Bulbs F. Liliaceae and in Relation to Their Cytotoxic Effect. Plants 2023, 12, 2078. https://doi.org/10.3390/plants12112078
Khattab OM, El-Kersh DM, Khalifa SAM, Yosri N, El-Seedi HR, Farag MA. Comparative MS- and NMR-Based Metabolome Mapping of Egyptian Red and White Squill Bulbs F. Liliaceae and in Relation to Their Cytotoxic Effect. Plants. 2023; 12(11):2078. https://doi.org/10.3390/plants12112078
Chicago/Turabian StyleKhattab, Omar M., Dina M. El-Kersh, Shaden A. M. Khalifa, Nermeen Yosri, Hesham R. El-Seedi, and Mohamed A. Farag. 2023. "Comparative MS- and NMR-Based Metabolome Mapping of Egyptian Red and White Squill Bulbs F. Liliaceae and in Relation to Their Cytotoxic Effect" Plants 12, no. 11: 2078. https://doi.org/10.3390/plants12112078
APA StyleKhattab, O. M., El-Kersh, D. M., Khalifa, S. A. M., Yosri, N., El-Seedi, H. R., & Farag, M. A. (2023). Comparative MS- and NMR-Based Metabolome Mapping of Egyptian Red and White Squill Bulbs F. Liliaceae and in Relation to Their Cytotoxic Effect. Plants, 12(11), 2078. https://doi.org/10.3390/plants12112078