Sidr Honeys Physical and Chemical Characterization, a Comprehensive Approach through LC-MS/MS, NMR, and GC-MS Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Honey Sampling
2.2. Standard Physicochemical Parameters and Pollen Analysis
2.3. Sugar Analysis
2.4. Chemical Identification of the Compounds Using LC-LTQ-MS-MS
2.5. 1H-NMR Analysis
2.6. Sampling of Volatile Compounds
2.7. GC-MS Analysis
3. Results and Discussions
3.1. Physicochemical Parameters and Palynological Characteristics
3.2. Main Sugar Profile
3.3. Metabolites Profile Using LC-MS/MS Analysis
3.4. NMR Analysis
3.5. GC-MS Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ioniță-Mîndrican, C.B.; Mititelu, M.; Musuc, A.M.; Oprea, E.; Ziani, K.; Neacșu, S.M.; Grigore, N.D.; Negrei, C.; Dumitrescu, D.E.; Mireșan, H.; et al. Honey and other beekeeping products intake among the Romanian population and their therapeutic use. Appl. Sci. 2022, 12, 9649. [Google Scholar] [CrossRef]
- Zammit Young, G.-W.; Blundell, R. A review on the phytochemical composition and health applications of honey. Heliyon 2023, 9, e12507. [Google Scholar] [CrossRef]
- Edet, U.O.; Mbim, E.N.; Ezeani, E.; Henshaw, O.U.; Ibor, O.R.; Bassey, I.U.; Asanga, E.E.; Antai, E.E.; Nwaokorie, F.O.; Edet, B.O.; et al. Antimicrobial analysis of honey against Staphylococcus aureus isolates from wound, ADMET properties of its bioactive compounds and in-silico evaluation against dihydropteroate synthase. BMC Complement Med. Ther. 2023, 23, 39–54. [Google Scholar] [CrossRef] [PubMed]
- Ugusman, A.; Shahrin, S.A.S.; Azizan, N.H.; Pillai, S.B.; Krishnan, K.; Salamt, N.; Aminuddin, A.; Hamid, A.A.; Kumar, J.; Mokhtar, M.H. Role of honey in obesity management: A systematic review. Front. Nutr. 2022, 9, 924097–924108. [Google Scholar] [CrossRef] [PubMed]
- Frydman, G.H.; Olaleye, D.; Annamalai, D.; Layne, K.; Yang, I.; Kaafarani, H.M.A.; Fox, J.G. Manuka honey microneedles for enhanced wound healing and the prevention and/or treatment of Methicillin-resistant Staphylococcus aureus (MRSA) surgical site infection. Sci. Rep. 2020, 10, 13229–13239. [Google Scholar] [CrossRef]
- Sun, L.P.; Shi, F.F.; Zhang, W.W.; Zhang, Z.H.; Wang, K. Antioxidant and anti-inflammatory activities of safflower (Carthamus tinctorius L.) honey extract. Foods 2020, 9, 1039. [Google Scholar] [CrossRef]
- Zulkifli, M.F.; Radzi, M.N.F.M.; Saludes, J.P.; Dalisay, D.S.; Ismail, W.I.W. Potential of natural honey in controlling obesity and its related complications. J. Evid. Based Integr. Med. 2022, 27, 2515690X221103304. [Google Scholar] [CrossRef]
- Koodathil, J.; Venkatachalam, G.; Bhaskaran, K. In vitro and in vivo antidiabetic activity of bitter honey in streptozotocin-nicotinamide-induced diabetic Wistar rats. J. Med. Life 2023, 16, 91–100. [Google Scholar] [CrossRef]
- Patouna, A.; Vardakas, P.; Skaperda, Z.; Spandidos, D.A.; Kouretas, D. Evaluation of the antioxidant potency of Greek honey from the Taygetos and Pindos mountains using a combination of cellular and molecular methods. Mol. Med. Rep. 2023, 27, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Martiniakova, M.; Kovacova, V.; Mondockova, V.; Zemanova, N.; Babikova, M.; Biro, R.; Ciernikova, S.; Omelka, R. A promising therapeutic supplement for the prevention and management of osteoporosis and breast cancer. Nutrients 2023, 12, 567. [Google Scholar] [CrossRef]
- Ashraf, S.; Ashraf, S.; Ashraf, M.; Imran, M.A.; Kalsoom, L.; Siddiqui, U.N.; Farooq, I.; Akmal, R.; Akram, M.K.; Ashraf, S.; et al. Honey and Nigella sativa against COVID-19 in Pakistan (HNS-COVID-PK): A multicenter placebo-controlled randomized clinical trial. Phyther. Res. 2023, 37, 627–644. [Google Scholar] [CrossRef] [PubMed]
- Al-Hatamleh, M.A.; Hatmal, M.M.M.; Sattar, K.; Ahmad, S.; Mustafa, M.Z.; Bittencourt, M.D.C.; Mohamud, R. Antiviral and immunomodulatory effects of phytochemicals from honey against COVID-19: Potential mechanisms of action and future directions. Molecules 2020, 25, 5017. [Google Scholar] [CrossRef] [PubMed]
- Krishnakumar, G.S.; Mahendiran, B.; Gopalakrishnan, S.; Muthusamy, S.; Malarkodi Elangovan, S. Honey based treatment strategies for infected wounds and burns: A systematic review of recent pre-clinical research. Wound Med. 2020, 30, 100188–100199. [Google Scholar] [CrossRef]
- Seraglio, S.K.T.; Schulz, M.; Gonzaga, L.V.; Fett, R.; Costa, A.C.O. Current status of the gastrointestinal digestion effects on honey: A comprehensive review. Food Chem. 2021, 357, 129807–129820. [Google Scholar] [CrossRef]
- Idrus, R.B.H.; Sainik, N.Q.A.V.; Nordin, A.; Bin Saim, A.; Sulaiman, N. Cardioprotective effects of honey and its constituent: An evidence-based review of laboratory studies and clinical trials. Int. J. Environ. Res. Public Health 2020, 17, 3613. [Google Scholar] [CrossRef]
- Koulis, G.A.; Tsagkaris, A.S.; Aalizadeh, R.; Dasenaki, M.E.; Panagopoulou, E.I.; Drivelos, S.; Halagarda, M.; Georgiou, C.A.; Proestos, C.; Thomaidis, N.S. Honey phenolic compound profiling and authenticity assessment using HRMS targeted and untargeted metabolomics. Molecules 2021, 26, 2769. [Google Scholar] [CrossRef]
- Mohammed, M.E.A. Factors affecting the physicochemical properties and chemical composition of bee’s honey. Food Rev. Int. 2022, 38, 1330–1341. [Google Scholar] [CrossRef]
- Roshan, A.R.A.; Gad, H.A.; El-Ahmady, S.H.; Abou-Shoer, M.I.; Khanbash, M.S.; Al-Azizi, M.M. Characterization and discrimination of the floral origin of Sidr honey by physicochemical data combined with multivariate analysis. Food Anal. Methods 2017, 10, 137–146. [Google Scholar] [CrossRef]
- Tsagkaris, A.S.; Koulis, G.A.; Danezis, G.P.; Martakos, I.; Dasenaki, M.; Georgiou, C.A.; Thomaidis, N.S. Honey authenticity: Analytical techniques, state of the art and challenges. RSC Adv. 2021, 11, 11273–11294. [Google Scholar] [CrossRef]
- Labsvards, K.D.; Rudovica, V.; Kluga, R.; Rusko, J.; Busa, L.; Bertins, M.; Eglite, I.; Naumenko, J.; Salajeva, M.; Viksna, A. Determination of floral origin markers of latvian honey by using IRMS, UHPLC-HRMS, and 1H-NMR. Foods 2022, 11, 42. [Google Scholar] [CrossRef]
- Sichilongo, K.; Padiso, T.; Turner, Q. AMDIS-Metab R data manipulation for the geographical and floral differentiation of selected honeys from Zambia and Botswana based on volatile chemical compositions using SPME–GC–MS. Eur. Food Res. Technol. 2020, 246, 1679–1690. [Google Scholar] [CrossRef]
- Nunes, A.; Azevedo, G.Z.; Dos Santos, B.R.; Borges, C.V.; Lima, G.P.P.; Crocoli, L.C.; Moura, S.; Maraschin, M. Characterization of Brazilian floral honey produced in the states of Santa Catarina and São Paulo through ultraviolet–visible (UV–vis), near-infrared (NIR), and nuclear magnetic resonance (NMR) spectroscopy. Food Res. Int. 2022, 162, 111913. [Google Scholar] [CrossRef] [PubMed]
- Escuredo, O.; Rodríguez-Flores, M.S.; Míguez, M.; Seijo, M.C. Multivariate statistical approach for the discrimination of honey Samples from Galicia (NW Spain) using physicochemical and pollen parameters. Foods 2023, 12, 1493. [Google Scholar] [CrossRef]
- Mărgăoan, R.; Topal, E.; Balkanska, R.; Yücel, B.; Oravecz, T.; Cornea-Cipcigan, M.; Vodnar, D.C. Monofloral honeys as a potential source of natural antioxidants, minerals and medicine. Antioxidants 2021, 10, 1023. [Google Scholar] [CrossRef] [PubMed]
- Bouali, N.; Hamadou, W.S.; Badraoui, R.; Lajimi, R.H.; Hamdi, A.; Alreshidi, M.; Adnan, M.; Soua, Z.; Siddiqui, A.J.; Noumi, E.; et al. Phytochemical composition, antioxidant, and anticancer activities of Sidr honey: In vitro and in silico computational investigation. Life 2023, 13, 35. [Google Scholar] [CrossRef]
- Hegazi, A.G.; Al Guthami, F.M.; Ramadan, M.F.A.; Al Gethami, A.F.M.; Craig, A.M.; Serrano, S. Characterization of Sidr (Ziziphus spp.) honey from different geographical origins. Appl. Sci. 2022, 12, 9295. [Google Scholar] [CrossRef]
- Ghramh, H.A.; Ibrahim, E.H.; Kilany, M. Study of anticancer, antimicrobial, immunomodulatory, and silver nanoparticles production by Sidr honey from three different sources. Food Sci. Nutr. 2020, 8, 445–455. [Google Scholar] [CrossRef]
- Al-Yahya, M.; Mothana, R.; Al-Said, M.; Al-Dosari, M.; Al-Musayeib, N.; Al-Sohaibani, M.; Parvez, M.K.; Rafatullah, S. Attenuation of CCl4 induced oxidative stress and hepatonephrotoxicity by Saudi Sidr honey in rats. Evid. Based Complement. Altern. Med. 2013, 2013, 569037. [Google Scholar] [CrossRef] [Green Version]
- El-sofany, A.; Naggar, Y.A.; Naiem, E.; Giesy, J.P.; Seif, A.; Naggar, Y.A.; Naiem, E.; Giesy, J.P. Authentication of the botanical and geographic origin of Egyptian honey using pollen analysis methods. J. Apic. Res. 2020, 59, 946–955. [Google Scholar] [CrossRef]
- Ali, H.; Rafique, K.; Ullah, R.; Iftikhar, M.S. Classification of Sidr honey and detection of sugar adulteration using right angle fluorescence spectroscopy and chemometrics. Eur. Food Res. Technol. 2022, 248, 1823–1829. [Google Scholar] [CrossRef]
- Mădaş, M.N.; Mărghitaş, L.A.; Severus, D.; Bobiş, O.; Abbas, O.; Danthine, S.; Francis, F.; Haubruge, E.; Nguyen, B.K. Labeling regulations and quality control of honey origin: A review labeling regulations and quality control of honey origin: A Food. Food Rev. Int. 2019, 36, 215–240. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Maia, M.; Karabagias, V.K.; Gatzias, I.; Badeka, A.V. Quality and origin characterisation of Portuguese, Greek, Oceanian, and Asian honey, based on poly-parametric analysis hand in hand with dimension reduction and classification techniques. Eur. Food Res. Technol. 2020, 246, 987–1006. [Google Scholar] [CrossRef]
- Al-Kafaween, M.A.; Alwahsh, M.; Mohd Hilmi, A.B.; Abulebdah, D.H. Physicochemical characteristics and bioactive compounds of different types of honey and their biological and therapeutic properties: A Comprehensive Review. Antibiotics 2023, 12, 337. [Google Scholar] [CrossRef]
- Addi, A.; Bareke, T. Botanical origin and characterization of monofloral honeys in Southwestern forest of Ethiopia. Food Sci. Nutr. 2021, 9, 4998–5005. [Google Scholar] [CrossRef] [PubMed]
- Algethami, J.S.; El-Wahed, A.A.A.; Elashal, M.H.; Ahmed, H.R.; Elshafiey, E.H.; Omar, E.M.; Naggar, Y.A.; Algethami, A.F.; Shou, Q.; Alsharif, S.M. Bee pollen: Clinical trials and patent applications. Nutrients 2022, 14, 2858. [Google Scholar] [CrossRef]
- Yosri, N.; El-Wahed, A.A.A.; Ghonaim, R.; Khattab, O.M.; Sabry, A.; Ibrahim, M.A.A.; Moustafa, M.F.; Guo, Z.; Zou, X.; Algethami, A.F.M.; et al. Anti-viral and immunomodulatory properties of propolis: Chemical diversity, pharmacological properties, preclinical and clinical applications, and in silico potential against Sars-COV-2. Foods 2021, 10, 1776. [Google Scholar] [CrossRef]
- Aufschnaiter, A.; Kohler, V.; Khalifa, S.; El-Wahed, A.; Du, M.; El-Seedi, H.; Büttner, S. Apitoxin and its components against cancer, neurodegeneration and rheumatoid arthritis: Limitations and possibilities. Toxins 2020, 12, 66. [Google Scholar] [CrossRef] [Green Version]
- El-Wahed, A.A.A.; Farag, M.A.; Eraqi, W.A.; Mersal, G.A.M.; Zhao, C.; Khalifa, S.A.M.; El-Seedi, H.R. Unravelling the beehive air volatiles profile as analysed via solid-phase microextraction (SPME) and chemometrics. J. King Saud Univ. Sci. 2021, 33, 101449–101456. [Google Scholar] [CrossRef]
- El-Aarag, B.; Magdy, M.; AlAjmi, M.F.; Khalifa, S.A.M.; El-Seedi, H.R. Melittin exerts beneficial effects on paraquat-induced lung injuries in mice by modifying oxidative stress and apoptosis. Molecules 2019, 24, 1498. [Google Scholar] [CrossRef] [Green Version]
- Darwish, A.M.G.; Abd El-Wahed, A.A.; Shehata, M.G.; El-Seedi, H.R.; Masry, S.H.D.; Khalifa, S.A.M.; Mahfouz, H.M.; El-Sohaimy, S.A. Chemical profiling and nutritional evaluation of bee pollen, bee bread, and royal jelly and their role in functional fermented dairy products. Molecules 2023, 28, 227. [Google Scholar] [CrossRef]
- Hegazi, A.G.; Guthami, F.M.A.; Ramadan, M.F.A.; Gethami, A.F.M.A.; Craig, A.M.; El-seedi, H.R.; Rodr, I.; Serrano, S. The bioactive value of Tamarix gallica honey from different geographical origins. Inescts 2023, 14, 319. [Google Scholar] [CrossRef]
- Amr, A.; Abd El-Wahed, A.; El-Seedi, H.R.; Khalifa, S.A.M.; Augustyniak, M.; El-Samad, L.M.; Abdel Karim, A.E.; El Wakil, A. UPLC-MS/MS analysis of naturally derived Apis mellifera products and their promising effects against cadmium-induced adverse effects in female rats. Nutrients 2023, 15, 119. [Google Scholar] [CrossRef] [PubMed]
- Bogdanov, S. Harmonised methods of the international IHC. Int. Honey Comm. 2009, 5, 1–62. [Google Scholar]
- Laaroussi, H.; Bouddine, T.; Bakour, M.; Ousaaid, D. Physicochemical properties, mineral content, antioxidant activities, and microbiological quality of Bupleurum spinosum Gouan honey from the Middle Atlas in Morocco. J. Food Qual. 2020, 2020, 7609454. [Google Scholar] [CrossRef] [Green Version]
- Pascual-Maté, A.; Osés, S.M.; Fernández-Muiño, M.A.; Sancho, M.T. Methods of analysis of honey Ana. J. Apic. Res. 2018, 57, 38–74. [Google Scholar] [CrossRef]
- Daka, S.; Dessalegn, E.; Hassen, Y.; Zula, A.T. Physicochemical properties and antioxidant activities of thermally treated poly-floral honey from Chire woreda, Sidamo regional State, Ethiopia. Cogent Food Agric. 2023, 9, 2172989–2173005. [Google Scholar] [CrossRef]
- Tedesco, R.; Scalabrin, E.; Malagnini, V.; Strojnik, L.; Ogrinc, N.; Capodaglio, G. Characterization of botanical origin of Italian honey by carbohydrate composition and volatile organic compounds (VOCs). Foods 2022, 11, 2441. [Google Scholar] [CrossRef]
- Alghamdi, B.A.; Alshumrani, E.S.; Saeed, M.S.B.; Rawas, G.M.; Alharthi, N.T.; Baeshen, M.N.; Helmi, N.M.; Alam, M.Z.; Suhail, M. Analysis of sugar composition and pesticides using HPLC and GC–MS techniques in honey samples collected from Saudi Arabian markets. Saudi J. Biol. Sci. 2020, 27, 3720–3726. [Google Scholar] [CrossRef]
- El-Din, M.I.G.; Fahmy, N.M.; Wu, F.; Salem, M.M.; Khattab, O.M.; El-Seedi, H.R.; Korinek, M.; Hwang, T.-L.; Osman, A.K.; El-Shazly, M. Comparative LC–LTQ–MS–MS analysis of the leaf extracts of Lantana camara and Lantana montevidensis growing in Egypt with insights into their anti-Inflammatory, and cytotoxic activities. Plants 2022, 11, 1699. [Google Scholar] [CrossRef]
- Noiset, P.; Cabirol, N.; Rojas-Oropeza, M.; Warrit, N.; Nkoba, K.; Vereecken, N.J. Honey compositional convergence and the parallel domestication of social bees. Sci. Rep. 2022, 12, 18280–18285. [Google Scholar] [CrossRef]
- Muhati, G.L.; Warui, M.W. Physicochemical properties and floral sources of honey produced in Marsabit Forest Reserve, Northern Kenya. J. Food Qual. 2022, 2022, 3841184–3841193. [Google Scholar] [CrossRef]
- Pauliuc, D.; Dranca, F.; Ropciuc, S.; Oroian, M. Advanced characterization of monofloral honeys from Romania. Agric. 2022, 12, 526. [Google Scholar] [CrossRef]
- Bicudo de Almeida-Muradian, L.; Monika Barth, O.; Dietemann, V.; Eyer, M.; Freitas, A.D.S.D.; Martel, A.C.; Marcazzan, G.L.; Marchese, C.M.; Mucignat-Caretta, C.; Pascual-Maté, A.; et al. Standard methods for Apis mellifera honey research. J. Apic. Res. 2020, 59, 1–62. [Google Scholar] [CrossRef]
- Aljohar, H.I.; Maher, H.M.; Albaqami, J.; Al-Mehaizie, M.; Orfali, R.; Orfali, R.; Alrubia, S. Physical and chemical screening of honey samples available in the Saudi market: An important aspect in the authentication process and quality assessment. Saudi Pharm. J. 2018, 26, 932–942. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission. Draft Revised Standard for Honey (At Step 10 of the Codex Procedure); Codex Alimentarius Commission; FAO: Rome, Italy, 2001; Volume 1, pp. 19–26. [Google Scholar]
- Karabagias, I.K. Seeking of reliable markers related to Greek nectar honey geographical and botanical origin identification based on sugar profile by HPLC-RI and electro-chemical parameters using multivariate statistics. Eur. Food Res. Technol. 2019, 245, 805–816. [Google Scholar] [CrossRef]
- Acquarone, C.; Buera, P.; Elizalde, B. Pattern of pH and electrical conductivity upon honey dilution as a complementary tool for discriminating geographical origin of honeys. Food Chem. 2007, 101, 695–703. [Google Scholar] [CrossRef]
- Al-waili, N.; Ghamdi, A.; Ansari, J.; Al-attal, Y.; Al-mubarak, A.; Salom, K. Differences in composition of honey samples and their impact on the antimicrobial activities against drug multiresistant bacteria and pathogenic fungi. Arch. Med. Res. 2013, 44, 307–3016. [Google Scholar] [CrossRef]
- Suto, M.; Kawashima, H.; Samples, H. Determination of organic acids in honey by liquid chromatography with tandem mass spectrometry. Food Anal. Methods 2020, 13, 2249–2257. [Google Scholar] [CrossRef]
- Ropciuc, S.; Dranca, F.; Oroian, M.; Pauliuc, D.; Ciurs, P. Physicochemical parameters prediction and authentication of different monofloral honeys based on FTIR spectra. J. Food Compos. Anal. 2021, 102, 104021–104032. [Google Scholar]
- Mieles, J.Y.; Vyas, C.; Aslan, E.; Humphreys, G.; Diver, C.; Bartolo, P. Honey: An advanced antimicrobial and wound healing biomaterial for tissue engineering applications. Pharmaceutics 2022, 14, 1663. [Google Scholar] [CrossRef]
- Albu, A.; Radu-Rusu, C.G.; Pop, I.M.; Frunza, G.; Nacu, G. Quality assessment of raw honey issued from Eastern Romania. Agricultre 2021, 11, 247. [Google Scholar] [CrossRef]
- Raweh, H.S.A.; Ahmed, A.Y.B.H.; Iqbal, J.; Alqarni, A.S. Monitoring and evaluation of free acidity levels in Talh honey originated from Talh tree Acacia gerrardii Benth. J. King Saud Univ. Sci. 2022, 34, 101678–101687. [Google Scholar] [CrossRef]
- Benth; Raweh, H.S.A.; Badjah-hadj-ahmed, A.Y.; Iqbal, J. Physicochemical characteristics, especially free acidity in Talh honey. Molecules 2022, 27, 5959–5978. [Google Scholar]
- Moreira, R.F.A.; Trugo, L.C.; Pietroluongo, M.; De Maria, C.A.B. Flavor composition of cashew (Anacardium occidentale) and marmeleiro (Croton species) honeys. J. Agric. Food Chem. 2002, 50, 7616–7621. [Google Scholar] [CrossRef] [PubMed]
- Fröschle, M.; Horn, H.; Spring, O. Characterization of Jatropha curcas honeys originating from the southern highlands of Madagascar. LWT Food Sci. Technol. 2018, 93, 525–533. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, C.; Li, C.; Huang, Z.Y.; Miao, X. Pathway of 5-hydroxymethyl-2-furaldehyde formation in honey. J. Food Sci. Technol. 2019, 56, 2417–2425. [Google Scholar] [CrossRef]
- Da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Honey: Chemical composition, stability and authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef]
- Al-Farsi, M.; Al-Belushi, S.; Al-Amri, A.; Al-Hadhrami, A.; Al-Rusheidi, M.; Al-Alawi, A. Quality evaluation of Omani honey. Food Chem. 2018, 262, 162–167. [Google Scholar] [CrossRef]
- Bako, T.; Mamai, E.A.; Bature, B.J. Determination of quality parameters of honey from Taraba State—Nigeria. Chem. Biomol. Eng. 2019, 4, 1–9. [Google Scholar] [CrossRef]
- Dżugan, M.; Miłek, M.; Kielar, P.; Stępień, K.; Sidor, E.; Bocian, A. SDS-PAGE Protein and HPTLC polyphenols profiling as a promising tool for authentication of goldenrod honey. Foods 2022, 11, 2390. [Google Scholar] [CrossRef]
- Zerrouk, S.; Seijo, M.C.; Escuredo, O.; Rodríguez-Flores, M.S. Characterization of Ziziphus lotus (jujube) honey produced in Algeria Salim. J. Apic. Res. 2018, 57, 166–174. [Google Scholar] [CrossRef]
- El Sohaimy, S.A.; Masry, S.H.D.; Shehata, M.G. Physicochemical characteristics of honey from different origins. Ann. Agric. Sci. 2015, 60, 279–287. [Google Scholar] [CrossRef] [Green Version]
- Ioana, C.; Cornea-cipcigan, M.; Suharoschi, R.; Erler, S. Honey botanical origin and honey-specific protein pattern: Characterization of some European honeys. LWT Food Sci. Technol. 154 2022, 154, 112883–112892. [Google Scholar]
- Del Campo, G.; Zuriarrain, J.; Zuriarrain, A.; Berregi, I. Quantitative determination of carboxylic acids, amino acids, carbohydrates, ethanol and hydroxymethylfurfural in honey by 1H NMR. Food Chem. 2016, 196, 1031–1039. [Google Scholar] [CrossRef]
- Taylor, M.A.; Robertson, A.W.; Biggs, P.J.; Richards, K.K.; Jones, D.F.; Parkar, S.G. The effect of carbohydrate sources: Sucrose, invert sugar and components of mānuka honey, on core bacteria in the digestive tract of adult honey bees (Apis mellifera). PLoS ONE 2019, 14, e0225845. [Google Scholar] [CrossRef] [Green Version]
- Scripca, L.A.; Amariei, S. Research on honey crystalization. Rev. Chim. 2018, 69, 2953–2957. [Google Scholar] [CrossRef]
- Baloš, M.M.Ž.; Popov, N.S.; Radulović, J.Z.P.; Stojanov, I.M.; Jakšić, S.M. Sugar profile of different floral origin honeys from Serbia. J. Apic. Res. 2020, 59, 398–405. [Google Scholar] [CrossRef]
- Naik, R.R.; Gandhi, N.S.; Thakur, M.; Nanda, V. Analysis of crystallization phenomenon in Indian honey using molecular dynamics simulations and artificial neural network. Food Chem. 2019, 300, 125182. [Google Scholar] [CrossRef]
- Islam, M.K.; Sostaric, T.; Lim, L.Y.; Hammer, K.; Locher, C. Sugar profiling of honeys for authentication and detection of adulterants using high-performance thin layer chromatography. Molecules 2020, 25, 5289. [Google Scholar] [CrossRef]
- Tosun, M.; Keles, F. Investigation methods for detecting honey samples adulterated with sucrose syrup. J. Food Compos. Anal. 2021, 101, 103941–103945. [Google Scholar] [CrossRef]
- Ghramh, H.A.; Khan, K.A.; Ahmed, Z.; Ansari, M.J. Quality evaluation of Saudi honey harvested from the Asir province by using high-performance liquid chromatography (HPLC). Saudi J. Biol. Sci. 2020, 27, 2097–2105. [Google Scholar] [CrossRef] [PubMed]
- Taha, E.K.A.; Al-Kahtani, S.; Taha, R. Comparison of the physicochemical characteristics of sidr (Ziziphus spp.) honey produced by Apis florea F. and Apis mellifera L. J. Apic. Res. 2021, 60, 470–477. [Google Scholar] [CrossRef]
- Neggad, A.; Benkaci-Ali, F.; Laurent, S.; Ayata, G. A new method of extracting polyphenols from honey using a biosorbent compared to the commercial resin amberlite XAD2. J. Sep. Sci. 2021, 44, 2089–2096. [Google Scholar] [CrossRef] [PubMed]
- Cianciosi, D.; Forbes-Hernández, T.Y.; Afrin, S.; Gasparrini, M.; Reboredo-Rodriguez, P.; Manna, P.P.; Zhang, J.; Lamas, L.B.; Flórez, S.M.; Toyos, P.A.; et al. Phenolic compounds in honey and their associated health benefits: A review. Molecules 2018, 23, 2322. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Xu, L.; Yu, X.; Jiang, Y.; Zhang, J.; Liu, B. Characterization and identification of the metabolites of Menthae Haplocalycis Herba water extracts in rat plasma, urine, and feces by ultra-high performance liquid chromatography with linear ion trap-Orbitrap mass spectrometry. J. Sep. Sci. 2020, 43, 1051–1062. [Google Scholar] [CrossRef]
- Hegazi, A.G.; Abd El-Hady, F.K. Influence of honey on the suppression of human low density lipoprotein (LDL) peroxidation (in vitro). Evid. Based Complement. Altern. Med. 2009, 6, 113–121. [Google Scholar] [CrossRef] [Green Version]
- Guerrini, A.; Bruni, R.; Maietti, S.; Poli, F.; Rossi, D.; Paganetto, G.; Muzzoli, M.; Scalvenzi, L.; Sacchetti, G. Ecuadorian stingless bee (Meliponinae) honey: A chemical and functional profile of an ancient health product. Food Chem. 2009, 114, 1413–1420. [Google Scholar] [CrossRef]
- Cadoná, F.C.; Dantas, R.F.; de Mello, G.H.; Silva, F.P., Jr. Natural products targeting into cancer hallmarks: An update on caffeine, theobromine, and (+)-catechin. Crit. Rev. Food Sci. Nutr. 2022, 62, 7222–7241. [Google Scholar] [CrossRef]
- Li, T.; Li, F.; Liu, X.; Liu, J.; Li, D. Synergistic anti-inflammatory effects of quercetin and catechin via inhibiting activation of TLR4–MyD88-mediated NF-κB and MAPK signaling pathways. Phyther. Res. 2019, 33, 756–767. [Google Scholar] [CrossRef]
- Iñiguez-Franco, F.; Soto-Valdez, H.; Peralta, E.; Ayala-Zavala, J.F.; Auras, R.; Gámez-Meza, N. Antioxidant activity and diffusion of catechin and epicatechin from antioxidant active films made of poly(l-lactic acid). J. Agric. Food Chem. 2012, 60, 6515–6523. [Google Scholar] [CrossRef]
- Tedesco, R.; Barbaro, E.; Zangrando, R.; Rizzoli, A.; Malagnini, V.; Gambaro, A.; Fontana, P.; Capodaglio, G. Carbohydrate determination in honey samples by ion chromatography–mass spectrometry (HPAEC-MS). Anal. Bioanal. Chem. 2020, 412, 5217–5227. [Google Scholar] [CrossRef]
- Sánchez-Rabaneda, F.; Jáuregui, O.; Casals, I.; Andrés-Lacueva, C.; Izquierdo-Pulido, M.; Lamuela-Raventós, R.M. Liquid chromatographic/electrospray ionization tandem mass spectrometric study of the phenolic composition of cocoa (Theobroma cacao). J. Mass Spectrom. 2003, 38, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Boffo, E.F.; Tavares, L.A.; Tobias, A.C.T.; Ferreira, M.M.C.; Ferreira, A.G. Identification of components of Brazilian honey by 1H NMR and classification of its botanical origin by chemometric methods. LWT 2012, 49, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Karabagias, I.K.; Karabagias, V.K.; Badeka, A.V. The Honey volatile code: A collective study and extended version. Foods 2019, 8, 508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odeh, I.; Abu-Lafi, S.; Al-Najjar, I. Determination of unifloral honey volatiles from Centaurea iberica and Zizyphus spinachristi by solid-phase microextraction and gas chromatography-mass spectrometry. Acta Chromatogr. 2014, 26, 485–493. [Google Scholar] [CrossRef] [Green Version]
- Panseri, S.; Manzo, A.; Chiesa, L.M.; Giorgi, A. Melissopalynological and volatile compounds analysis of buckwheat honey from different geographical origins and their role in botanical determination. J. Chem. 2013, 2013, 904202. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Zaldivar-Cruz, J.M.; Kuri, V.; Fernández-López, J.; Carbonell-Barrachina, Á.A.; Pérez-Álvarez, J.Á. Aroma profile and physico-chemical properties of artisanal honey from Tabasco, Mexico. Int. J. Food Sci. Technol. 2010, 45, 1111–1118. [Google Scholar] [CrossRef]
- Salis, S.; Spano, N.; Ciulu, M.; Floris, I.; Pilo, M.I.; Sanna, G. Electrochemical determination of the ‘furanic index’ in honey. Molecules 2021, 26, 4115. [Google Scholar] [CrossRef]
- Jerković, I.; Marijanović, Z.; Kezić, J.; Gugić, M. Headspace, volatile and semi-volatile organic compounds diversity and radical scavenging activity of ultrasonic solvent extracts from amorpha fruticosa honey samples. Molecules 2009, 14, 2717. [Google Scholar] [CrossRef] [Green Version]
- Owczarek-Fendor, A.; De Meulenaer, B.; Scholl, G.; Adams, A.; Van Lancker, F.; Eppe, G.; De Pauw, E.; Scippo, M.L.; De Kimpe, N. Furan formation in starch-based model systems containing carbohydrates in combination with proteins, ascorbic acid and lipids. Food Chem. 2012, 133, 816–821. [Google Scholar] [CrossRef]
- Kuś, P.M.; Czabaj, S.; Jerković, I. Comparison of volatile profiles of meads and related unifloral honeys: Traceability markers. Molecules 2022, 27, 4558. [Google Scholar] [CrossRef] [PubMed]
Parameters | Sidr Honey from Saudi Arabia | Sidr Honey from Egypt | Normal Values | References |
---|---|---|---|---|
Moisture (%) | 18.03 ± 0.05 | 19.03 ± 0.06 | Up to 20 | [18,53] |
EC (mS/cm) | 1.18 ± 0.05 | 1.16 ± 0.01 | 0.8 | [18,54] |
pH | 4.87 ± 0.08 | 5.10 ± 0.01 | 3.4–6.1 | [18,53] |
Free acidity (meq/kg) | 37.50 ± 05 | 36.50 ± 0.05 | Max. 50 | [18,53] |
Total acidity (meq/kg) | 41.06 ± 0.05 | 37.50 ± 0.05 | [53] | |
Lactone acidity (meq/kg) | 3.49 ± 0.005 | 1 ± 0.0 | [53] | |
HMF (mg/kg) | 20.92 ± 0.02 | 11.33 ± 0.01 | 80 | [53,55] |
Diastase (g/100 g) | 59.97 ± 0.05 | 8.64 ± 0.06 | Up to 80 | [53,55] |
Glucose (g/100 g) | 22.51 ± 0.05 | 26.62 ± 0.16 | 25–28 | [26,53] |
Fructose (g/100 g) | 40.33 ± 0.06 | 35.28 ± 0.01 | 33–36 | [26,53] |
Fructose/ glucose | 1.79 ± 0.005 | 1.32 ± 0.01 | 0.9 to 1.35 | [56] |
Sucrose (g/100 g) | 8.94 ± 0.17 | 8.87 ± 0.01 | Up to 10 | [26,53] |
Maltose (g/100 g) | 8.22 ± 0.006 | 8.13 ± 0.01 | 2–16 | [53] |
No. | Compound Name | Rt | (M+H)+ | MF | MS-MS | ESh | SSh | Reference |
---|---|---|---|---|---|---|---|---|
Flavonoids | ||||||||
1 | Catechin | 14.43 | 291.09 | C15H14O6 | 206.8420, 147.0610, 122.0800 | + | + | [84,85] |
2 | 5,6-Dihydroxy-7,3’,4’-Trimethoxyflavone | 14.81 | 345.45 | C18H16O7 | 327.1430, 278.9170, 245.1730, 183.0340, 165.0750, 137.0500 | + | + | [86] |
3 | Isovitexin | 31.11 | 430.91 | C21H20O10 | 403.292, 371.3540, 311.3090 | – | + | [93] https://bit.ly/3IqYxik (accessed on 22 March 2023) |
4 | Eriodictyol | 39.98 | 289.23 | C15H12O6 | 270.9870, 253.0110, 162.9830, 144.9750, 116.9910, | – | + | [87] |
Sugars | ||||||||
5 | Sucrose | 1.76 | 342.40 | C12H22O11 | 180.0360, 162.0558, 144.0044 | + | + | [68] |
6 | Maltotetraose | 2.26 | 667.34 | C24H42O21 | 667.090, 648.40, 505.030, 486.3220, 342.3010, 325.0140, 223.0410, 180.0300 | + | + | [68] |
7 | Maltose | 3.57 | 325.19 (M+H-H2O) | C20H22O4 | 288.942, 271.0200, 258.9580, 253.0100, 241.1143, 229.0660, 162.9790, 144.9800, 135.0000, 126.9980, 108.8764, 96.860 | + | + | [68] https://bit.ly/3lKLL67 (accessed on 22 March 2023) |
Vitamins | ||||||||
8 | Biotin (B8 or H) | 16.01 | 243.40 | C10H16N2O3S | 243.0419, 228.0072, 165.9573, 164.9543 | – | + | [68] |
9 | Vitamin E | 31.29 | 430.33 | C29H50O2 | 401.3180, 387.3050, 219.0980, 205.0260, 164.9960, 149.0590 | + | - | [88] https://bit.ly/3FQzTXd (accessed on 22 March 2023) |
Prenol lipid | ||||||||
10 | (2S,3S,4S,5R,6R)-6-[[(3S,4S,6aR,6bS,8aR,9R,12aS,14bR)-9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-5-[(2S,3R,4S,5R,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxyoxane-2-carboxylic acid | 21.14 | 943.83 | C48H78O18 | 797.3400, 781.4667, 763.1130, 635.1310, 599.3470, 581.4260, 459.1030, 441.3610, 423.3690, 405.3520, 383.4170, 323.13500, 271.2820 | – | + | https://bit.ly/40BfLA9 (accessed on 22 March 2023) |
No. | Compounds | Rt | MW | MF | MS-MS | SSH (%) | ESH (%) |
---|---|---|---|---|---|---|---|
Aldehydes | |||||||
1 | 2-Furaldehyde | 6.28 | 96 | C5H4O2 | 97, 96, 95, 67, 50, 42, 40, 39,38, 37 | 30.19 | – |
2 | Benzaldehyde | 10.53 | 106 | C7H6O | 106, 105, 77, 78, 74 | 5.16 | – |
3 | 2-Furaldehyde, 5-methyl- | 10.65 | 110 | C6H6O2 | 111, 110, 109, 81, 53, 52, 51, 50, 39,43 | 22.91 | – |
4 | Benzeneacetaldehyde | 13.62 | 120 | C8H8O | 120, 92, 91, 89, 65, 51, 39, 63 | 6.19 | 32.06 |
5 | Nonanal | 15.78 | 142 | C9H18O | 124, 95, 57, 56, 55, 44, 43, 41, 39, 32 | 0.25 | 0.77 |
Total | 64.67 | 32.83 | |||||
Acids and esters | |||||||
6 | Carbonic acid, heptyl phenyl ester | 4.61 | 236 | C14H20O3 | 94, 92, 91, 66, 65, 57, 50, 40, 38, 31 | – | 0.24 |
7 | Hexanoic acid | 5.16 | 116 | C6H12O2 | 73, 60, 57, 55, 45, 43, 41, 42, 32, 39 | 4.86 | – |
8 | Tetronic acid | 5.52 | 100 | C4H4O3 | 100, 72, 43 | 1.10 | – |
9 | Isovaleric acid | 6.88 | 102 | C5H10O2 | 87, 69, 61, 60, 45, 43, 42, 41, 39 | 1.50 | 10.48 |
10 | Ethylmethylacetic acid | 7.80 | 102 | C5H10O2 | 87, 74, 73, 69, 57, 56, 55, 45, 41, 39 | – | 11.84 |
11 | Hexanoic acid, 3,5,5-trimethyl- | 17.28 | 156 | C9H18O2 | 103, 83, 60, 57, 4341 | – | 0.69 |
Total | 7.46 | 23.01 | |||||
Ketones | |||||||
12 | Tetrahydrofuran | 3.34 | 72 | C4H8O | 72, 71, 42, 41 | – | 0.15 |
13 | Dihydro-2-methyl-3-furanone | 5.53 | 100 | C5H8O2 | 100, 72, 55, 45, 44, 42, 43 | – | 0.81 |
14 | Furfural | 6.63 | 96 | C5H4O2 | 97, 96,95, 67, 50, 42, 40, 39, 38, 37 | – | 5.54 |
15 | 1,2-Cyclopentanedione | 7.11 | 98 | C5H6O2 | 98, 70, 69, 61, 56, 45, 43, 40, 39, 31 | – | 0.57 |
16 | Furfural, 5-methyl- | 10.65 | 110 | C6H6O2 | 111, 110, 109, 81, 53, 52, 51, 50, 43, 39 | – | 21.21 |
17 | Pantolactone | 13.25 | 130 | C6H10O3 | 72, 71, 68, 57, 56, 55, 53, 43, 41, 39 | 2.87 | – |
18 | 5-formylfurfural | 14.90 | 124 | C6H4O3 | 125, 124, 123,95, 67, 53, 39, 38, 37 | 13.28 | – |
19 | Diglycolic anhydride | 15.34 | 116 | C4H4O4 | 59 | – | 0.03 |
20 | Isophorone | 16.46 | 138 | C9H14O | 138, 95, 83, 82, 67, 54, 53, 41, 39, 32 | – | 3.73 |
21 | 2,6,6-Trimethyl-2-cyclohexene-1,4-dione | 17.33 | 152 | C9H12O2 | 152, 122, 96, 93, 73, 69, 68, 44, 43, 39 | 0.39 | – |
Total | 16.54 | 32.04 | |||||
Phenols | |||||||
22 | Acetylmethylcarbinol | 3.44 | 88 | C4H8O2 | 45, 43, 73, 77, 46, 41, 39 | 6.99 | – |
23 | 1-Butanol, 2-methyl- | 4.33 | 99 | C5H12O | 41, 55, 70,57, 32, 56, 45, 42, 45, 77 | + | – |
24 | Phenyl pentofuranoside | 4.68 | 226 | C11H14O5 | 94, 73, 65, 66, 57, 51, 50, 42, 39, 31 | – | 1.19 |
25 | 3-Pentanol | 5.36 | 88 | C5H12O | 149, 133, 74, 59, 58, 55, 41, 39, 31 | 1.48 | – |
26 | 4-Penten-2-ol | 6.80 | 86 | C5H10O | 67, 45, 42, 39, 37 | 0.94 | – |
27 | 3-Hydroxymethylfuran | 7.10 | 98 | C5H6O2 | 98, 97, 95, 87, 81, 69, 53, 51, 42, 41 | – | 1.29 |
28 | Phenol | 11.56 | 94 | C6H6O | 94, 66, 65 | – | 0.37 |
29 | Benzyl alcohol | 13.39 | 108 | C7H8O | 108, 107, 79, 77 | + | 1.21 |
30 | Cis-Linaloloxide | 14.75 | 170 | C10H18O2 | 111, 97, 94, 93, 83, 81, 67, 55, 59, 43 | 0.90 | – |
31 | Linalol | 15.78 | 154 | C10H18O | 93, 83, 80, 71, 69, 55 | – | 0.39 |
Total | 10.31 | 4.45 | |||||
Nitrogenous compounds | |||||||
32 | Ammonium acetate | 2.36 | 77 | C2H7NO2 | 75, 61, 60, 55, 45, 43, 33 | – | 0.66 |
33 | Ethanamine, 2-methoxy- | 5.02 | 75 | C3H9NO | 77, 75, 70,45 | 0.37 | – |
34 | Ethanamine, N-butylidene- | 11.34 | 99 | C6H13N | 99 | – | 0.05 |
35 | Cyprodinil | 34.18 | 225 | C14H15N3 | 225, 224, 179, 194, 85 | – | 0.35 |
Total | 0.37 | 1.06 | |||||
Anthraquinone | |||||||
36 | Anthraquinone, 1-(o-chlorophenyl)- | 12.17 | 318 | C20H11ClO2 | 284, 283, 267, 207, 193, 191, 177, 133, 125, 73 | – | 6.38 |
Total | 6.38 | ||||||
Hydrocarbon | |||||||
37 | Cyclohexene, 3,5,5-trimethyl- | 17.32 | 124 | C9H16 | 32, 40, 124,109, 69, 68, 56, 55, 53, 41 | 0.59 | – |
Total | 0.59 | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Wahed, A.A.A.; Rashwan, E.H.; AlAjmi, M.F.; Khalifa, S.A.M.; Saeed, A.; Zhao, C.; Naggar, Y.A.; Guo, Z.; Musharraf, S.G.; Wang, K.; et al. Sidr Honeys Physical and Chemical Characterization, a Comprehensive Approach through LC-MS/MS, NMR, and GC-MS Analysis. Separations 2023, 10, 372. https://doi.org/10.3390/separations10070372
El-Wahed AAA, Rashwan EH, AlAjmi MF, Khalifa SAM, Saeed A, Zhao C, Naggar YA, Guo Z, Musharraf SG, Wang K, et al. Sidr Honeys Physical and Chemical Characterization, a Comprehensive Approach through LC-MS/MS, NMR, and GC-MS Analysis. Separations. 2023; 10(7):372. https://doi.org/10.3390/separations10070372
Chicago/Turabian StyleEl-Wahed, Aida A. Abd, Eman H. Rashwan, Mohamed F. AlAjmi, Shaden A. M. Khalifa, Aamer Saeed, Chao Zhao, Yahya Al Naggar, Zhiming Guo, Syed G. Musharraf, Kai Wang, and et al. 2023. "Sidr Honeys Physical and Chemical Characterization, a Comprehensive Approach through LC-MS/MS, NMR, and GC-MS Analysis" Separations 10, no. 7: 372. https://doi.org/10.3390/separations10070372
APA StyleEl-Wahed, A. A. A., Rashwan, E. H., AlAjmi, M. F., Khalifa, S. A. M., Saeed, A., Zhao, C., Naggar, Y. A., Guo, Z., Musharraf, S. G., Wang, K., El-Seedi, H. R., & Yosri, N. (2023). Sidr Honeys Physical and Chemical Characterization, a Comprehensive Approach through LC-MS/MS, NMR, and GC-MS Analysis. Separations, 10(7), 372. https://doi.org/10.3390/separations10070372