Strategies for Preventing Viral Diseases of Domestic Animals

A special issue of Viruses (ISSN 1999-4915). This special issue belongs to the section "Animal Viruses".

Deadline for manuscript submissions: closed (30 June 2024) | Viewed by 10373

Special Issue Editors


E-Mail Website
Guest Editor
Department of Diagnosis and Clinical Sciences, Faculty of Biological and Veteterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
Interests: veterinary virology; epidemiology; poultry and swine viruses
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Social Medicine and Public Health, Medical University of Warsaw, ul. Oczki 3, 02-007 Warsaw, Poland
Interests: disinfection in medical sector; microbiology; virology

Special Issue Information

Dear Colleagues,

The aim of this Special Issue is to present a broad scope of review on viral diseases, especially in domestic animals. The potential authors are cordially welcome to present their input regarding prevention, biosecurity measures and further perspectives to limit further spread of economically important diseases. All potential authors are encouraged to submit reviews and articles regarding strategies to limit the spread of infectious diseases in domestic animals.

Prof. Dr. Grzegorz Wozniakowski
Dr. Patryk Tarka
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Viruses is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • domestic animals
  • viral diseases
  • prevention strategies
  • biosecurity
  • vaccines

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

13 pages, 3133 KiB  
Article
Tenacity of Animal Disease Viruses on Wood Surfaces Relevant to Animal Husbandry
by Martin J. Oettler, Franz J. Conraths, Uwe Roesler, Sven Reiche, Timo Homeier-Bachmann and Nicolai Denzin
Viruses 2024, 16(5), 789; https://doi.org/10.3390/v16050789 - 15 May 2024
Viewed by 746
Abstract
The aim of this study was to analyse the hygienic suitability of wood often used in animal husbandry. To this end, the inactivation of viruses (Enterovirus E as a surrogate for non-enveloped viruses and Newcastle disease virus as a surrogate for enveloped viruses) [...] Read more.
The aim of this study was to analyse the hygienic suitability of wood often used in animal husbandry. To this end, the inactivation of viruses (Enterovirus E as a surrogate for non-enveloped viruses and Newcastle disease virus as a surrogate for enveloped viruses) on germ carriers consisting of various types of wood was studied over an extended period to assess the biosafety of wood as an agricultural building material. The study was designed to assess the intrinsic biocidal activity of the wood itself, without the use of a disinfectant. The laboratory tests were based on German test guidelines and current European standards. Five different types of wood germ carriers, i.e., spruce (Picea abies), pine (Pinus sylvestris), poplar (Populus sp.), beech (Fagus sylvatica) and Douglas fir (Pseudotsuga menziesii), as well as stainless-steel carriers, were inoculated with enveloped and non-enveloped viruses and stored for up to four months, and the remaining infectivity of the viruses was continuously assessed. The results showed that intact, finely sawn timber with a low depth of roughness had an inactivating effect on the viruses up to 7.5 decadal logarithmic levels. For the non-enveloped virus, inactivation was fastest on Douglas fir wood, with the target reduction for effective inactivation (reduction by factor 4.0 log10) being achieved after two weeks, and for the enveloped virus on pine wood, it was already achieved from the day of drying. The hygienic effects of the wood carriers may be due to their hygroscopic properties and wood constituents. These effects offer potential for further investigation, including tests with other wood species rich in extractives. Full article
(This article belongs to the Special Issue Strategies for Preventing Viral Diseases of Domestic Animals)
Show Figures

Figure 1

23 pages, 3059 KiB  
Article
Characterization of an African Swine Fever Virus Field Isolate from Vietnam with Deletions in the Left Variable Multigene Family Region
by Aruna Ambagala, Kalhari Goonewardene, Ian El Kanoa, Thi Tam Than, Van Tam Nguyen, Thi Ngoc Ha Lai, Thi Lan Nguyen, Cassidy N. G. Erdelyan, Erin Robert, Nikesh Tailor, Chukwunonso Onyilagha, Lindsey Lamboo, Katherine Handel, Michelle Nebroski, Oksana Vernygora, Oliver Lung and Van Phan Le
Viruses 2024, 16(4), 571; https://doi.org/10.3390/v16040571 - 7 Apr 2024
Cited by 3 | Viewed by 2578
Abstract
In this paper, we report the characterization of a genetically modified live-attenuated African swine fever virus (ASFV) field strain isolated from Vietnam. The isolate, ASFV-GUS-Vietnam, belongs to p72 genotype II, has six multi-gene family (MGF) genes deleted, and an Escherichia coli GusA gene [...] Read more.
In this paper, we report the characterization of a genetically modified live-attenuated African swine fever virus (ASFV) field strain isolated from Vietnam. The isolate, ASFV-GUS-Vietnam, belongs to p72 genotype II, has six multi-gene family (MGF) genes deleted, and an Escherichia coli GusA gene (GUS) inserted. When six 6–8-week-old pigs were inoculated with ASFV-GUS-Vietnam oro-nasally (2 × 105 TCID50/pig), they developed viremia, mild fever, lethargy, and inappetence, and shed the virus in their oral and nasal secretions and feces. One of the pigs developed severe clinical signs and was euthanized 12 days post-infection, while the remaining five pigs recovered. When ASFV-GUS-Vietnam was inoculated intramuscularly (2 × 103 TCID50/pig) into four 6-8 weeks old pigs, they also developed viremia, mild fever, lethargy, inappetence, and shed the virus in their oral and nasal secretions and feces. Two contact pigs housed together with the four intramuscularly inoculated pigs, started to develop fever, viremia, loss of appetite, and lethargy 12 days post-contact, confirming horizontal transmission of ASFV-GUS-Vietnam. One of the contact pigs died of ASF on day 23 post-contact, while the other one recovered. The pigs that survived the exposure to ASFV-GUS-Vietnam via the mucosal or parenteral route were fully protected against the highly virulent ASFV Georgia 2007/1 challenge. This study showed that ASFV-GUS-Vietnam field isolate is able to induce complete protection in the majority of the pigs against highly virulent homologous ASFV challenge, but has the potential for horizontal transmission, and can be fatal in some animals. This study highlights the need for proper monitoring and surveillance when ASFV live-attenuated virus-based vaccines are used in the field for ASF control in endemic countries. Full article
(This article belongs to the Special Issue Strategies for Preventing Viral Diseases of Domestic Animals)
Show Figures

Figure 1

Review

Jump to: Research, Other

17 pages, 7539 KiB  
Review
Nine Years of African Swine Fever in Poland
by Mateusz Kruszyński, Kacper Śróda, Małgorzata Juszkiewicz, Dominika Siuda, Monika Olszewska and Grzegorz Woźniakowski
Viruses 2023, 15(12), 2325; https://doi.org/10.3390/v15122325 - 27 Nov 2023
Cited by 1 | Viewed by 1805
Abstract
(1) Background: African swine fever (ASF) is a highly contagious and fatal haemorrhagic disease in domestic pigs and wild boars, causing significant economic loss to the swine industry in the European Union. The genotype II of African swine fever has spread in many [...] Read more.
(1) Background: African swine fever (ASF) is a highly contagious and fatal haemorrhagic disease in domestic pigs and wild boars, causing significant economic loss to the swine industry in the European Union. The genotype II of African swine fever has spread in many European countries since the virus was detected in 2007 in Georgia. In Poland, the genotype II of the ASF virus was confirmed on 17 February 2014 in the eastern part of the country and appeared to have been transmitted to Poland from Belarus. Poland has been particularly affected by ASF epidemics in the last decade, resulting in a significant decline in the Polish pig population. Wild boars are the main reservoir of the African swine fever virus (ASFV), but human activities such as transportation and illegal animal trade are the primary reasons for the long-distance transmission of the disease. (2) Conclusions: During the nine years of ASF in Poland, multiple measures have been taken to prevent the spread of the virus among the wild boar population via the passive and active surveillance of these animals. With regard to pig farms, the only effective measure for preventing the spread of ASF is the efficient enforcement by state authorities of the biosecurity standards and the farmers’ compliance with them. Full article
(This article belongs to the Special Issue Strategies for Preventing Viral Diseases of Domestic Animals)
Show Figures

Figure 1

17 pages, 1551 KiB  
Review
African Swine Fever: Transmission, Spread, and Control through Biosecurity and Disinfection, Including Polish Trends
by Małgorzata Juszkiewicz, Marek Walczak, Grzegorz Woźniakowski and Katarzyna Podgórska
Viruses 2023, 15(11), 2275; https://doi.org/10.3390/v15112275 - 19 Nov 2023
Cited by 10 | Viewed by 2961
Abstract
African swine fever is a contagious disease, affecting pigs and wild boars, which poses a major threat to the pig industry worldwide and, therefore, to the agricultural economies of many countries. Despite intensive studies, an effective vaccine against the disease has not yet [...] Read more.
African swine fever is a contagious disease, affecting pigs and wild boars, which poses a major threat to the pig industry worldwide and, therefore, to the agricultural economies of many countries. Despite intensive studies, an effective vaccine against the disease has not yet been developed. Since 2007, ASFV has been circulating in Eastern and Central Europe, covering an increasingly large area. As of 2018, the disease is additionally spreading at an unprecedented scale in Southeast Asia, nearly ruining China’s pig-producing sector and generating economic losses of approximately USD 111.2 billion in 2019. ASFV’s high resistance to environmental conditions, together with the lack of an approved vaccine, plays a key role in the spread of the disease. Therefore, the biosecurity and disinfection of pig farms are the only effective tools through which to prevent ASFV from entering the farms. The selection of a disinfectant, with research-proven efficacy and proper use, taking into account environmental conditions, exposure time, pH range, and temperature, plays a crucial role in the disinfection process. Despite the significant importance of ASF epizootics, little information is available on the effectiveness of different disinfectants against ASFV. In this review, we have compiled the current knowledge on the transmission, spread, and control of ASF using the principles of biosecurity, with particular attention to disinfection, including a perspective based on Polish experience with ASF control. Full article
(This article belongs to the Special Issue Strategies for Preventing Viral Diseases of Domestic Animals)
Show Figures

Figure 1

Other

Jump to: Research, Review

11 pages, 1559 KiB  
Brief Report
A Triple Gene-Deleted Pseudorabies Virus-Vectored Subunit PCV2b and CSFV Vaccine Protect Pigs against a Virulent CSFV Challenge
by Ediane Silva, Elizabeth Medina-Ramirez, Selvaraj Pavulraj, Douglas P. Gladue, Manuel Borca and Shafiqul I. Chowdhury
Viruses 2023, 15(11), 2143; https://doi.org/10.3390/v15112143 - 25 Oct 2023
Cited by 1 | Viewed by 1439
Abstract
Classical swine fever (CSF) remains one of the most economically significant viral diseases affecting domestic pigs and wild boars worldwide. To develop a safe and effective vaccine against CSF, we have constructed a triple gene-deleted pseudorabies virus (PRVtmv)-vectored bivalent subunit vaccine against porcine [...] Read more.
Classical swine fever (CSF) remains one of the most economically significant viral diseases affecting domestic pigs and wild boars worldwide. To develop a safe and effective vaccine against CSF, we have constructed a triple gene-deleted pseudorabies virus (PRVtmv)-vectored bivalent subunit vaccine against porcine circovirus type 2b (PCV2b) and CSFV (PRVtmv+). In this study, we determined the protective efficacy of the PRVtmv+ against virulent CSFV challenge in pigs. The results revealed that the sham-vaccinated control group pigs developed severe CSFV-specific clinical signs characterized by pyrexia and diarrhea, and became moribund on or before the seventh day post challenge (dpc). However, the PRVtmv+-vaccinated pigs survived until the day of euthanasia at 21 dpc. A few vaccinated pigs showed transient diarrhea but recovered within a day or two. One pig had a low-grade fever for a day but recovered. The sham-vaccinated control group pigs had a high level of viremia, severe lymphocytopenia, and thrombocytopenia. In contrast, the vaccinated pigs had a low–moderate degree of lymphocytopenia and thrombocytopenia on four dpc, but recovered by seven dpc. Based on the gross pathology, none of the vaccinated pigs had any CSFV-specific lesions. Therefore, our results demonstrated that the PRVtmv+ vaccinated pigs are protected against virulent CSFV challenge. Full article
(This article belongs to the Special Issue Strategies for Preventing Viral Diseases of Domestic Animals)
Show Figures

Figure 1

Back to TopTop