Role of Lectins in Viral Infections and Antiviral Intervention

A special issue of Viruses (ISSN 1999-4915). This special issue belongs to the section "Viral Immunology, Vaccines, and Antivirals".

Deadline for manuscript submissions: 31 May 2025 | Viewed by 1327

Special Issue Editor


E-Mail Website
Guest Editor
School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
Interests: lectin-glycan interaction; pathogen recognition; cell signalling; antigen specific immunoregulation; viral infection, allergy and autoimmune diseases; nanoglycobiology

Special Issue Information

Dear Colleagues,

Lectins are glycan-binding proteins which play a variety of important roles in biology, including mediating specific biorecogniton and cell–cell communication and modulating signal transduction. The recognition of viral surface-specific glycans by some immune cell lectins often leads to immune activation, but such binding can also be exploited by some viruses to establish their attachment to the host cell to facilitate infection. Binding can also generate signals to modulate immune responses for viral immune evasion.

In general, glycans exhibit low intrinsic immunogenicity and often play a protective role in viruses by shielding their peptide epitopes from antibody recognition; in some cases, they also enhance virus binding to their receptors. Hence, viral glycosylation sites are mostly conserved across different variants, making them a highly attractive target for developing broad-spectrum, long-lasting antivirals. 

In this Special Issue, we will collect both original and review articles concerning topics such as how lectin–glycan interactions enhance viral infectivity and how to target specific lectin–glycan interactions for the development of new antiviral and immunotherapeutical strategies.

Dr. Yuan Guo
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Viruses is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • lectin–glycan interaction
  • membrane fusion
  • immune evasion
  • multivalency
  • glycan conjugates
  • lectin constructs
  • antivirals

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 4189 KiB  
Article
Monovalent Lectin Microvirin Utilizes Hydropathic Recognition of HIV-1 Env for Inhibition of Virus Cell Infection
by Bibek Parajuli, Kriti Acharya, Harry Charles Bach, Shiyu Zhang, Cameron F. Abrams and Irwin Chaiken
Viruses 2025, 17(1), 82; https://doi.org/10.3390/v17010082 - 9 Jan 2025
Viewed by 885
Abstract
Microvirin is a lectin molecule known to have monovalent interaction with glycoprotein gp120. A previously reported high-resolution structural analysis defines the mannobiose-binding cavity of Microvirin. Nonetheless, structure does not directly define the energetics of binding contributions of protein contact residues. To better understand [...] Read more.
Microvirin is a lectin molecule known to have monovalent interaction with glycoprotein gp120. A previously reported high-resolution structural analysis defines the mannobiose-binding cavity of Microvirin. Nonetheless, structure does not directly define the energetics of binding contributions of protein contact residues. To better understand the nature of the MVN-Env glycan interaction, we used mutagenesis to evaluate the residue contributions to the mannobiose binding site of MVN that are important for Env gp120 glycan binding. MVN binding site amino acid residues were individually replaced by alanine, and the resulting purified recombinant MVN variants were examined for gp120 interaction using competition Enzyme-Linked Immunosorbent Assay (ELISA), biosensor surface plasmon resonance, calorimetry, and virus neutralization assays. Our findings highlight the role of both uncharged polar and non-polar residues in forming a hydropathic recognition site for the monovalent glycan engagement of Microvirin, in marked contrast to the charged residues utilized in the two Cyanovirin-N (CVN) glycan-binding sites. Full article
(This article belongs to the Special Issue Role of Lectins in Viral Infections and Antiviral Intervention)
Show Figures

Graphical abstract

Back to TopTop