Occurrence, Toxicity, Metabolism, Analysis and Control of Mycotoxins

A special issue of Toxins (ISSN 2072-6651). This special issue belongs to the section "Mycotoxins".

Deadline for manuscript submissions: 31 July 2025 | Viewed by 11346

Special Issue Editor

State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
Interests: mycotoxins; rice disease; fumonisins; pathogenicity; detoxication; biocontrol
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Mycotoxins, poisonous chemical compounds produced by certain filamentous fungi, are a global food safety hazard. They occur all over the world and are closely associated with food commodities, especially agricultural crops. Currently, 400 mycotoxins have been identified, and these mycotoxins contaminate about 25% of the world’s food production. The most important and dangerous are aflatoxins, ochratoxins, fumonisins, deoxynivalenol, zearalenone, trichothecenes, patulin and ergot alkaloids. The effects of exposure to mycotoxins pose adverse impacts to human and animal health, as well as economic development and international trade. Multiple disciplines have driven on research on mycotoxins, making it a truly interdisciplinary area of scientific endeavor. The biochemistry, physiology and genetics of mycotoxin have been elucidated over the last decade. The understanding of pathogenic fungal–host crosstalk remains a challenge, partly because mycotoxin biosynthesis strongly depends on physicochemical parameters and environmental conditions. It is necessary and crucial to develop the analytical techniques to detect and quantify mycotoxins. Preventative measures for crop diseases as well as mycotoxins contamination should be employed to manage pathogens and mycotoxins for farmers or feed managers.

This Special Issue of Toxins aims to highlight the following areas:

  • The status of mycotoxin occurrence and co-occurrence in agro-food systems and ecological niches;
  • The biological characteristics of fungal ecology and secondary metabolism of toxigenic fungi;
  • The genetic constitution, biochemical pathways and regulatory mechanisms of mycotoxins biosynthesis;
  • The influence of biological, chemical, physiological and environmental factors on toxin production;
  • The toxicological effects of mycotoxins such as virulence factors on plants, animals and humans;
  • Novel strategies to discover new mycotoxins as well as their physiological function;
  • Advanced analytical methods for the detection and quantification of mycotoxin in food and feed;
  • Chemical, physical and biological techniques for the degradation or detoxification of mycotoxins;
  • Efficient management approaches in pre-harvest, during harvest, storage and processing.

Dr. Ling Wang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a double-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Toxins is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • mycotoxin
  • filamentous fungi
  • secondary metabolism
  • toxic mechanism
  • metabolic regulation
  • pathogenicity/virulence
  • analytical methods
  • detection and quantification
  • degradation or detoxification
  • control strategies

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 2654 KiB  
Article
Effect of a Yeast β-Glucan on the Performance, Intestinal Integrity, and Liver Function of Broiler Chickens Fed a Diet Naturally Contaminated with Fusarium Mycotoxins
by Virginie Marquis, Julie Schulthess, Francesc Molist and Regiane R. Santos
Toxins 2025, 17(2), 51; https://doi.org/10.3390/toxins17020051 - 23 Jan 2025
Viewed by 945
Abstract
This study evaluated the effect of a yeast β-glucan on the performance, gut health, liver function, and bacterial translocation of broiler chickens fed a diet contaminated with Fusarium mycotoxins. One-day-old male Ross broilers (n = 234) were divided into three treatments with six [...] Read more.
This study evaluated the effect of a yeast β-glucan on the performance, gut health, liver function, and bacterial translocation of broiler chickens fed a diet contaminated with Fusarium mycotoxins. One-day-old male Ross broilers (n = 234) were divided into three treatments with six replicates each, and a cage containing 13 birds was the experimental unit. The animals were fed a maize–soybean-based control diet or maize–soybean diets naturally contaminated with Fusarium mycotoxins, where deoxynivalenol (DON) was the major mycotoxin (~3 mg/kg), followed by zearalenone (ZEN) (~0.5 mg/kg). The Fusarium-contaminated diet was either supplemented or not with a yeast β-glucan over 28 days. Dietary exposure to Fusarium mycotoxins did not affect production performance. On the other hand, Fusarium mycotoxin exposure significantly decreased jejunum villus height (VH) and crypt depth (CD) on d13, and this effect was counteracted by the yeast β-glucan. On d28, the jejunum VH:CD ratio was significantly higher in the broiler chickens that were fed the Fusarium-contaminated diet with yeast β-glucan (125 mg/kg diet) added to it. The ileal villus area was significantly decreased in the broiler chickens fed Fusarium-contaminated diet, regardless of the supplementation with yeast β-glucan. Dietary contamination caused intestinal oxidative stress and inflammation, probably affecting nutrient absorption on d28, and resulted in a significant increase in the translocation of Escherichia coli to the liver. Dietary supplementation with yeast β-glucan minimized these negative effects. Full article
(This article belongs to the Special Issue Occurrence, Toxicity, Metabolism, Analysis and Control of Mycotoxins)
Show Figures

Figure 1

20 pages, 1431 KiB  
Article
Mapping Variability of Mycotoxins in Individual Oat Kernels from Batch Samples: Implications for Sampling and Food Safety
by Irene Teixido-Orries, Francisco Molino, Bianca Castro-Criado, Monika Jodkowska, Angel Medina, Sonia Marín and Carol Verheecke-Vaessen
Toxins 2025, 17(1), 34; https://doi.org/10.3390/toxins17010034 - 11 Jan 2025
Viewed by 1119
Abstract
Oats are susceptible to contamination by Fusarium mycotoxins, including deoxynivalenol (DON), zearalenone (ZEN), and T-2/HT-2 toxins, posing food safety risks. This study analyses the variation in levels of 14 mycotoxins in 200 individual oat kernels from two DON-contaminated batch samples (mean = 3498 [...] Read more.
Oats are susceptible to contamination by Fusarium mycotoxins, including deoxynivalenol (DON), zearalenone (ZEN), and T-2/HT-2 toxins, posing food safety risks. This study analyses the variation in levels of 14 mycotoxins in 200 individual oat kernels from two DON-contaminated batch samples (mean = 3498 µg/kg) using LC-MS/MS. The samples also contained deoxynivalenol-3-glucoside (DON-3G), 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), and ZEN. Contamination levels varied notably among individual kernels, with DON detected in 70% of them, followed by DON-3G (24.5%) and 3-ADON (20.5%). Importantly, 8% of kernels exceeded the EU legal limit for DON (1750 µg/kg), and some occasionally surpassed limits for ZEN and T-2/HT-2. Correlation analyses revealed strong associations between DON and its derivatives but weaker correlations with other toxins. Mycotoxin ratios varied widely, indicating that although they often co-occur, their concentrations differ between kernels. Contamination did not significantly impact kernel weight, though a slight trend toward lower weights in contaminated kernels was noted. Additionally, sampling statistics showed that as the percentage of selected kernels increased, the probability of batch sample rejection for DON contamination rose significantly. The study highlights the heterogeneity of mycotoxin contamination in oat batches, emphasising the importance of accurate detection and regulatory compliance to ensure safer oat-based products. Full article
(This article belongs to the Special Issue Occurrence, Toxicity, Metabolism, Analysis and Control of Mycotoxins)
Show Figures

Figure 1

17 pages, 19758 KiB  
Article
The Protein Engineering of Zearalenone Hydrolase Results in a Shift in the pH Optimum of the Relative Activity of the Enzyme
by Anna Dotsenko, Igor Sinelnikov, Ivan Zorov, Yury Denisenko, Aleksandra Rozhkova and Larisa Shcherbakova
Toxins 2024, 16(12), 540; https://doi.org/10.3390/toxins16120540 - 13 Dec 2024
Viewed by 1097
Abstract
An acidic shift in the pH profile of Clonostachys rosea zearalenone hydrolase (ZHD), the most effective and well-studied zearalenone-specific lactone hydrolase, is required to extend the range of applications for the enzyme as a decontamination agent in the feed and food production industries. [...] Read more.
An acidic shift in the pH profile of Clonostachys rosea zearalenone hydrolase (ZHD), the most effective and well-studied zearalenone-specific lactone hydrolase, is required to extend the range of applications for the enzyme as a decontamination agent in the feed and food production industries. Amino acid substitutions were engineered in the active center of the enzyme to decrease the pKa values of the catalytic residues E126 and H242. The T216K substitution provided a shift in the pH optimum by one unit to the acidic region, accompanied by a notable expansion in the pH profile under acidic conditions. The engineered enzyme demonstrated enhanced activity within the pH range of 3–5 and improved the activity within the pH ranging from 6 to 10. The D31N and D31A substitutions also resulted in a two-unit shift in the pH optimum towards acidic conditions, although this was accompanied by a significant reduction in the enzyme activity. The D31S substitution resulted in a shift in the pH profile towards the alkaline region. The alterations in the enzyme properties observed following the T216K substitution were consistent with the conditions required for the ZHD application as decontamination enzymes at acidic pH values (from 3.0 to 6.0). Full article
(This article belongs to the Special Issue Occurrence, Toxicity, Metabolism, Analysis and Control of Mycotoxins)
Show Figures

Figure 1

21 pages, 4145 KiB  
Article
Assessing the Potential Synergistic/Antagonistic Effects of Citrinin and Cannabidiol on SH-SY5Y, HepG2, HEK293 Cell Lines, and Human Lymphocytes
by Dubravka Rašić, Antonio Zandona, Maja Katalinić, Martin Češi and Nevenka Kopjar
Toxins 2024, 16(12), 534; https://doi.org/10.3390/toxins16120534 - 11 Dec 2024
Cited by 1 | Viewed by 1115
Abstract
The increasing use of Cannabis sativa products for medicinal, dietary, and recreational purposes has raised concerns about mycotoxin contamination in cannabis and hemp. Mycotoxins persist in these products’ post-processing, posing health risks via multiple exposure routes. This study investigated cytotoxic and genotoxic interactions [...] Read more.
The increasing use of Cannabis sativa products for medicinal, dietary, and recreational purposes has raised concerns about mycotoxin contamination in cannabis and hemp. Mycotoxins persist in these products’ post-processing, posing health risks via multiple exposure routes. This study investigated cytotoxic and genotoxic interactions between cannabidiol (CBD) and the mycotoxin citrinin (CIT) using human cell models: SH-SY5Y, HepG2, HEK293, and peripheral blood lymphocytes. IC50 values and membrane disruption were initially assessed, followed by an evaluation of genotoxicity in lymphocytes using the Comet Assay and Cytokinesis Blocked Micronucleus Cytome Assay. Obtained findings demonstrate that cell-type sensitivity varied across treatments, with combined CBD and CIT exposure exhibiting distinct interactions. Lactate dehydrogenase (LDH) release remained minimal, suggesting cytotoxicity did not stem from membrane disruption but likely involved intracellular pathways. In lymphocytes, CBD alone produced negligible cyto/genotoxic effects and weak antiproliferative responses, whereas CIT displayed clear toxic impacts. DNA damage indicates that CIT may induce genome instability through indirect mechanisms rather than direct DNA interaction, with evidence of potential aneuploidic effects from the CBMN Cyt Assay. Combined exposure led to a reduction in CIT-induced DNA and cytogenetic damage, suggesting CIT’s potential interference with the beneficial properties of CBD. These results provide a foundation for further toxicological assessments and highlight the necessity of standardized mycotoxin monitoring in cannabis-derived products. Full article
(This article belongs to the Special Issue Occurrence, Toxicity, Metabolism, Analysis and Control of Mycotoxins)
Show Figures

Figure 1

14 pages, 469 KiB  
Article
The Potential Influence of the Presence of Mycotoxins in Human Follicular Fluid on Reproductive Outcomes
by Apolka Szentirmay, Zsófia Molnár, Patrik Plank, Miklós Mézes, Attila Sajgó, Attila Martonos, Tímea Buzder, Miklós Sipos, Lili Hruby, Zsuzsanna Szőke and Levente Sára
Toxins 2024, 16(12), 509; https://doi.org/10.3390/toxins16120509 - 25 Nov 2024
Viewed by 1843
Abstract
The effect of mycotoxin exposure on follicular fluid composition and reproductive outcomes in women undergoing in vitro fertilisation (IVF) was investigated in this study. Twenty-five patients were included, and follicular fluid and serum samples were analysed for various mycotoxins. Principal observations:1. Mycotoxin presence: [...] Read more.
The effect of mycotoxin exposure on follicular fluid composition and reproductive outcomes in women undergoing in vitro fertilisation (IVF) was investigated in this study. Twenty-five patients were included, and follicular fluid and serum samples were analysed for various mycotoxins. Principal observations:1. Mycotoxin presence: All examined mycotoxins were detected in follicular fluid. Follicular fluid (ff) levels: Deoxynivalenol (DON), alfa-Zearalenol (α-ZOL), Zearalenone (ZEN), and total aflatoxin (AFs) were significantly higher in follicular fluid than in serum. 2. Follicular fluid and reproductive outcomes: A positive correlation was observed between the ratio of oocytes to total follicles and the follicular Fumonisin B1 (FB1) levels. Multiple linear regression analysis revealed a significant relationship between DON and T-2/HT-2 toxins (T2/HT2) levels in the follicular fluid. 3. Hormone levels: Follicular 17-beta estradiol (E2) and progesterone (P4) levels were higher than the serum levels. Follicular P4 correlated with serum P4 and Anti-Müllerian hormone (AMH) levels. In contrast, follicular E2 did not correlate with plasma E2 levels. 4. Mycotoxin–hormone interactions: A positive correlation was observed between follicular P4 and T2/HT2 toxin levels, whereas a negative correlation was found between ffE2 and ffT2/HT2, and a positive correlation was found between ZEN and E2. Conclusion: This study elucidated the presence of various mycotoxins in the follicular fluid and their potential influence on reproductive outcomes. Further research is warranted to clarify the specific mechanisms underlying these effects and develop strategies for detecting mycotoxin exposure in women undergoing IVF. Full article
(This article belongs to the Special Issue Occurrence, Toxicity, Metabolism, Analysis and Control of Mycotoxins)
Show Figures

Figure 1

16 pages, 3555 KiB  
Article
Simultaneous Degradation of AFB1 and ZEN by CotA Laccase from Bacillus subtilis ZJ-2019-1 in the Mediator-Assisted or Immobilization System
by Boquan Gao, Wei An, Jianwen Wu, Xiumin Wang, Bing Han, Hui Tao, Jie Liu, Zhenlong Wang and Jinquan Wang
Toxins 2024, 16(10), 445; https://doi.org/10.3390/toxins16100445 - 16 Oct 2024
Viewed by 1825
Abstract
The global prevalence of aflatoxin B1 (AFB1) and zearalenone (ZEN) contamination in food and feed poses a serious health risk to humans and animals. Recently, enzymatic detoxification has received increasing attention, yet most enzymes are limited to degrading only one type of mycotoxin, [...] Read more.
The global prevalence of aflatoxin B1 (AFB1) and zearalenone (ZEN) contamination in food and feed poses a serious health risk to humans and animals. Recently, enzymatic detoxification has received increasing attention, yet most enzymes are limited to degrading only one type of mycotoxin, and free enzymes often exhibit reduced stability and activity, limiting their practicality in real-world applications. In this study, the laccase CotA gene from ZEN/AFB1-degrading Bacillus subtilis ZJ-2019-1 was cloned and successfully expressed in Escherichia coli BL21, achieving a protein yield of 7.0 mg/g. The recombinant CotA (rCotA) completely degraded AFB1 and ZEN, with optimal activity at 70 °C and pH 7.0. After rCotA treatment, neither AFB1 nor ZEN showed significantly cytotoxicity to mouse macrophage cell lines. Additionally, the AFB1/ZEN degradation efficiency of rCotA was significantly enhanced by five natural redox mediators: acetosyringone, syringaldehyde, vanillin, matrine, and sophoridin. Among them, the acetosyringone-rCotA was the most effective mediator system, which could completely degrade 10 μg of AFB1 and ZEN within 1 h. Furthermore, the chitosan-immobilized rCotA system exhibited higher degradation activity than free rCotA. The immobilized rCotA degraded 27.95% of ZEN and 41.37% of AFB1 in contaminated maize meal within 12 h, and it still maintained more than 40% activity after 12 reuse cycles. These results suggest that media-assisted or immobilized enzyme systems not only boost degradation efficiency but also demonstrate remarkable reusability, offering promising strategies to enhance the degradation efficiency of rCotA for mycotoxin detoxification. Full article
(This article belongs to the Special Issue Occurrence, Toxicity, Metabolism, Analysis and Control of Mycotoxins)
Show Figures

Figure 1

Review

Jump to: Research

31 pages, 1729 KiB  
Review
Dietary Mycotoxins: An Overview on Toxicokinetics, Toxicodynamics, Toxicity, Epidemiology, Detection, and Their Mitigation with Special Emphasis on Aflatoxicosis in Humans and Animals
by James Kibugu, Leonard Munga, David Mburu, Fredrick Maloba, Joanna E. Auma, Delia Grace and Johanna F. Lindahl
Toxins 2024, 16(11), 483; https://doi.org/10.3390/toxins16110483 - 8 Nov 2024
Cited by 1 | Viewed by 2273
Abstract
Mycotoxins are secondary metabolites of filamentous fungi and ubiquitous dietary contaminants. Aflatoxins, a group of mycotoxins with high prevalence and toxicity, have raised a high level of public health concern, the most prevalent and toxic being aflatoxin B1 (AFB1). Many aspects appertaining to [...] Read more.
Mycotoxins are secondary metabolites of filamentous fungi and ubiquitous dietary contaminants. Aflatoxins, a group of mycotoxins with high prevalence and toxicity, have raised a high level of public health concern, the most prevalent and toxic being aflatoxin B1 (AFB1). Many aspects appertaining to AFB1 poisoning are not well understood. Yet this information is necessary to devise appropriate surveillance and mitigation strategies against human and animal aflatoxicosis. This review provides an in-depth update of work carried out on mycotoxin poisoning, particularly aflatoxicosis in humans and animals, to identify gaps in knowledge. Hypotheses explaining the functional significance of mycotoxins in fungal biology and their dietary epidemiological data are presented and briefly discussed. The toxicology of aflatoxins and the challenges of their mitigation are discussed in depth. It was concluded that the identification of potential mycotoxin-hazard-prone food items and quantification of the associated risk of cancer ailments in humans is a prime priority. There is a dearth of reliable sampling methodologies for estimating AFB1 in animal feed. Data update on AFB1 in animal feed and its implication in animal production, mitigation strategies, and elucidation of risk factors to this hazard is required. To reduce the burden of aflatoxins, surveillance employing predictive technology, and biocontrol strategies seem promising approaches. Full article
(This article belongs to the Special Issue Occurrence, Toxicity, Metabolism, Analysis and Control of Mycotoxins)
Show Figures

Figure 1

Back to TopTop