Effect of Aflasafe TZ01® on Aflatoxin Reduction and Emerging Challenges with Fusarium Mycotoxins in Maize from Rural Tanzania
Abstract
1. Introduction
2. Results
2.1. Method Performance Criteria
2.2. Treatment Effects on Mycotoxin Accumulation in Maize Samples
2.3. Anticipated Effect of Aflasafe® TZ01
2.4. Post-Treatment Trends in Fusarium-Produced Mycotoxins
2.5. Biocontrol Efficacy on Mycotoxins Levels: A Mixed Impact
2.6. District Variation in Biocontrol Efficacy
3. Discussion
3.1. Aflatoxins and Fumonisins Incidence Above Regulatory Levels
3.2. Effectiveness of Aflasafe® TZ01 Biocontrol in Reducing Aflatoxin Contamination in Maize
3.3. Unintended Consequences of Aflasafe® TZ01 Application on Fusarium Toxins
3.4. Challenges of Mycotoxin Co-Occurrence and Implications for Risk Management
3.5. Limitations of the Study
4. Conclusions
5. Materials and Methods
5.1. Study Area
5.2. Participants and Experimental Design
5.3. Aflasafe® TZ01 Application and Initial Sample Preparation
5.4. Quality Control of the Multi-Mycotoxins Methodology
5.5. Extraction, Purification, and Evaporation
5.6. High Performance Liquid Chromatography-Tandem Mass Spectrometry
5.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suleiman, R.; Rosentrater, K. Current maize production, postharvest losses and the risk of Mycotoxins contamination in Tanzania. Am. Soc. Agric. Biol. Eng. Annu. Int. Meet. 2015, 4, 3289–3414. [Google Scholar]
- Marechera, G.; Ndwiga, J. Estimation of the potential adoption of Aflasafe among smallholder maize farmers in lower eastern Kenya. Afr. J. Agric. Resour. Econ. 2015, 10, 72–85. [Google Scholar]
- Ranum, P.; Peña-Rosas, J.P.; Garcia-Casal, M.N. Global maize production, utilization, and consumption. Ann. N. Y. Acad. Sci. 2014, 1312, 105–112. [Google Scholar] [CrossRef]
- Bandyopadhyay, R.; Ortega-Beltran, A.; Akande, A.; Mutegi, C.; Atehnkeng, J.; Kaptoge, L.; Senghor, A.L.; Adhikari, B.N.; Cotty, P.J. Biological control of aflatoxins in Africa: Current status and potential challenges in the face of climate change. World Mycotoxin J. 2016, 9, 771–789. [Google Scholar] [CrossRef]
- Nji, Q.N.; Babalola, O.O.; Mwanza, M. Aflatoxins in Maize: Can Their Occurrence Be Effectively Managed in Africa in the Face of Climate Change and Food Insecurity? Toxins 2022, 14, 574. [Google Scholar] [CrossRef] [PubMed]
- Kemboi, D.C.; Antonissen, G.; Ochieng, P.E.; Croubels, S.; Okoth, S.; Kangethe, E.K.; Faas, J.; Lindahl, J.F.; Gathumbi, J.K. A review of the impact of mycotoxins on dairy cattle health: Challenges for food safety and dairy production in sub-Saharan Africa. Toxins 2020, 12, 222. [Google Scholar] [CrossRef]
- Bandyopadhyay, R.; Atehnkeng, J.; Ortega-Beltran, A.; Akande, A.; Falade, T.D.O.; Cotty, P.J. “Ground-Truthing” Efficacy of Biological Control for Aflatoxin Mitigation in Farmers’ Fields in Nigeria: From Field Trials to Commercial Usage, a 10-Year Study. Front. Microbiol. 2019, 10, 2528. [Google Scholar] [CrossRef]
- Benkerroum, N. Chronic and acute toxicities of aflatoxins: Mechanisms of action. Int. J. Environ. Res. Public Health 2020, 17, 423. [Google Scholar] [CrossRef]
- Denham, S.T.; Wambaugh, M.A.; Brown, J.C.S. How Environmental Fungi Cause a Range of Clinical Outcomes in Susceptible Hosts. J. Mol. Biol. 2019, 431, 2982–3009. [Google Scholar] [CrossRef] [PubMed]
- Okoth, S. Series: Agriculture and Nutrition Improving the Evidence Base on Aflatoxin Contamination and Exposure in Africa; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2016. [Google Scholar]
- Chilaka, C.A.; Obidiegwu, J.E.; Chilaka, A.C.; Atanda, O.O.; Mally, A. Mycotoxin Regulatory Status in Africa: A Decade of Weak Institutional Efforts. Toxins 2022, 14, 442. [Google Scholar] [CrossRef]
- Kamala, A.; Shirima, C.; Jani, B.; Bakari, M.; Sillo, H.; Rusibamayila, N.; De Saeger, S.; Kimanya, M.; Gong, Y.Y. Outbreak of an acute aflatoxicosis in Tanzania during 2016. World Mycotoxin J. 2018, 11, 311–320. [Google Scholar] [CrossRef]
- Kinyenje, E.; Kishimba, R.; Mohamed, M.; Mwafulango, A.; Eliakimu, E.; Kwesigabo, G. Aflatoxicosis outbreak and its associated factors in Kiteto, Chemba and Kondoa Districts, Tanzania. PLoS Glob. Public Health 2023, 3, e0002191. [Google Scholar] [CrossRef] [PubMed]
- Boni, S.B.; Beed, F.; Kimanya, M.E.; Koyano, E.; Mponda, O.; Mamiro, D.; Kaoneka, B.; Bandyopadhyay, R.; Korie, S.; Mahuku, G. Aflatoxin contamination in Tanzania: Quantifying the problem in maize and groundnuts from rural households. World Mycotoxin J. 2021, 14, 553–564. [Google Scholar] [CrossRef]
- Kagot, V.; De Boevre, M.; Landschoot, S.; Obiero, G.; Okoth, S.; De Saeger, S. Comprehensive analysis of multiple mycotoxins and Aspergillus flavus metabolites in maize from Kenyan households. Int. J. Food Microbiol. 2022, 16, 363. [Google Scholar] [CrossRef]
- Kamala, A.; Ortiz, J.; Kimanya, M.; Haesaert, G.; Donoso, S.; Tiisekwa, B.; De Meulenaer, B. Multiple mycotoxin co-occurrence in maize grown in three agro-ecological zones of Tanzania. Food Control 2015, 54, 208–215. [Google Scholar] [CrossRef]
- Kimanya, M.E.; De Meulenaer, B.; Tiisekwa, B.; Ndomondo-Sigonda, M.; Devlieghere, F.; Van Camp, J.; Kolsteren, P. Co-occurrence of fumonisins with aflatoxins in home-stored maize for human consumption in rural villages of Tanzania. Food Addit. Contam. Part. A Chem. Anal. Control Expo. Risk Assess. 2008, 25, 1353–1364. [Google Scholar] [CrossRef]
- Horn, B.W.; Dorner, J.W. Regional Differences in Production of Aflatoxin B 1 and Cyclopiazonic Acid by Soil Isolates of Aspergillus flavus along a Transect within the United States. Appl. Environ. Microbiol. 1999, 65, 1444–1449. [Google Scholar] [CrossRef]
- Alaniz Zanon, M.S.; Barros, G.G.; Chulze, S.N. Non-aflatoxigenic Aspergillus flavus as potential biocontrol agents to reduce aflatoxin contamination in peanuts harvested in Northern Argentina. Int. J. Food Microbiol. 2016, 231, 63–68. [Google Scholar] [CrossRef]
- Tran-Dinh, N.; Kennedy, I.; Bui, T.; Carter, D. Survey of Vietnamese peanuts, corn and soil for the presence of Aspergillus flavus and Aspergillus parasiticus. Mycopathologia 2009, 168, 257–2268. [Google Scholar] [CrossRef]
- Jallow, A.; Xie, H.; Tang, X.; Qi, Z.; Li, P. Worldwide aflatoxin contamination of agricultural products and foods: From occurrence to control. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2332–2381. [Google Scholar] [CrossRef]
- Grubisha, L.C.; Cotty, P.J. Genetic analysis of the Aspergillus flavus vegetative compatibility group to which a biological control agent that limits aflatoxin contamination in U.S. crops belongs. Appl. Environ. Microbiol. 2015, 81, 5889–5899. [Google Scholar] [CrossRef]
- Atehnkeng, J.; Ojiambo, P.S.; Cotty, P.J.; Bandyopadhyay, R. Field efficacy of a mixture of atoxigenic Aspergillus flavus Link: FR vegetative compatibility groups in preventing aflatoxin contamination in maize (Zea mays L.). Biol. Control 2014, 72, 62–70. [Google Scholar] [CrossRef]
- Mahuku, G.; Mauro, A.; Pallangyo, B.; Nsami, E.; Boni, S.B.; Koyano, E.; Mponda, O.; Ortega-Beltran, A.; Atehnkeng, J. Atoxigenic-based technology for biocontrol of aflatoxin in maize and groundnuts for Tanzania. World Mycotoxin J. 2023, 16, 59–73. [Google Scholar] [CrossRef]
- Ortega-Beltran, A.; Moral, J.; Picot, A.; Puckett, R.D.; Cotty, P.J.; Michailides, T.J. Atoxigenic Aspergillus flavus isolates endemic to almond, fig, and pistachio orchards in California with potential to reduce aflatoxin contamination in these crops. Plant Dis. 2019, 103, 905–912. [Google Scholar] [CrossRef]
- Moral, J.; Garcia-Lopez, M.T.; Camiletti, B.X.; Jaime, R.; Michailides, T.J.; Bandyopadhyay, R.; Ortega-Beltran, A. Present status and perspective on the future use of aflatoxin biocontrol products. Agronomy 2020, 10, 491. [Google Scholar] [CrossRef]
- Ortega-Beltran, A.; Kaptoge, L.; Senghor, A.L.; Aikore, M.O.S.; Jarju, P.; Momanyi, H.; Konlambigue, M.; Falade, T.D.; Bandyopadhyay, R. Can it be all more simple? Manufacturing aflatoxin biocontrol products using dry spores of atoxigenic isolates of Aspergillus flavus as active ingredients. Microb. Biotechnol. 2022, 15, 901–914. [Google Scholar] [CrossRef] [PubMed]
- Zadravec, M.; Lešić, T.; Pleadin, J. Distribution of mycotoxigenic moulds isolated from traditional meat products in different Croatian climate regions and their ability to produce mycotoxins. Arhiv Higijenu Rada Toksikologiju 2022, 73, A28. [Google Scholar]
- Tran-Dinh, N.; Pitt, J.I.; Markwell, P.J. Selection of non-toxigenic strains of Aspergillus flavus for biocontrol of aflatoxins in maize in Thailand. Biocontrol Sci. Technol. 2014, 24, 652–661. [Google Scholar] [CrossRef]
- Alberts, J.F.; Lilly, M.; Rheeder, J.P.; Burger, H.M.; Shephard, G.S.; Gelderblom, W.C.A. Technological and community-based methods to reduce mycotoxin exposure. Food Control 2017, 73, 101–109. [Google Scholar] [CrossRef]
- Kagot, V.; Okoth, S.; De Boevre, M.; De Saeger, S. Biocontrol of aspergillus and fusarium mycotoxins in Africa: Benefits and limitations. Toxins 2019, 11, 109. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, K.C. Non-aflatoxigenic Aspergillus flavus to prevent aflatoxin contamination in crops: Advantages and limitations. Front. Res. Found. 2014, 5, 50. [Google Scholar] [CrossRef]
- Ortega-Beltran, A.; Agbetiameh, D.; Atehnkeng, J.; Falade, T.D.O.; Bandyopadhyay, R. Does Use of Atoxigenic Biocontrol Products to Mitigate Aflatoxin in Maize Increase Fumonisin Content in Grains? Plant Disease 2021, 105, 2196–2201. [Google Scholar] [CrossRef]
- Arroyo-Manzanares, N.; Huertas-Pérez, J.F.; García-Campaña, A.M.; Gámiz-Gracia, L. Mycotoxin Analysis: New Proposals for Sample Treatment. Adv. Chem. 2014, 2014, 547506. [Google Scholar] [CrossRef]
- Umesha, S.; Manukumar Hmgowda Chandrasekhar, B.; Shivakumara, P.; Shiva Kumar, J.; Raghava, S.; Prakasha Avinash, P.A.; Marahel Shirin, M.S. Aflatoxins and food pathogens: Impact of biologically active aflatoxins and their control strategies. J. Sci. Food Agric. 2017, 97, 1698–1707. [Google Scholar] [CrossRef]
- Williams, J.H. Human aflatoxicosis in developing countries—A review of toxicology, exposure, potential health consequences, and interventions. Am. J. Clin. Nutr. 2004, 80, 1106–1122. [Google Scholar] [CrossRef]
- Mohamed, A.B. Population of Aspergillus Section Flavi and Aflatoxin Contamination in Maize from Fields Treated with Atoxigenic Aspergillus flavus (aflasafe ke01) in Lower Eastern Kenya. Master’s Thesis, University of Nairobi, Nairobi, Kenya, 2016. Available online: http://erepository.uonbi.ac.ke/handle/11295/97375 (accessed on 15 June 2024).
- Agbetiameh, D.; Ortega-Beltran, A.; Awuah, R.T.; Atehnkeng, J.; Elzein, A.; Cotty, P.J.; Bandyopadhyay, R. Field efficacy of two atoxigenic biocontrol products for mitigation of aflatoxin contamination in maize and groundnut in Ghana. Biol. Control 2020, 150, 104351. [Google Scholar] [CrossRef]
- Atehnkeng, J.; Ojiambo, P.S.; Donner, M.; Ikotun, T.; Sikora, R.A.; Cotty, P.J.; Bandyopadhyay, R. Distribution and toxigenicity of Aspergillus species isolated from maize kernels from three agro-ecological zones in Nigeria. Int. J. Food Microbiol. 2008, 122, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Senghor, L.A.; Ortega-Beltran, A.; Atehnkeng, J.; Callicott, K.A.; Cotty, P.J.; Bandyopadhyay, R. The atoxigenic biocontrol product Aflasafe SN01 is a valuable tool to mitigate aflatoxin contamination of both maize and groundnut cultivated in Senegal. Plant Dis. 2020, 104, 510–520. [Google Scholar] [CrossRef]
- Mauro, A.; Garcia-Cela, E.; Pietri, A.; Cotty, P.J.; Battilani, P. Biological control products for aflatoxin prevention in Italy: Commercial field evaluation of atoxigenic Aspergillus flavus active ingredients. Toxins 2018, 10, 30. [Google Scholar] [CrossRef] [PubMed]
- Reis, T.A.; Oliveira, T.D.; Zorzete, P.; Faria, P.; Corrêa, B. A non-toxigenic Aspergillus flavus strain prevents the spreading of Fusarium verticillioides and fumonisins in maize. Toxicon 2020, 181, 6–8. [Google Scholar] [CrossRef] [PubMed]
- Senghor, A.L.; Ortega-Beltran, A.; Atehnkeng, J.; Jarju, P.; Cotty, P.J.; Bandyopadhyay, R. Aflasafe SN01 is the first biocontrol product approved for aflatoxin mitigation in two nations, Senegal and the Gambia. Plant Dis. 2021, 105, 1461–1473. [Google Scholar] [CrossRef]
- Magan, N.; Aldred, D. Post-harvest control strategies: Minimizing mycotoxins in the food chain. Int. J. Food Microbiol. 2007, 119, 131–139. [Google Scholar] [CrossRef]
- Snini, S.P.; Mathieu, F. Biocontrol agents and natural compounds against mycotoxinogenic fungi. Toxins 2020, 12, 353. [Google Scholar] [CrossRef] [PubMed]
- Kwigizile, O.H.; Mbega, E.R.; Mng’ong’o, M.E.; Mushongi, A.; Philipo, M. Prevalence of aflatoxigenic fungi and contamination in soils and maize grains from aflatoxin-hot spot areas in Tanzania. J. Food Compos. Anal. 2024, 135, 106608. [Google Scholar] [CrossRef]
- Molo, M.S.; Heiniger, R.W.; Boerema, L.; Carbone, I. Trial summary on the comparison of various non-aflatoxigenic strains of aspergillus flavus on mycotoxin levels and yield in maize. Agron. J. 2019, 111, 942–946. [Google Scholar] [CrossRef]
- Xue, A.G.; Chen, Y.; Voldeng, H.D.; Fedak, G.; Savard, M.E.; Längle, T.; Zhang, J.; Harman, G.E. Concentration and cultivar effects on efficacy of CLO-1 biofungicide in controlling Fusarium head blight of wheat. Biol. Control 2014, 73, 2–7. [Google Scholar] [CrossRef]
- Smith, M.C.; Madec, S.; Coton, E.; Hymery, N. Natural Co-occurrence of mycotoxins in foods and feeds and their in vitro combined toxicological effects. Toxins 2016, 8, 94. [Google Scholar] [CrossRef]
- Khoshal, A.K.; Novak, B.; Martin, P.G.P.; Jenkins, T.; Neves, M.; Schatzmayr, G.; Oswald, I.P.; Pinton, P. Co-occurrence of DON and emerging mycotoxins in worldwide finished pig feed and their combined toxicity in intestinal cells. Toxins 2019, 11, 727. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, R.; Crisci, A.; Venâncio, A.; Abrahantes, J.C.; Dorne JLou Battilani, P.; Toscano, P. Occurrence and co-occurrence of mycotoxins in cereal-based feed and food. Microorganisms 2020, 8, 74. [Google Scholar] [CrossRef]
- Alassane-Kpembi, I.; Schatzmayr, G.; Taranu, I.; Marin, D.; Puel, O.; Oswald, I.P. Mycotoxins co-contamination: Methodological aspects and biological relevance of combined toxicity studies. Crit. Rev. Food Sci. Nutr. 2017, 57, 3489–3507. [Google Scholar] [CrossRef]
- Logrieco, A.F.; Miller, J.D.; Eskola, M.; Krska, R.; Ayalew, A.; Bandyopadhyay, R.; Battilani, P.; Bhatnagar, D.; Chulze, S.; De Saeger, S. The mycotox charter: Increasing awareness of, and concerted action for, minimizing mycotoxin exposure worldwide. Toxins 2018, 10, 149. [Google Scholar] [CrossRef] [PubMed]
- Munkvold, G.P. Cultural and Genetic Approaches to Managing Mycotoxins in Maize. Annu. Rev. Phytopathol. 2003, 41, 99–116. [Google Scholar] [CrossRef]
- Matumba, L.; Namaumbo, S.; Ngoma, T.; Meleke, N.; De Boevre, M.; Logrieco, A.F.; De Saeger, S. Five Keys to Prevention and Control of Mycotoxins in Grains: A Proposal; Global Food Security; Elsevier: Amsterdam, The Netherlands, 2021; Volume 30. [Google Scholar]
- Hell, K.; Mutegi, C. Aflatoxin control and prevention strategies in key crops of Sub-Saharan Africa. Afr. J. Microbiol. Res. 2011, 5, 459–466. [Google Scholar]
- Tittlemier, S.A.; Cramer, B.; Dall’Asta, C.; DeRosa, M.C.; Lattanzio, V.M.T.; Malone, R.; Maragos, C.; Stranska, M.; Sumarah, M.W. Developments in mycotoxin analysis: An update for 2020–2021. World Mycotoxin J. 2022, 15, 3–25. [Google Scholar] [CrossRef]
- Maragos, C.M.; Busman, M. Rapid and Advanced Tools for Mycotoxin Analysis: A Review; Food Additives and Contaminants-Part A; Taylor and Francis Ltd.: Hoboken, NJ, USA, 2010; Volume 27, pp. 688–700. [Google Scholar]
- Martins, C.; Viegas, C.; Eriksen, E.; Graff, P.; Afanou, A.K.; Straumfors, A.; Twarużek, M.; Grajewski, J.; Kosicki, R.; Viegas, S. Unraveling the occupational exposure to mycotoxins in a waste management setting: Results from a case study in Norway. Front. Public Health 2025, 13, 1536836. [Google Scholar] [PubMed]
Mycotoxins | R2 | Apparent Mean Recovery (%) | LOD (µg/kg) | LOQ (µg/kg) |
---|---|---|---|---|
AFG2 | 0.9972 | 102 ± 7.4 | 0.08 | 0.23 |
AFG1 | 0.9961 | 100 ± 9.9 | 0.19 | 0.59 |
AFB2 | 0.9943 | 102 ± 6.0 | 0.14 | 0.41 |
AFB1 | 0.9976 | 100 ± 5.6 | 0.32 | 0.98 |
OTA | 0.9809 | 95 ± 19 | 1.27 | 3.86 |
FB1 | 0.9943 | 99 ± 5.7 | 3.66 | 11.1 |
FB2 | 0.9982 | 99 ± 3.1 | 1.35 | 4.09 |
FB3 | 0.9936 | 98 ± 6.3 | 3.47 | 10.5 |
DON | 0.9664 | 105 ± 23 | 2.74 | 8.29 |
3-AcDON | 0.9923 | 103 ± 8.3 | 2.36 | 7.17 |
15-AcDON | 0.9975 | 101 ± 5.0 | 14.1 | 42.7 |
T2 | 0.9950 | 103 ± 7.6 | 0.17 | 0.50 |
HT2 | 0.9944 | 102 ± 10 | 0.94 | 2.84 |
DAS | 0.9979 | 102 ± 6.1 | 0.13 | 0.38 |
NIV | 0.9733 | 108 ± 26 | 6.34 | 19.2 |
ZEN | 0.9955 | 104 ± 14 | 1.70 | 5.16 |
FUS-X | 0.9956 | 103 ± 9.1 | 1.72 | 5.24 |
NEO | 0.9982 | 102 ± 8.4 | 0.39 | 1.21 |
STE | 0.9946 | 96 ± 14 | 0.22 | 0.67 |
AME | 0.9818 | 104 ± 11 | 6.27 | 19.0 |
AOH | 0.9933 | 102 ± 6.3 | 0.79 | 2.42 |
ROQ-C | 0.9534 | 110 ± 27 | 1.38 | 4.17 |
Mycotoxins | Treated (T) | Control (C) | ||
---|---|---|---|---|
Positive Samples, n (%) | Range (µg/kg) | Positive Samples, n (%) | Range (µg/kg) | |
AFB1 | 2 (3%) | ˂LOD–54.25 | 10 (13%) | ˂LOD–76.01 |
AFB2 | - | - | 5 (6%) | ˂LOD–10.91 |
AFG1 | 3 (4%) | ˂LOD–5.92 | 9 (11%) | ˂LOD–51.92 |
AFG2 | 18 (23%) | ˂LOD–5.68 | 24 (30%) | ˂LOD–6.36 |
OTA | 11 (14%) | ˂LOD–14.46 | 9 (11%) | ˂LOD–13.52 |
FB1 | 63 (80%) | ˂LOD–5007.17 | 64 (81%) | ˂LOD–10,649.76 |
FB2 | 55 (70%) | ˂LOD–1022.27 | 62 (78%) | ˂LOD–2765.21 |
FB3 | 52 (66%) | ˂LOD–854.42 | 54 (68%) | ˂LOD–942.56 |
DON | 4 (5%) | ˂LOD–1676.73 | 2 (3%) | ˂LOD–151.51 |
3-AcDON | 2 (3%) | ˂LOD–93.41 | 1 (1%) | ˂LOD–15.77 |
15-AcDON | 3 (4%) | ˂LOD–338.08 | 1 (1%) | ˂LOD–97.72 |
T2 | 6 (8%) | ˂LOD–5.44 | 12 (15%) | ˂LOD–0.48 |
DAS | 6 (8%) | ˂LOD–24.94 | 6 (8%) | ˂LOD–1.42 |
NIV | 26 (33%) | ˂LOD–179.90 | 24 (30%) | ˂LOD–59.70 |
ZEN | 11 (14%) | ˂LOD–782.14 | 14 (18%) | ˂LOD–14.81 |
FUS-X | 29 (37%) | ˂LOD–61.27 | 36 (46%) | ˂LOD–58.83 |
NEO | 2 (3%) | ˂LOD–130.16 | - | - |
STE | 4 (5%) | ˂LOD–6.53 | 11 (14%) | ˂LOD–1.20 |
AME | ND | ND | 6 (8%) | ˂LOD–22.78 |
AOH | ND | ND | 2 (3%) | ˂LOD–1.13 |
Mycotoxin | Biocontrol Effect (p-Values) |
---|---|
AFB1 | 0.0224 * |
AFG1 | 0.0843 |
AFG2 | 0.1418 |
OTA | 0.5262 |
FB1 | 0.8507 |
FB2 | 0.7598 |
FB3 | 0.8198 |
T2 | 0.1760 |
NIV | 0.5015 |
ZEN | 0.9724 |
FUS-X | 0.4073 |
STE | 0.0770 |
Region | Treated (T) | Control (C) | Total |
---|---|---|---|
Chemba | 38 | 38 | 76 |
Kiteto | 41 | 41 | 82 |
Total | 79 | 79 | 158 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fundikira, S.; Kimanya, M.; Suleiman, R.; De Boevre, M.; Tesfamariam, K.; De Saeger, S. Effect of Aflasafe TZ01® on Aflatoxin Reduction and Emerging Challenges with Fusarium Mycotoxins in Maize from Rural Tanzania. Toxins 2025, 17, 419. https://doi.org/10.3390/toxins17080419
Fundikira S, Kimanya M, Suleiman R, De Boevre M, Tesfamariam K, De Saeger S. Effect of Aflasafe TZ01® on Aflatoxin Reduction and Emerging Challenges with Fusarium Mycotoxins in Maize from Rural Tanzania. Toxins. 2025; 17(8):419. https://doi.org/10.3390/toxins17080419
Chicago/Turabian StyleFundikira, Sambwe, Martin Kimanya, Rashid Suleiman, Marthe De Boevre, Kokeb Tesfamariam, and Sarah De Saeger. 2025. "Effect of Aflasafe TZ01® on Aflatoxin Reduction and Emerging Challenges with Fusarium Mycotoxins in Maize from Rural Tanzania" Toxins 17, no. 8: 419. https://doi.org/10.3390/toxins17080419
APA StyleFundikira, S., Kimanya, M., Suleiman, R., De Boevre, M., Tesfamariam, K., & De Saeger, S. (2025). Effect of Aflasafe TZ01® on Aflatoxin Reduction and Emerging Challenges with Fusarium Mycotoxins in Maize from Rural Tanzania. Toxins, 17(8), 419. https://doi.org/10.3390/toxins17080419