The Potential Influence of the Presence of Mycotoxins in Human Follicular Fluid on Reproductive Outcomes
Abstract
:1. Introduction
2. Results
2.1. Serum and Follicular E2 and P4
2.2. Impact on Folliculogenesis
2.3. Serum and Follicular Fluid Mycotoxin Levels
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Experimental Setup on Samples
5.2. Serum and ff Steroid Analyses
5.3. Serum Anti-Müllerian Hormone (AMH) Measurements
5.4. Serum FSH and LH Measurements
5.5. Mycotoxin Analyses
5.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caserta, D.; De Marco, M.P.; Besharat, A.R.; Costanzi, F. Endocrine Disruptors and Endometrial Cancer: Molecular Mechanisms of Action and Clinical Implications, a Systematic Review. Int. J. Mol. Sci. 2022, 23, 2956. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, M.; Shahbahrami, R.; Khajeh, F.; Khodaeivandi, S.; Kakavandi, E.; Raziabad, R.H.; Ghanati, K. Aflatoxin B1 and viruses’ combined pathogenesis: A mini systematics review of invitro and invivo studies. Acta Histochem. 2024, 126, 152116. [Google Scholar] [CrossRef] [PubMed]
- Mortezazadeh, F.; Gholami-Borujeni, F. Review, meta-analysis and carcinogenic risk assessment of aflatoxin M1 in different types of milks in Iran. Rev. Environ. Health 2022, 38, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Lázaro, Á.; Vila-Donat, P.; Manyes, L. Emerging mycotoxins and preventive strategies related to gut microbiota changes: Probiotics, prebiotics, and postbiotics—A systematic review. Food Funct. 2024, 15, 8998–9023. [Google Scholar] [CrossRef]
- Al-Jaal, B.A.; Jaganjac, M.; Barcaru, A.; Horvatovich, P.; Latiff, A. Aflatoxin, fumonisin, ochratoxin, zearalenone and deoxynivalenol biomarkers in human biological fluids: A systematic literature review, 2001–2018. Food Chem. Toxicol. 2019, 129, 211–228. [Google Scholar] [CrossRef]
- Revelli, A.; Delle Piane, L.; Casano, S.; Molinari, E.; Massobrio, M.; Rinaudo, P. Follicular fluid content and oocyte quality: From single biochemical markers to metabolomics. Reprod. Biol. Endocrinol. 2009, 7, 40. [Google Scholar] [CrossRef]
- Edwards, R.G. Follicular fluid. J. Reprod. Fertil. 1974, 37, 189–219. [Google Scholar] [CrossRef]
- Yu, J.; Wei, Y.; Zhang, Z.; Chen, J.; Fu, R.; Ye, P.; Chen, S.; Yang, J. Metabolomic Analysis of Follicular Fluid in Normal-Weight Patients with Polycystic Ovary Syndrome. Biomedicines 2024, 12, 1810. [Google Scholar] [CrossRef]
- Ozyurt, R.; Karakus, C. Follicular fluid 25-hydroxyvitamin D levels determine fertility outcome in patients with polycystic ovary syndrome. Taiwan. J. Obstet. Gynecol. 2022, 61, 620–625. [Google Scholar] [CrossRef]
- Feng, Y.F.; Qi, J.; Xue, X.L.; Li, X.Y.; Liao, Y.; Sun, Y.; Tao, Y.Z.; Yin, H.Y.; Liu, W.; Li, S.X.; et al. Follicular free fatty acid metabolic signatures and their effects on oocyte competence in non-obese PCOS patients. Reproduction 2022, 164, 1–8. [Google Scholar] [CrossRef]
- Battaglia, R.; Vento, M.E.; Borzì, P.; Ragusa, M.; Barbagallo, D.; Arena, D.; Purrello, M.; Di Pietro, C. Non-coding RNAs in the Ovarian Follicle. Front. Genet. 2017, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- Moreira, M.V.; Vale-Fernandes, E.; Albergaria, I.C.; Alves, M.G.; Monteiro, M.P. Follicular fluid composition and reproductive outcomes of women with polycystic ovary syndrome undergoing in vitro fertilization: A systematic review. Rev. Endocr. Metab. Disord. 2023, 24, 1045–1073. [Google Scholar] [CrossRef] [PubMed]
- Pizarro, B.M.; Cordeiro, A.; Reginatto, M.W.; Campos, S.P.C.; Mancebo, A.C.A.; Areas, P.C.F.; Antunes, R.A.; Souza, M.D.C.B.; Oliveira, K.J.; Bloise, F.F.; et al. Estradiol and Progesterone Levels are Related to Redox Status in the Follicular Fluid During in vitro Fertilization. J. Endocr. Soc. 2020, 4, bvaa064. [Google Scholar] [CrossRef] [PubMed]
- Chauvin, S.; Cohen-Tannoudji, J.; Guigon, C.J. Estradiol Signaling at the Heart of Folliculogenesis: Its Potential Deregulation in Human Ovarian Pathologies. Int. J. Mol. Sci. 2022, 23, 512. [Google Scholar] [CrossRef]
- Lawrenz, B.; Fatemi, H.M. Effect of progesterone elevation in follicular phase of IVF-cycles on the endometrial receptivity. Reprod. Biomed. Online 2017, 34, 422–428. [Google Scholar] [CrossRef]
- Winkler, J.; Kersten, S.; Meyer, U.; Stinshoff, H.; Locher, L.; Rehage, J.; Wrenzycki, C.; Engelhardt, U.H.; Dänicke, S. Diagnostic opportunities for evaluation of the exposure of dairy cows to the mycotoxins deoxynivalenol (DON) and zearalenone (ZEN): Reliability of blood plasma, bile and follicular fluid as indicators. J. Anim. Physiol. Anim. Nutr. 2015, 99, 847–855. [Google Scholar] [CrossRef]
- Sambuu, R.; Takagi, M.; Shiga, S.; Uno, S.; Kokushi, E.; Namula, Z.; Otoi, T.; Miyamoto, A.; Deguchi, E.; Fink-Gremmels, J. Detection of zearalenone and its metabolites in naturally contaminated porcine follicular fluid by using liquid chromatography-tandem mass spectrometry. J. Reprod. Dev. 2011, 57, 303–306. [Google Scholar] [CrossRef]
- Schoevers, E.J.; Santos, R.R.; Roelen, B.A.J. Alternariol disturbs oocyte maturation and preimplantation development. Mycotoxin Res. 2020, 36, 93–101. [Google Scholar] [CrossRef]
- Lai, F.N.; Liu, X.L.; Li, N.; Zhang, R.Q.; Zhao, Y.; Feng, Y.Z.; Nyachoti, C.M.; Shen, W.; Li, L. Phosphatidylcholine could protect the defect of zearalenone exposure on follicular development and oocyte maturation. Aging 2018, 10, 3486–3506. [Google Scholar] [CrossRef]
- Cai, G.; Guerrero-Netro, H.M.; Bian, J.; Oswald, I.P.; Price, C.; Alassane-Kpembi, I. Real-life exposure to Fusarium toxins deoxynivalenol and zearalenone triggers apoptosis and activates NLRP3 inflammasome in bovine primary theca cells. Mycotoxin Res. 2023, 39, 367–377. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, Y.; Liu, J.Q.; Zou, P.; Jia, L.; Su, Y.T.; Sun, Y.R.; Sun, S.C. Comparison of the toxic effects of different mycotoxins on porcine and mouse oocyte meiosis. PeerJ 2018, 6, e5111. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Liao, S.; Guo, S.; Li, H.; Yang, M.; Tang, Z. Protective effects of selenium on aflatoxin B1-induced mitochondrial permeability transition, DNA damage, and histological alterations in duckling liver. Biol. Trace Elem. Res. 2015, 163, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.B.; Maurya, B.K.; Trigun, S.K. Activation of oxidative stress and inflammatory factors could account for histopathological progression of aflatoxin-B1 induced hepatocarcinogenesis in rat. Mol. Cell. Biochem. 2015, 401, 185–196. [Google Scholar] [CrossRef]
- Abid-Essefi, S.; Baudrimont, I.; Hassen, W.; Ouanes, Z.; Mobio, T.A.; Anane, R.; Creppy, E.E.; Bacha, H. DNA fragmentation, apoptosis and cell cycle arrest induced by zearalenone in cultured DOK, Vero and Caco-2 cells: Prevention by Vitamin, E. Toxicology 2003, 192, 237–248. [Google Scholar] [CrossRef]
- Hou, Y.J.; Xiong, B.; Zheng, W.J.; Duan, X.; Cui, X.S.; Kim, N.H.; Wang, Q.; Xu, Y.X.; Sun, S.C. Oocyte quality in mice is affected by a mycotoxin-contaminated diet. Environ. Mol. Mutagen. 2014, 55, 354–362. [Google Scholar] [CrossRef]
- Pestka, J.J. Deoxynivalenol: Mechanisms of action, human exposure, and toxicological relevance. Arch. Toxicol. 2010, 84, 663–679. [Google Scholar] [CrossRef]
- Sun, Y.; Jiang, J.; Mu, P.; Lin, R.; Wen, J.; Deng, Y. Toxicokinetics and Metabolism of Deoxynivalenol in Animals and Humans. Arch. Toxicol. 2022, 96, 2639–2654. [Google Scholar] [CrossRef]
- Huang, F.J.; Chan, W.H. Effects of ochratoxin a on mouse oocyte maturation and fertilization, and apoptosis during fetal development. Environ. Toxicol. 2016, 31, 724–735. [Google Scholar] [CrossRef]
- Zhu, C.C.; Zhang, Y.; Duan, X.; Han, J.; Sun, S.C. Toxic Effects of HT-2 Toxin on Mouse Oocytes and Its Possible Mechanisms. Arch. Toxicol. 2016, 90, 1495–1505. [Google Scholar] [CrossRef]
- Weidner, M.; Hüwel, S.; Ebert, F.; Schwerdtle, T.; Galla, H.J.; Humpf, H.U. Influence of T-2 and HT-2 Toxin on the Blood-Brain Barrier In Vitro: New Experimental Hints for Neurotoxic Effects. Edited by Stefan Strack. PLoS ONE 2013, 8, e60484. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, J.; Zhu, C.C.; Tang, F.; Cui, X.S.; Kim, N.H.; Sun, S.C. Exposure to HT-2 Toxin Causes Oxidative Stress Induced Apoptosis/Autophagy in Porcine Oocytes. Sci. Rep. 2016, 6, 33904. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Tu, D.; Yuan, L.Y.; Yuan, H.; Wen, L.X. T-2 toxin exposure induces apoptosis in rat ovarian granulosa cells through oxidative stress. Environ. Toxicol. Pharmacol. 2013, 36, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Li, J.R.; Wu, S.L.; Hu, L.L.; Liao, B.Y.; Sun, S.C. HT-2 toxin impairs porcine oocyte in vitro maturation through disruption of endomembrane system. Theriogenology 2024, 226, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, W.; Cheng, G.; Huang, L.; Chen, D.; Tao, Y.; Pan, Y.; Hao, H.; Wu, Q.; Wan, D.; et al. High risk of embryo-fetal toxicity: Placental transfer of T-2 toxin and its major metabolite HT-2 toxin in BeWo cells. Toxicol. Sci. 2014, 137, 168–178. [Google Scholar] [CrossRef]
- Nussey, S.; Whitehead, S. Endocrinology: An Integrated Approach; Box 6.46, Diagram of the Process of Folliculogenesis; BIOS Scientific Publishers: Oxford, UK, 2001. Available online: https://www.ncbi.nlm.nih.gov/books/NBK29/box/A1226/ (accessed on 1 March 2024).
- Gougeon, A. Human ovarian follicular development: From activation of resting follicles to preovulatory maturation. Ann. Endocrinol. 2010, 71, 132–143. [Google Scholar] [CrossRef]
- Simonetti, S.; Veeck, L.L.; Jones, H.W., Jr. Correlation of follicular fluid volume with oocyte morphology from follicles stimulated by human menopausal gonadotropin. Fertil. Steril. 1985, 44, 177–180. [Google Scholar] [CrossRef]
- Zhang, G.L.; Feng, Y.L.; Song, J.L.; Zhou, X.S. Zearalenone: A Mycotoxin with Different Toxic Effect in Domestic and Laboratory Animals’ Granulosa Cells. Front. Genet. 2018, 9, 667. [Google Scholar] [CrossRef]
- Brito, D.C.C.; Silva, I.P.; Ferreira, A.C.A.; Sá, N.A.R.; Guedes, M.I.F.; Rodrigues, A.P.R.; Santos, R.R.; Figueiredo, J.R. Effects of in vitro exposure of sheep ovarian tissue to zearalenone and matairesinol on preantral follicles. Zygote 2022, 30, 419–422. [Google Scholar] [CrossRef]
- Krieger, R.I.; Salhab, A.S.; Dalezios, J.I.; Hsieh, D.P. Aflaxation B1 hydroxylation by hepatic microsomal preparations from the rhesus monkey. Food Cosmet. Toxicol. 1975, 13, 211–219. [Google Scholar] [CrossRef]
- Videmann, B.; Mazallon, M.; Prouillac, C.; Delaforge, M.; Lecoeur, S. ABCC1, ABCC2 and ABCC3 are implicated in the transepithelial transport of the myco-estrogen zearalenone and its major metabolites. Toxicol. Lett. 2009, 190, 215–223. [Google Scholar] [CrossRef]
- Ning, X.; Wang, L.; Wang, J.-S.; Ji, J.; Jin, S.; Sun, J.; Ye, Y.; Mei, S.; Zhang, Y.; Cao, J.; et al. High-Coverage UHPLC-MS/MS Analysis of 67 Mycotoxins in Plasma for Male Infertility Exposure Studies. Toxics 2024, 12, 395. [Google Scholar] [CrossRef] [PubMed]
- Krausová, M.; Ayeni, K.I.; Gu, Y.; Borutzki, Y.; O’Bryan, J.; Perley, L.; Warth, B. Longitudinal Biomonitoring of Mycotoxin Exposure during Pregnancy in the Yale Pregnancy Outcome Prediction Study. Environ. Int. 2024, 109081, in press. [Google Scholar] [CrossRef]
- Arce-López, B.; Lizarraga, E.; Irigoyen, Á.; González-Peñas, E. Presence of 19 Mycotoxins in Human Plasma in a Region of Northern Spain. Toxins 2020, 12, 750. [Google Scholar] [CrossRef] [PubMed]
- Owolabi, I.O.; Siwarak, K.; Greer, B.; Rajkovic, A.; Dall’asta, C.; Karoonuthaisiri, N.; Uawisetwathana, T.; Elliott, T.; Petchkongkaew, A. Applications of Mycotoxin Biomarkers in Human Biomonitoring for Exposome-Health Studies: Past, Present, and Future. Expo. Health 2024, 16, 837–859. [Google Scholar] [CrossRef]
- Li, X.; Mu, P.; Wen, J.; Deng, Y. Carrier-Mediated and Energy-Dependent Uptake and Efflux of Deoxynivalenol in Mammalian Cells. Sci. Rep. 2017, 7, 5889. [Google Scholar] [CrossRef] [PubMed]
- Mengelers, M.; Zeilmaker, M.; Vidal, A.; De Boevre, M.; De Saeger, S.; Hoogenveen, R. Biomonitoring of Deoxynivalenol and Deoxynivalenol-3-glucoside in Human Volunteers: Renal Excretion Profiles. Toxins 2019, 11, 466. [Google Scholar] [CrossRef]
- Poór, M.; Kunsági-Máté, S.; Bálint, M.; Hetényi, C.; Gerner, Z.; Lemli, B. Interaction of mycotoxin zearalenone with human serum albumin. J. Photochem. Photobiol. B 2017, 170, 16–24. [Google Scholar] [CrossRef]
- Faisal, Z.; Vörös, V.; Fliszár-Nyúl, E.; Lemli, B.; Kunsági-Máté, S.; Poór, M. Interactions of zearalanone, α-zearalanol, β-zearalanol, zearalenone-14-sulfate, and zearalenone-14-glucoside with serum albumin. Mycotoxin Res. 2020, 36, 389–397. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Y.; Wang, H.; Jia, B.; Liu, C.; Liu, K.; Qi, Y.; Hu, Z. Study of the interaction of deoxynivalenol with human serum albumin by spectroscopic technique and molecular modelling. Food Addit. Contam. Part. A Chem. Anal. Control Expo. Risk Assess. 2013, 30, 356–364. [Google Scholar] [CrossRef]
- Poór, M.; Bálint, M.; Hetényi, C.; Gődér, B.; Kunsági-Máté, S.; Kőszegi, T.; Lemli, B. Investigation of Non-Covalent Interactions of Aflatoxins (B1, B2, G1, G2, and M1) with Serum Albumin. Toxins 2017, 9, 339. [Google Scholar] [CrossRef]
- Takagi, M.; Mukai, S.; Kuriyagawa, T.; Takagaki, K.; Uno, S.; Kokushi, E.; Otoi, T.; Budiyanto, A.; Shirasuna, K.; Miyamoto, A.; et al. Detection of zearalenone and its metabolites in naturally contaminated follicular fluids by using LC/MS/MS and in vitro effects of zearalenone on oocyte maturation in cattle. Reprod. Toxicol. 2008, 26, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Ropejko, K.; Twarużek, M. Zearalenone and Its Metabolites-General Overview, Occurrence, and Toxicity. Toxins 2021, 13, 35. [Google Scholar] [CrossRef] [PubMed]
- Malekinejad, H.; Maas-Bakker, R.F.; Fink-Gremmels, J. Enzyme kinetics of zearalenone biotransformation: pH and cofactor effects. Arch. Toxicol. 2005, 79, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Faeste, C.K.; Pierre, F.; Ivanova, L.; Sayyari, A.; Massotte, D. Behavioural and Metabolomic Changes from Chronic Dietary Exposure to Low-Level Deoxynivalenol Reveal Impact on Mouse Well-Being. Arch. Toxicol. 2019, 93, 2087–2102. [Google Scholar] [CrossRef]
- Hu, L.L.; Liu, Y.X.; Yu, X.T.; Sun, S.C.; Yang, F.L. Deoxynivalenol exposure disturbs the cytoplasmic maturation in porcine oocytes. Ecotoxicol. Environ. Saf. 2024, 285, 117137. [Google Scholar] [CrossRef]
- Kim, Y.W.; Yang, S.G.; Seo, B.B.; Koo, D.B.; Park, H.J. Deoxynivalenol leads to endoplasmic reticulum stress-mediated apoptosis via the IRE1/JNK/CHOP pathways in porcine embryos. Food Chem. Toxicol. 2024, 188, 114633. [Google Scholar] [CrossRef]
- Wang, Y.; Xing, C.H.; Zhang, H.L.; Pan, Z.N.; Sun, S.C. Exposure to nivalenol declines mouse oocyte quality via inducing oxidative stress-related apoptosis and DNA damage. Biol. Reprod. 2021, 105, 1474–1483. [Google Scholar] [CrossRef]
- Lolicato, F.; Brouwers, J.F.; de Lest, C.H.; Wubbolts, R.; Aardema, H.; Priore, P.; Roelen, B.A.; Helms, J.B.; Gadella, B.M. The cumulus cell layer protects the bovine maturing oocyte against fatty acid-induced lipotoxicity. Biol. Reprod. 2015, 92, 16. [Google Scholar] [CrossRef]
- Shi, X.C.; Jin, A.; Sun, J.; Yang, Z.; Tian, J.J.; Ji, H.; Yu, H.B.; Li, Y.; Zhou, J.S.; Du, Z.Y.; et al. α-lipoic acid ameliorates n-3 highly-unsaturated fatty acids induced lipid peroxidation via regulating antioxidant defenses in grass carp (Ctenopharyngodon idellus). Fish. Shellfish. Immunol. 2017, 67, 359–367. [Google Scholar] [CrossRef]
- Arumugam, T.; Pillay, Y.; Ghazi, T.; Nagiah, S.; Abdul, N.S.; Chuturgoon, A.A. Fumonisin B1-induced oxidative stress triggers Nrf2-mediated antioxidant response in human hepatocellular carcinoma (HepG2) cells. Mycotoxin Res. 2019, 35, 99–109. [Google Scholar] [CrossRef]
- Zhao, H.; Eguchi, S.; Alam, A.; Ma, D. The role of nuclear factor-erythroid 2 related factor 2 (Nrf-2) in the protection against lung injury. Am. J. Physiol. Lung Cell Mol. Physiol. 2017, 312, L155–L162. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Du, Z.; Zhou, Z.; Long, H.; Ni, Q. Effects of serum and follicular fluid on the in vitro maturation of canine oocytes. Theriogenology 2020, 143, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann-Dishon, N.; Barnett-Itzhaki, Z.; Zalko, D.; Hemi, R.; Farzam, N.; Hauser, R.; Racowsky, C.; Baccarelli, A.A.; Machtinger, R. Endocrine-disrupting chemical concentrations in follicular fluid and follicular reproductive hormone levels. J. Assist. Reprod. Genet. 2024, 41, 1637–1642. [Google Scholar] [CrossRef]
- Nagy, B.; Poto, L.; Farkas, N.; Koppan, M.; Varnagy, A.; Kovacs, K.; Papp, S.; Bohonyi, N.; Bodis, J. Follicular fluid progesterone concentration is associated with fertilization outcome after IVF: A systematic review and meta-analysis. Reprod. Biomed. 2019, 38, 871–882. [Google Scholar] [CrossRef]
- Lv, Y.; Du, S.; Huang, X.; Hao, C. Follicular fluid estradiol is an improved predictor of in vitro fertilization/intracytoplasmic sperm injection and embryo transfer outcomes. Exp. Ther. Med. 2020, 20, 131. [Google Scholar] [CrossRef]
- Wen, X.; Li, D.; Tozer, A.J.; Docherty, S.M.; Iles, R.K. Estradiol, progesterone, testosterone profiles in human follicular fluid and cultured granulosa cells from luteinized pre-ovulatory follicles. Reprod. Biol. Endocrinol. 2010, 8, 117. [Google Scholar] [CrossRef]
- Wu, J.; Tu, D.; Yuan, L.Y.; Yi, J.E.; Tian, Y. T-2 toxin regulates steroid hormone secretion of rat ovarian granulosa cells through cAMP-PKA pathway. Toxicol. Lett. 2015, 232, 573–579. [Google Scholar] [CrossRef]
- Li, L.; Yang, M.; Li, C.; Yang, F.; Wang, G. Understanding the Toxin Effects of β-Zearalenol and HT-2 on Bovine Granulosa Cells Using iTRAQ-Based Proteomics. Animals 2020, 10, 130. [Google Scholar] [CrossRef]
- Maruniakova, N.; Kadasi, A.; Sirotkin, A.V.; Bulla, J.; Kolesarova, A. T-2 toxin and its metabolite HT-2 toxin combined with insulin-like growth factor-I modify progesterone secretion by porcine ovarian granulosa cells. J. Environ. Sci. Health A Tox Hazard. Subst. Environ. Eng. 2014, 49, 404–409. [Google Scholar] [CrossRef]
- Caloni, F.; Ranzenigo, G.; Cremonesi, F.; Spicer, L.J. Effects of a trichothecene, T-2 toxin, on proliferation and steroid production by porcine granulosa cells. Toxicon 2009, 54, 337–344. [Google Scholar] [CrossRef]
- Minervini, F.; Dell’Aquila, M.E.; Maritato, F.; Minoia, P.; Visconti, A. Toxic effects of the mycotoxin zearalenone and its derivatives on in vitro maturation of bovine oocytes and 17 beta-estradiol levels in mural granulosa cell cultures. Toxicol. Vitr. 2001, 15, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Frizzell, C.; Uhlig, S.; Miles, C.O.; Verhaegen, S.; Elliott, C.T.; Eriksen, G.S.; Sørlie, M.; Ropstad, E.; Connolly, L. Biotransformation of zearalenone and zearalenols to their major glucuronide metabolites reduces estrogenic activity. Toxicol. Vitr. 2015, 29, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Manera, U.; Matteoni, E.; Canosa, A.; Callegaro, S.; Casale, F.; Marchis, D.; Vasta, R.; Moglia, C.; Chiò, A.; Calvo, A. Mycotoxins and Amyotrophic Lateral Sclerosis: Food Exposure, Nutritional Implications and Dietary Solutions. CNS Neurol. Disord.–Drug Targets 2024, 23, 562–572. [Google Scholar] [CrossRef] [PubMed]
- Unicsovics, M.; Molnár, Z.; Mézes, M.; Posta, K.; Nagyéri, G.; Várbíró, S.; Ács, N.; Sára, L.; Szőke, Z. The Possible Role of Mycotoxins in the Pathogenesis of Endometrial Cancer. Toxins 2024, 16, 236. [Google Scholar] [CrossRef]
- Lakatos, I.; Babarczi, B.; Molnár, Z.; Tóth, A.; Skoda, G.; Horváth, G.F.; Horváth, A.; Tóth, D.; Sükösd, F.; Szemethy, L.; et al. First Results on the Presence of Mycotoxins in the Liver of Pregnant Fallow Deer (Dama dama) Hinds and Fetuses. Animals 2024, 14, 1039. [Google Scholar] [CrossRef]
- Szőke, Z.; Babarczi, B.; Mézes, M.; Lakatos, I.; Poór, M.; Fliszár-Nyúl, E.; Oldal, M.; Czéh, Á.; Bodó, K.; Nagyéri, G.; et al. Analysis and Comparison of Rapid Methods for the Determination of Ochratoxin a Levels in Organs and Body Fluids Obtained from Exposed Mice. Toxins 2022, 14, 634. [Google Scholar] [CrossRef]
- Vlachou, M.; Pexara, A.; Solomakos, N.; Govaris, A.; Palaiogiannis, D.; Athanasiadis, V.; Lalas, S.I. Presence of Ochratoxin A Residues in Blood Serum of Slaughtered Pigs in Greece. Toxins 2024, 16, 421. [Google Scholar] [CrossRef]
Mean | Standard Deviation | Median | Minimum | Maximum | |
---|---|---|---|---|---|
Age | 35.9 | 4.0 | 36.0 | 28 | 44 |
BMI | 25.3 | 4.5 | 24.3 | 18.4 | 34.7 |
Anti-Mullerian hormone (μg/L) | 2.043 | 0.46 | 2.277 | 0.15 | 8.38 |
Total number of follicles (n) | 10.7 | 6.4 | 10 | 2 | 27 |
Dominant follicles (Ø > 15 mm, n) | 8.1 | 5.1 | 7 | 1 | 21 |
Useable embryos (n) | 1.9 | 2.2 | 1 | 0 | 9 |
Ratio of oocytes/all follicles | 0.41 | 0.41 | 0.4 | 0 | 1.17 |
Ratio of embryos/all follicles | 0.13 | 0.13 | 0.09 | 0 | 0.6 |
Ratio of embryos/dominant follicles | 0.18 | 0.2 | 0.13 | 0 | 0.9 |
Serum P4 (μg/L) | 1.57 † | 1.06 | 1.2 | 0.4 | 5.1 |
ff P4 (μg/L) | 5170.22 *,† | 1991.96 | 5112.4 | 1166.6 | 9110.9 |
Serum E2 5.day (pg/mL) | 43.5 | 15.3 | 46.6 | 17.1 | 66 |
Serum E2 12.day (pg/mL) | 1995.66 | 1237.04 | 1598.6 | 477 | 4575 |
ff E2 (pg/mL) | 36,591.94 * | 3743.42 | 37,261.6 | 29,180.6 | 41,583.1 |
Serum FSH (IU/L) | 7.04 | 2.7 | 6.1 | 3 | 14.1 |
Serum LH (IU/L) | 4.62 | 1.7 | 4.7 | 1.4 | 8.1 |
Mean | Standard Deviation | Median | Median in nM/mL | Minimum | Maximum | |
---|---|---|---|---|---|---|
serum Aflatoxin (pg/mL) | 0 | 0 | 0 | 0 | 0 | 0 |
ff Aflatoxin (pg/mL) | 27.55 | 60.62 | 0 | 0 | 0 | 270 |
serum Aflatoxin M1 (pg/mL) | 6.24 † | 11.46 | 0 | 0 | 0 | 43.33 |
ff Aflatoxin M1 (pg/mL) | 9.16 † | 13.3 | 6.17 | 1.97 × 10−5 | 0 | 58.81 |
serum Zearalenone (pg/mL) | 81.34 † | 100.58 | 58.14 | 1.82 × 10−4 | 0 | 391.19 |
ff Zearalenone (pg/mL) | 241.93 *,† | 179.34 | 191.67 | 6.01 × 10−4 | 0 | 756.37 |
serum alpha-Zearalenol (pg/mL) | 192.52 | 121.72 | 212 | 6.34 × 10−4 | 0 | 354 |
ff alpha-Zearalenol (pg/mL) | 554.56 * | 194.18 | 550 | 1.68 × 10−3 | 228 | 926 |
serum Ochratoxin A (pg/mL) | 7.44 | 6.15 | 6 | 1.48 × 10−5 | 0 | 22 |
ff Ochratoxin A (pg/mL) | 6.56 | 5.9 | 8 | 1.98 × 10−5 | 0 | 16 |
serum Fumonisin B1 (pg/mL) | 110.75 | 120.96 | 82.6 | 1.48 × 10−4 | 0 | 388.4 |
ff Fumonisin B1 (pg/mL) | 68.8 | 83.17 | 40 | 7.22 × 10−5 | 0 | 272 |
serum Deoxynivalenol (ng/mL) | 1.58 | 1.49 | 1.16 | 3.91 × 10−3 | 0 | 4.36 |
ff Deoxynivalenol (ng/mL) | 5.11 * | 1.66 | 5.06 | 1.71 × 10−2 | 2.14 | 8.78 |
serum T2/HT2 toxin (ng/mL) | 1.73 | 1.39 | 1.89 | 3.64 × 10−3 | 0 | 4.25 |
ff T2/HT2 toxin (ng/mL) | 0.97 | 1.34 | 0.36 | 6.94 × 10−4 | 0 | 4.69 |
ff AfM1 pg/mL | ff ZEN pg/mL | ff OTA pg/mL | ff T2/HT2 ng/mL | ff FB1 pg/mL | ff α-ZOL pg/mL | ff DON ng/mL | ||
---|---|---|---|---|---|---|---|---|
ff AfM1 pg/mL | Correlation | 1 | −0.26 | −0.15 | 0.25 | 0.32 | −0.12 | 0.41 |
p-value | 0.212 | 0.477 | 0.24 | 0.133 | 0.569 | 0.036 * | ||
ff ZEN pg/mL | Correlation | −0.26 | 1 | 0.22 | −0.21 | −0.3 | 0.16 | 0.03 |
p-value | 0.212 | 0.297 | 0.324 | 0.161 | 0.442 | 0.873 | ||
ff OTA pg/mL | Correlation | −0.15 | 0.22 | 1 | −0.4 | 0.04 | −0.41 | −0.29 |
p-value | 0.477 | 0.297 | 0.051 | 0.846 | 0.045 * | 0.173 | ||
ff T2/HT2 ng/mL | Correlation | 0.25 | −0.21 | −0.4 | 1 | 0.3 | 0.49 | 0.46 |
p-value | 0.24 | 0.324 | 0.051 | 0.149 | 0.016 * | 0.023 * | ||
ff FB1 pg/mL | Correlation | 0.32 | −0.3 | 0.04 | 0.3 | 1 | −0.18 | 0.06 |
p-value | 0.133 | 0.161 | 0.846 | 0.149 | 0.407 | 0.774 | ||
ff alpha-ZOL pg/mL | Correlation | −0.12 | 0.16 | −0.41 | 0.49 | −0.18 | 1 | 0.36 |
p-value | 0.569 | 0.442 | 0.045 * | 0.016 * | 0.407 | 0.089 | ||
ff DON ng/mL | Correlation | 0.41 | 0.03 | −0.29 | 0.46 | 0.06 | 0.36 | 1 |
p-value | 0.036 * | 0.873 | 0.173 | 0.023 * | 0.774 | 0.089 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szentirmay, A.; Molnár, Z.; Plank, P.; Mézes, M.; Sajgó, A.; Martonos, A.; Buzder, T.; Sipos, M.; Hruby, L.; Szőke, Z.; et al. The Potential Influence of the Presence of Mycotoxins in Human Follicular Fluid on Reproductive Outcomes. Toxins 2024, 16, 509. https://doi.org/10.3390/toxins16120509
Szentirmay A, Molnár Z, Plank P, Mézes M, Sajgó A, Martonos A, Buzder T, Sipos M, Hruby L, Szőke Z, et al. The Potential Influence of the Presence of Mycotoxins in Human Follicular Fluid on Reproductive Outcomes. Toxins. 2024; 16(12):509. https://doi.org/10.3390/toxins16120509
Chicago/Turabian StyleSzentirmay, Apolka, Zsófia Molnár, Patrik Plank, Miklós Mézes, Attila Sajgó, Attila Martonos, Tímea Buzder, Miklós Sipos, Lili Hruby, Zsuzsanna Szőke, and et al. 2024. "The Potential Influence of the Presence of Mycotoxins in Human Follicular Fluid on Reproductive Outcomes" Toxins 16, no. 12: 509. https://doi.org/10.3390/toxins16120509
APA StyleSzentirmay, A., Molnár, Z., Plank, P., Mézes, M., Sajgó, A., Martonos, A., Buzder, T., Sipos, M., Hruby, L., Szőke, Z., & Sára, L. (2024). The Potential Influence of the Presence of Mycotoxins in Human Follicular Fluid on Reproductive Outcomes. Toxins, 16(12), 509. https://doi.org/10.3390/toxins16120509