The Impact of Biocontrol Agents on the Metabolome of Penicillium nordicum Strains and Its Relation to Ochratoxin A Production on Dry-Cured Ham
Abstract
:1. Introduction
2. Results
2.1. The Effect of BCAs on the Metabolome of OTA-Producer Moulds
2.2. Metabolomics Changes Between Both Strains of OTA-Producing P. nordicum
3. Discussion
3.1. The Effect of the BCAs on the Metabolome of the Ochratoxigenic Moulds
3.2. Metabolomics Changes Between Both OTA-Producing P. nordicum Strains
4. Conclusions
5. Materials and Methods
5.1. Microorganisms
5.2. The Experimental Setting
5.3. Metabolite Extraction
5.4. Untargeted Metabolomics Analysis
5.5. The Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Toldrá, F. Dry-cured ham. In Handbook of Food An Beverage Fermentation Technology, 1st ed.; Hui, Y.H., Meunier-Goddik, L., Josephsen, J., Nip, W.K., Stanfield, P.S., Eds.; CRC Press: Boca Raton, FL, USA, 2004; pp. 448–463. [Google Scholar]
- Toldrá, F.; Aristoy, M.C. Dry-cured ham. In Handbook of Meat Processing, 1st ed.; Toldrá, F., Ed.; Blackwell Publising: Hoboken, NJ, USA, 2010; pp. 351–362. [Google Scholar]
- Martín, A.; Córdoba, J.J.; Aranda, E.; Córdoba, M.G.; Asensio, M.A. Contribution of a selected fungal population to the volatile compounds on dry-cured ham. Int. J. Food Microbiol. 2006, 110, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Magistà, D.; Susca, A.; Ferrara, M.; Logrieco, A.F.; Perrone, G. Penicillium species: Crossroad between quality and safety of cured meat production. Curr. Opin. Food Sci. Sci. 2017, 17, 36–40. [Google Scholar] [CrossRef]
- Asefa, D.T.; Gjerde, R.O.; Sidhu, M.S.; Langsrud, S.; Kure, C.F.; Nesbakken, T.; Skaar, I. Moulds contaminants on Norwegian dry-cured meat products. Int. J. Food Microbiol. 2009, 128, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Alía, A.; Andrade, M.J.; Rodríguez, A.; Reyes-Prieto, M.; Bernáldez, V.; Córdoba, J.J. Identification and control of moulds responsible for black spot spoilage in dry-cured ham. Meat Sci. 2016, 122, 16–24. [Google Scholar] [CrossRef]
- Vlachou, M.; Pexara, A.; Solomakos, N.; Govaris, A. Ochratoxin A in slaughtered pigs and pork products. Toxins 2022, 14, 67. [Google Scholar] [CrossRef]
- Sirot, V.; Fremy, J.M.; Leblanc, J.C. Dietary exposure to mycotoxins and health risk assessment in the second French total diet study. Food Chem. Toxicol. 2013, 52, 1–11. [Google Scholar] [CrossRef]
- Mitchell, N.J.; Chen, C.; Palumbo, J.D.; Bianchini, A.; Cappozzo, J.; Stratton, J.; Ryu, D.; Wu, F. A risk assessment of dietary Ochratoxin A in the United States. Food Chem. Toxicol. 2017, 100, 265–273. [Google Scholar] [CrossRef]
- Battilani, P.; Pietri, A.; Giorni, P.; Formenti, S.; Bertuzzi, T.; Toscani, T.; Virgili, R.; Kozakiewicz, Z. Penicillium populations in dry-cured ham manufacturing plants. J. Food Prot. 2007, 70, 975–980. [Google Scholar] [CrossRef]
- Iacumin, L.; Chiesa, L.; Boscolo, D.; Manzano, M.; Cantoni, C.; Orlic, S.; Comi, G. Moulds and ochratoxin A on surfaces of artisanal and industrial dry sausages. Food Microbiol. 2009, 26, 65–70. [Google Scholar] [CrossRef]
- Sonjak, S.; Ličen, M.; Frisvad, J.C.; Gunde-Cimerman, N. Salting of dry-cured meat. A potential cause of contamination with the ochratoxin A-producing species Penicillium nordicum. Food Microbiol. 2011, 28, 1111–1116. [Google Scholar] [CrossRef]
- Virgili, R.; Simoncini, N.; Toscani, T.; Leggieri, M.C.; Formenti, S.; Battilani, P. Biocontrol of Penicillium nordicum growth and ochratoxin A production by native yeasts of dry cured ham. Toxins 2012, 4, 68–82. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, M.; Magistá, D.; Lippolis, V.; Cervellieri, S.; Susca, A.; Perrone, G. Effect of Penicillium nordicum contamination rates on ochratoxin A accumulation in dry-cured salami. Food Control. 2016, 67, 235–239. [Google Scholar] [CrossRef]
- Schrenk, D.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.; Nebbia, C.S.; Nielsen, E.; et al. Risk assessment of ochratoxin A in food. EFSA J. 2020, 18, 6113. [Google Scholar]
- Samuel, M.S.; Jeyaram, K.; Datta, S.; Chandrasekar, N.; Balaji, R.; Selvarajan, E. Detection, contamination, toxicity, and prevention methods of ochratoxins: An update review. J. Agric. Food Chem. 2021, 69, 13974–13989. [Google Scholar] [CrossRef]
- Duarte, S.C.; Alves, M.R.; Pena, A.; Lino, C.M. International Journal of Hygiene and Determinants of ochratoxin A exposure—A one year follow-up study of urine levels. Int. J. Hyg. Environ. Health 2012, 215, 360–367. [Google Scholar] [CrossRef] [PubMed]
- IARC. Ochratoxin A. Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Cancer: Lyon, France, 1993; Volume 56, pp. 489–521. [Google Scholar]
- IARC. Agents Classified by the IARC Monographs, Volumes 1–123; International Agency for Cancer: Lyon, France, 2018; pp. 1–37. [Google Scholar]
- Malir, F.; Ostry, V.; Pfohl-Leszkowicz, A.; Malir, J.; Toman, J. Ochratoxin A: 50 years of research. Toxins 2016, 8, 191. [Google Scholar] [CrossRef]
- Ostry, V.; Malir, F.; Toman, J.; Grosse, Y. Mycotoxins as human carcinogens-the IARC Monographs classification. Mycotoxin Res. 2017, 33, 65–73. [Google Scholar] [CrossRef]
- Iacumin, L.; Manzano, M.; Andyanto, D.; Comi, G. Biocontrol of ochratoxigenic moulds (Aspergillus ochraceus and Penicillium nordicum) by Debaryomyces hansenii and Saccharomycopsis fibuligera during speck production. Food Microbiol. 2017, 62, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Iacumin, L.; Arnoldi, M.; Comi, G. Effect of a Debaryomyces hansenii and Lactobacillus buchneri starter culture on Aspergillus westerdijkiae ochratoxin A production and growth during the manufacture of short seasoned dry-cured ham. Microorganisms 2020, 8, 1623. [Google Scholar] [CrossRef]
- Cebrián, E.; Roncero, E.; Andrade, M.J.; Núñez, F.; Peromingo, B.; Rodríguez, M. Evaluation of the efficacy of autochthonous biocontrol agents for controlling ochratoxin A production in simulated ripening of dry-cured ham. Food Biosci. 2024, 60, 104530. [Google Scholar] [CrossRef]
- Simoncini, N.; Virgili, R.; Spadola, G.; Battilani, P. Autochthonous yeasts as potential biocontrol agents in dry-cured meat products. Food Control 2014, 46, 160–167. [Google Scholar] [CrossRef]
- Andrade, M.J.; Thorsen, L.; Rodríguez, A.; Córdoba, J.J.; Jespersen, L. Inhibition of ochratoxigenic moulds by Debaryomyces hansenii strains for biopreservation of dry-cured meat products. Int. J. Food Microbiol. 2014, 170, 70–77. [Google Scholar] [CrossRef]
- Cebrián, E.; Roncero, E.; Luz, J.; Sousa Silva, M.; Cordeiro, C.; Peromingo, A.B.; Rodríguez, M.; Núñez, F. Untargeted metabolomics to relate changes produced by biocontrol agents against Aspergillus westerdijkiae and Penicillium nordicum in vitro on dry-cured ham. Int. J. Food Microbiol. 2025, 430, 111036. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, A.; Medina, Á.; Córdoba, J.J.; Magan, N. The influence of salt (NaCl) on ochratoxin A biosynthetic genes, growth and ochratoxin A production by three strains of Penicillium nordicum on a dry-cured ham-based medium. Int. J. Food Microbiol. 2014, 178, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Bernáldez, V.; Rodríguez, A.; Delgado, J.; Sánchez-Montero, L.; Córdoba, J.J. Gene expression analysis as a method to predict OTA accumulation in dry-cured meat products. Food Anal. Methods 2018, 11, 2463. [Google Scholar] [CrossRef]
- Li, G.; Jian, T.; Liu, X.; Lv, Q.; Zhang, G.; Ling, J. Application of metabolomics in fungal research. Molecules 2022, 27, 7365. [Google Scholar] [CrossRef]
- Li, X.; You, Y.; Xue, B.; Chen, J.; Du, M.; Ibrahim, A.; Suo, H.; Zhang, F.; Zheng, J. Decoding microbiota and metabolite transformation in inoculated fermented suansun using metagenomics, GC–MS, non-targeted metabolomics, and metatranscriptomics: Impacts of different Lactobacillus plantarum strains. Food Res. Int. 2025, 203, 115847. [Google Scholar] [CrossRef]
- Feng, X.; Ma, R.; Wang, Y.; Tong, L.; Wen, W.; Mu, T.; Tian, J.; Yu, B.; Gu, Y.; Zhang, J. Non-targeted metabolomics identifies biomarkers in milk with high and low milk fat percentage. Food Res. Int. 2024, 179, 113989. [Google Scholar] [CrossRef]
- Sousa Silva, M.; Cordeiro, C. New findings in metabolomics in food mycology. Curr. Opin. Food Sci. 2024, 57, 101175. [Google Scholar] [CrossRef]
- Xie, H.; Wang, X.; van der Hooft, J.J.; Medema, M.H.; Chen, Z.Y.; Yue, X.; Zhang, Q.; Li, P. Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species. J. Hazard Mater. 2022, 424, 127173. [Google Scholar] [CrossRef]
- Álvarez, M.; Delgado, J.; Núñez, F.; Cebrián, E.; Andrade, M.J. Proteomic analyses reveal mechanisms of action of biocontrol agents on ochratoxin A repression in Penicillium nordicum. Food Control 2021, 129, 108232. [Google Scholar] [CrossRef]
- Cebrián, E.; Roncero, E.; Delgado, J.; Núñez, F.; Rodríguez, M. Deciphering Staphylococcus xylosus and Staphylococcus equorum mode of action against Penicillium nordicum in a dry-cured ham model system. Int. J. Food Microbiol. 2023, 405, 110342. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, L.; Liu, F.; Wang, Q.; Selvaraj, J.; Xing, F.; Zhao, Y.; Liu, Y. Ochratoxin A producing fungi, biosynthetic pathway and regulatory mechanisms. Toxins 2016, 8, 83. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, L.; Wu, F.; Liu, F.; Wang, Q.; Zhang, X.; Selvaraj, J.N.; Zhao, Y.; Xing, F.; Yin, W.B.; et al. A consensus ochratoxin A biosynthetic pathway: Insights from the genome sequence of Aspergillus ochraceus and a comparative genomic analysis. Appl. Environ. Microbiol. 2018, 84, e01009-18. [Google Scholar] [CrossRef]
- Gallo, A.; Ferrara, M.; Perrone, G. Recent advances on the molecular aspects of ochratoxin A biosynthesis. Curr. Opin. Food Sci. 2017, 17, 49–56. [Google Scholar] [CrossRef]
- Romero, R.M.; Roberts, M.F.; Phillipson, J.D. Chorismate mutase in microorganisms and plants. Phytochemistry 1995, 40, 1015–1025. [Google Scholar] [CrossRef]
- Woodin, T.; Nishioka, L. Chorismate mutase isozyme patterns in three fungi. Biochim. Biophys. Acta 1973, 309, 224–231. [Google Scholar] [CrossRef]
- Qiu, M.; Wang, Y.; Sun, L.; Deng, Q.; Zhao, J. Fatty acids and oxylipins as antifungal and anti-mycotoxin agents in food: A review. Toxins 2021, 13, 852. [Google Scholar] [CrossRef]
- Gao, J.; Liu, H.; Zhang, Z.; Liang, Z. Quorum sensing-mediated lipid oxidation further regulating the environmental adaptability of Aspergillus ochraceus. Metabolites 2023, 13, 491. [Google Scholar] [CrossRef]
- Reverberi, M.; Punelli, F.; Scarpari, M.; Camera, E.; Zjalic, S.; Ricelli, A.; Fanelli, C.; Fabbri, A.A. Lipoperoxidation affects ochratoxin A biosynthesis in Aspergillus ochraceus and its interaction with wheat seeds. Appl. Microbiol. Biotechnol. 2010, 85, 1935–1946. [Google Scholar] [CrossRef]
- Scala, V.; Giorni, P.; Cirlini, M.; Ludovici, M.; Visentin, I.; Cardinale, F.; Fabbri, A.A.; Fanelli, C.; Reverberi, M.; Battilani, P.; et al. LDS1-produced oxylipins are negative regulators of growth, conidiation and fumonisin synthesis in the fungal maize pathogen Fusarium verticillioides. Front. Microbiol. 2014, 5, 669. [Google Scholar] [CrossRef] [PubMed]
- Tsitsigiannis, D.I.; Keller, N.P. Oxylipins as developmental and host-fungal communication signals. Trends Microbiol. 2007, 15, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Scala, V.; Beccaccioli, M.; Dall’Asta, C.; Giorni, P.; Fanelli, C. Analysis of the expression of genes related to oxylipin biosynthesis in Fusarium verticillioides and Maize kernels during their interaction. J. Plant Pathol. 2015, 97, 193–197. [Google Scholar]
- Wishart, D.S.; Guo, A.C.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 2022, 50, D622–D631. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
Comparative Analysis | Total | Only Detected in Control | Only Detected in BCAs | Common |
---|---|---|---|---|
Pn15 vs. Pn15 + BCAs | 5915 | 1220 | 755 | 3940 |
Pn856 vs. Pn856 + BCAs | 6655 | 1176 | 1440 | 4039 |
Phenylalanine Metabolism | |||
---|---|---|---|
Log2 fold change (control/BCAs) | |||
Metabolite | KEGG ID | Pn15 | Pn856 |
Phenylglyoxylate | C02137 | Only in Pn15 a | Only in Pn856 b |
4-Hydroxyphenylacetate | C00642 | Only in BCAs c | n.s |
3-Hydroxyphenylacetate | C05593 | Only in BCAs | n.s |
2-Hydroxyphenylacetate | C05852 | Only in BCAs | n.s |
N-Acetyl-L-phenylalanine | C03519 | −1.553 | n.s |
2-Hydroxyphenylpropanoate | C01198 | n.d | Only in Pn856 |
Phenylacetylglutamine | C04148 | n.d | Only in Pn856 |
Phenyllactate | C05607 | n.d | Only in Pn856 |
3-Hydroxyphenylpropanoate | C11457 | n.d | Only in Pn856 |
trans-2,3-Dihydroxycinnamate | C12623 | n.d | Only in Pn856 |
L-Phenylalanine | C00079 | n.s | −2.428 |
L-Tyrosine | C00082 | n.s | −1.730 |
Phenylpyruvate | C00166 | n.s | −3.679 |
trans-2-Hydroxycinnamate | C01772 | n.s | −3.679 |
2-Hydroxy-3-phenylpropenoate | C02763 | n.s | −3.679 |
trans-3-Hydroxycinnamate | C12621 | n.s | −3.679 |
Valine, leucine, and isoleucine biosynthesis | |||
Log2 fold change (control/BCAs) | |||
Metabolite | KEGG ID | Pn15 | Pn856 |
2-Oxobutanoate | C00109 | 6.791 | Only in Pn856 |
L-Leucine | C00123 | n.s | −2.050 |
L-Isoleucine | C00407 | n.s | −2.050 |
Phenylalanine, Tyrosine, and Tryptophan Biosynthesis | ||
---|---|---|
Log2 fold change (control/BCAs) | ||
Metabolite | KEGG ID | Pn15 |
3-Hydroxybenzoate | C00587 | Only in Pn15 a |
L-tryptophan | C00078 | −1.622 |
Anthranilate | C00108 | −1.584 |
Arachidonic acid metabolism | ||
Log2 fold change (control/BCAs) | ||
Metabolite | KEGG ID | Pn856 |
Prostaglandin F2alpha | C00639 | Only in BCAs b |
11-epi-Prostaglandin F2alpha | C05959 | Only in BCAs |
9,11,15-Trihydroxy-prosta-5,13-dien-1-oic acid | C13809 | Only in BCAs |
11,12,15-THETA | C14782 | Only in BCAs |
Trioxilin A3 | C14809 | Only in BCAs |
Trioxilin B3 | C14811 | Only in BCAs |
11,14,15-THETA | C14814 | Only in BCAs |
Phosphatidylcholine | C00157 | −7.447 |
(15S)-15-Hydroxy-5,8,11-cis-13-trans-eicosatetraenoate | C04742 | −1.886 |
5(S)-HETE | C04805 | −1.886 |
20-HETE | C14748 | −1.886 |
19(S)-HETE | C14749 | −1.886 |
5,6-EET | C14768 | −1.886 |
8,9-EET | C14769 | −1.886 |
14,15-EET | C14771 | −1.886 |
8(S)-HETE | C14776 | −1.886 |
12(S)-HETE | C14777 | −1.886 |
16(R)-HETE | C14778 | −1.886 |
11(R)-HETE | C14780 | −1.886 |
Phenylalanine, Tyrosine, and Tryptophan Biosynthesis | ||
---|---|---|
Metabolite | KEGG ID | Log2 fold change (Pn15/Pn856) |
4-Hydroxyphenylpyruvate | C00642 | Only in Pn856 a |
3- Hydroxybenzoate | C00587 | Only in Pn15 b |
Phenylalanine metabolism | ||
Metabolite | KEGG ID | Log2 fold change (Pn15/Pn856) |
4-Hydroxyphenylpyruvate | C00642 | Only in Pn856 |
3-Hydroxyphenylpyruvate | C05593 | Only in Pn856 |
2-Hydroxyphenylacetate | C05852 | Only in Pn856 |
Phenyllactate | C05607 | Only in Pn856 |
Trans-2,3-Dihydroxycinnamate | C12623 | Only in Pn856 |
2-Hydroxyphnylpropanoate | C01198 | Only in Pn856 |
3-Hydroxyphnylpropanoate | C11457 | Only in Pn856 |
Phenylacetylglutamine | C04148 | Only in Pn856 |
Phenylpropanoate | C05629 | Only in Pn15 |
Valine, leucine, and isoleucine biosynthesis | ||
Metabolite | KEGG ID | Log2 fold change (Pn15/Pn856) |
(S)-3-Methyl-2-oxopentanoate | C00671 | −2.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cebrián, E.; Roncero, E.; Luz, J.; Rodríguez, M.; Sousa Silva, M.; Cordeiro, C.; Núñez, F. The Impact of Biocontrol Agents on the Metabolome of Penicillium nordicum Strains and Its Relation to Ochratoxin A Production on Dry-Cured Ham. Toxins 2025, 17, 236. https://doi.org/10.3390/toxins17050236
Cebrián E, Roncero E, Luz J, Rodríguez M, Sousa Silva M, Cordeiro C, Núñez F. The Impact of Biocontrol Agents on the Metabolome of Penicillium nordicum Strains and Its Relation to Ochratoxin A Production on Dry-Cured Ham. Toxins. 2025; 17(5):236. https://doi.org/10.3390/toxins17050236
Chicago/Turabian StyleCebrián, Eva, Elia Roncero, João Luz, Mar Rodríguez, Marta Sousa Silva, Carlos Cordeiro, and Félix Núñez. 2025. "The Impact of Biocontrol Agents on the Metabolome of Penicillium nordicum Strains and Its Relation to Ochratoxin A Production on Dry-Cured Ham" Toxins 17, no. 5: 236. https://doi.org/10.3390/toxins17050236
APA StyleCebrián, E., Roncero, E., Luz, J., Rodríguez, M., Sousa Silva, M., Cordeiro, C., & Núñez, F. (2025). The Impact of Biocontrol Agents on the Metabolome of Penicillium nordicum Strains and Its Relation to Ochratoxin A Production on Dry-Cured Ham. Toxins, 17(5), 236. https://doi.org/10.3390/toxins17050236