You are currently viewing a new version of our website. To view the old version click .

Toxics

Toxics is an international, peer-reviewed, open access journal on all aspects of the toxic chemicals and materials, published monthly online by MDPI.

Indexed in PubMed | Quartile Ranking JCR - Q1 (Toxicology)

All Articles (4,564)

(Eco)Toxicity of E-Waste: Current Methods, Challenges, and Research Priorities

  • Diogo A. Ferreira-Filipe,
  • Andrew S. Hursthouse and
  • Armando C. Duarte
  • + 2 authors

The rapid growth in manufacturing and use of electrical and electronic equipment has led to unprecedented volumes of poorly managed e-waste, posing serious ecological risks. Although data on individual chemical substances in e-waste are available, evidence of ecotoxicity from actual e-waste materials remains scattered. This review consolidates organism-level ecotoxicity data on real e-waste samples (mixed fractions, fragments, leachates) and samples collected near e-waste facilities (soil, sediments, dust, water) across aquatic and terrestrial environments. It critically examines how methodological approaches influence reported outcomes and outlines research priorities. In aquatic environments, toxic responses vary with increased amounts of toxicants (dissolved metals, particles from dismantling operations) that mobilise to surface waters, while hydrophobic organic compounds cause sublethal behavioural and genotoxic effects. The few studies on terrestrial environments show impaired invertebrate growth and reproduction, along with changes in soil and “plastisphere” microbiota. However, tested concentrations, material complexity, and incomplete reporting of exposure chemistry, among other factors, limit the environmental relevance and comparability of the data. Uniformised procedures, combined with thorough chemical characterisation, environmentally realistic conditions, and cross-system bioassays (including different exposure routes and cumulative assessments), may provide mechanistic insights into e-waste toxicity, supporting evidence-based risk management strategies while contributing towards the development and validation of robust new approach methodologies (NAMs).

3 December 2025

Overview and general advantages (in green) and disadvantages (in red) of the studies surveyed in this critical review, which fit into three main categories (laboratory studies using laboratory-treated (W)EEE samples, laboratory studies using environmental samples, and field studies (with environmental samples)).

Cadmium (Cd) accumulation in rice poses a serious threat to global food safety and human health. Foliar application of nano-silica (Si) offers a promising remediation strategy, but its efficacy is often limited by poor droplet retention on hydrophobic leaf surfaces. This study hypothesized that surfactants could overcome this barrier by enhancing the foliar performance of nano-Si. Through field experiments, we evaluated the synergistic effects of five surfactants (Polyvinylpyrrolidone (PVP) powder, Aerosol OT (AOT), Rhamnolipid (RH), Didecyldimethylammonium bromide (DDAB), and Alkyl Polyglycoside (APG)) when combined with nano-silica. The results demonstrated that all surfactants significantly improved wetting and retention, with alkyl polyglycoside (APG) and polyvinylpyrrolidone (PVP) being the most effective. These improvements translated into a remarkable suppression of Cd translocation within rice plants. The PVP–nano-Si combination emerged as the most potent treatment, reducing grain Cd content by 50% and achieving the lowest levels of As and Cr among all treatments. Furthermore, this synergistic effect was linked to a significant increase in grain concentrations of manganese (Mn) and zinc (Zn), which exhibit a competitive relationship with Cd. The findings reveal that surfactant co-application not only optimizes the physical application of nano-Si but also triggers beneficial nutrient–Cd interactions, providing a novel and efficient strategy for mitigating Cd contamination in rice. This study provides critical theoretical support for developing efficient and environmentally friendly foliar barrier technologies and supports safe production of rice in lightly to moderately contaminated paddy fields.

2 December 2025

Influence of different surfactants on the contact Angle of nano-silicon. Red text indicates contact angles.

With the increasing global burden of major depressive disorder (MDD), identifying modifiable environmental risk factors has become a critical priority. Per- and polyfluoroalkyl substances (PFASs), characterized by environmental persistence and bioaccumulation, have been linked to elevated mental health risks. However, the potential neurotoxicity of GenX—a novel PFAS developed to replace perfluorooctanoic acid (PFOA)—and its molecular association with MDD remain unclear. In this study, peripheral blood serum transcriptomic data from the Gene Expression Omnibus (GEO) were integrated with multidimensional bioinformatics analyses to elucidate molecular mechanisms connecting GenX exposure with MDD. Four hub genes (UCP2, AKR1B1, TP53, and F5) were identified, showing strong combined diagnostic performance (AUC = 0.925). Functional enrichment and immune infiltration analyses revealed their involvement in energy metabolism, oxidative stress, and immune-coagulation regulation. Molecular docking and dynamics simulations further confirmed stable interactions between GenX and these proteins, providing structural support for their mechanistic roles. Although classical dopaminergic markers (TH, SLC6A3, DRD1–5) were not detected in the serum-derived transcriptomes, the identified hub genes may still affect dopaminergic function indirectly by modulating metabolic, oxidative stress, and inflammatory/coagulation pathways, thereby influencing MDD susceptibility. This study provides the first integrated transcriptomic and structural evidence linking GenX to psychiatric risk, proposing a novel “GenX-dopamine-MDD” framework for understanding pollutant-mediated neuropsychiatric mechanisms.

2 December 2025

Acquisition and integrated analysis results for MDD, dopamine, and GenX-related genes. (A) Principal component analysis before batch correction; (B) Principal component analysis after batch correction; (C) Volcano plot of differentially expressed genes; (D) Heatmap of differentially expressed genes; (E) Venn diagram of intersecting genes.

Microplastics (MPs) have become widespread environmental contaminants, with increasing evidence of their harmful impacts on human health. MPs generally enter the human body via ingestion, inhalation, or dermal exposure, with the gastrointestinal tract acting as a crucial entrance route. This work utilized the SHIME system to evaluate the effects of polystyrene (PS) MPs on gut microbiota and short-chain fatty acid (SCFA) metabolism in distinct colonic areas. The results demonstrated regional and individual-specific variations in microbial diversity, significant shifts in Firmicutes/Bacteroidetes (F/B) ratio, and declines in beneficial bacteria, such as Bifidobacteriaceae. Moreover, SHIME supernatants were then tested with a co-cultured cell model (Caco-2/HT29-MTX-E12). Results indicated a deteriorative effect on the intestinal model, characterized by enhanced oxidative stress and mitochondrial malfunction. No significant effect on intestinal barrier integrity or mucus secretion was detected. These findings highlight the potential systemic toxicity of PS-MPs on human gut microbiota-mediated mechanisms, emphasizing the necessity for immediate mitigation efforts.

2 December 2025

The SHIME system and the characterization of PS-MPs. (A) Schematic diagram and experiment design of the SHIME system exposed to PS-MPs. Control group: days 12, 13 and 14 of the control period; PS-MPs group: days 28, 29 and 30 of the PS-MP exposure period. (B) Circle equivalent diameter distribution and shape of plastic particles by particles analyzer. (C) FTIR spectroscopy of PS-MPs. (D) The zeta potentials of PS-MPs. (E) SEM image of plastic particles. Scale bar, 10 µm.

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Environmental Contaminants and Human Health
Reprint

Environmental Contaminants and Human Health

Editors: Lin Xu, Penghui Li, Xingchen Zhao
Impacts of Agrochemicals
Reprint

Impacts of Agrochemicals

Environmental Fate, Ecotoxicology, Risk Assessment, and Remediation
Editors: Eszter Takács, Szandra Klátyik, Mária Mörtl, András Székács

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Toxics - ISSN 2305-6304