sustainability-logo

Journal Browser

Journal Browser

Smart Microgrid Systems

A special issue of Sustainability (ISSN 2071-1050). This special issue belongs to the section "Energy Sustainability".

Deadline for manuscript submissions: closed (6 March 2021) | Viewed by 15051

Special Issue Editor


E-Mail Website
Guest Editor
Department of Electrical and Computer Engineering, University of Windsor, Windsor, ON, Canada
Interests: power systems control and operation; power systems planning and reliability; power systems protection and stability; high-voltage engineering; microgrids; smart grid
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Today’s modern power system is a combination of non-conventional energy sources and renewable energy resources and smart grids. Smart microgrid systems are the key for flexible, techno-economic, and environmentally friendly generation units for reliable operation and cost-effective planning of smart electricity grids.

In smart microgrid systems, (1) power demand and supply management problem with uncertain renewable energy integration, (2) energy generation scheduling, (3) power quality, and (4) cyber-physical security issues should be considered.

This Special Issue will investigate several key aspects of smart microgrid systems to enable enhanced solutions for intelligent and optimized electricity systems. It includes smart microgrid systems modeling, control, optimization, operation, protection, dynamics, planning, and reliability.

Dr. Fazel Mohammadi
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sustainability is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Microgrid
  • Smart grid
  • Operation and planning
  • Protection systems
  • Cyber-physical security
  • Intelligent and optimized control

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

24 pages, 1312 KiB  
Article
Techno-Economic Assessment and Operational Planning of Wind-Battery Distributed Renewable Generation System
by Umar Salman, Khalid Khan, Fahad Alismail and Muhammad Khalid
Sustainability 2021, 13(12), 6776; https://doi.org/10.3390/su13126776 - 15 Jun 2021
Cited by 21 | Viewed by 2541
Abstract
Electrical energy and power demand will experience exponential increase with the rise of the global population. Power demand is predictable and can be estimated based on population and available historical data. However, renewable energy sources (RES) are intermittent, unpredictable, and environment-dependent. Interestingly, microgrids [...] Read more.
Electrical energy and power demand will experience exponential increase with the rise of the global population. Power demand is predictable and can be estimated based on population and available historical data. However, renewable energy sources (RES) are intermittent, unpredictable, and environment-dependent. Interestingly, microgrids are becoming smarter but require adequate and an appropriate energy storage system (ESS) to support their smooth and optimal operation. The deep discharge caused by the charging–discharging operation of the ESS affects its state of health, depth of discharge (DOD), and life cycle, and inadvertently reduces its lifetime. Additionally, these parameters of the ESS are directly affected by the varying demand and intermittency of RES. This study presents an assessment of battery energy storage in wind-penetrated microgrids considering the DOD of the ESS. The study investigates two scenarios: a standalone microgrid, and a grid-connected microgrid. The problem is formulated based on the operation cost of the microgrid considering the DOD and the lifetime of the battery. The optimization problem is solved using non-linear programming. The scheduled operation cost of the microgrid, the daily scheduling cost of ESS, the power dispatch by distributed generators, and the DOD of the battery storage at any point in time are reported. Performance analysis showed that a power loss probability of less than 10% is achievable in all scenarios, demonstrating the effectiveness of the study. Full article
(This article belongs to the Special Issue Smart Microgrid Systems)
Show Figures

Figure 1

20 pages, 1674 KiB  
Article
Investigation of the Use of Low Temperature Geothermal Organic Rankine Cycle Engine in an Autonomous Polygeneration Microgrid
by George Kyriakarakos, Erika Ntavou and Dimitris Manolakos
Sustainability 2020, 12(24), 10475; https://doi.org/10.3390/su122410475 - 15 Dec 2020
Cited by 11 | Viewed by 2110
Abstract
Low-enthalpy geothermal resources (<150 °C) can be used for electricity generation and are widespread around the world, occurring at shallow depths. At the same time, in many parts of the world, there are existing low-enthalpy geothermal wells that are used for a multitude [...] Read more.
Low-enthalpy geothermal resources (<150 °C) can be used for electricity generation and are widespread around the world, occurring at shallow depths. At the same time, in many parts of the world, there are existing low-enthalpy geothermal wells that are used for a multitude of applications such as for buildings’ heating and agriculture-related applications. The dominant technology to convert low-grade heat (<150 °C) to electricity is the Organic Rankine Cycle (ORC). The autonomous polygeneration microgrid (APM) concept aims to holistically meet in a sustainable way the needs of an off-grid community in terms of electrical loads, space heating and cooling, potable water production through desalination, and the use of hydrogen as fuel for transportation, in the most cost-effective manner possible. Photovoltaics (PVs) and wind turbines have been investigated extensively, since PVs can be installed practically anywhere in the world and wind turbines in areas with sufficient wind potential. The aim of this paper is to investigate techno-economically the potential of utilizing low-enthalpy geothermal resources in small-scale APMs through an ORC engine to fully satisfy the needs of small settlements. In order to accomplish this task with confidence, a case study for the Greek island of Milos has been developed and a typical settlement has been considered. It is worth mentioning that experimental results from a realized low-power (<10 kWe) ORC engine manufactured to operate at temperatures up to 140 °C are used to add reliability in the calculations. In order to meet the needs of the people, four different APMs based on PVs, wind turbines, and geothermal ORC of different but appropriate configurations were designed and sized through optimization. The optimization process was based on particle swarm optimization (PSO). The comparative examination of the results shows that the use of a low-power, low-temperature ORC engine in an APM is technically feasible; more cost effective than the configurations based on PVs, wind turbines, or combination of both; and has increased environmental sustainability. Full article
(This article belongs to the Special Issue Smart Microgrid Systems)
Show Figures

Figure 1

17 pages, 11856 KiB  
Article
Short-Term Load Forecasting of Microgrid via Hybrid Support Vector Regression and Long Short-Term Memory Algorithms
by Arash Moradzadeh, Sahar Zakeri, Maryam Shoaran, Behnam Mohammadi-Ivatloo and Fazel Mohammadi
Sustainability 2020, 12(17), 7076; https://doi.org/10.3390/su12177076 - 30 Aug 2020
Cited by 96 | Viewed by 5258
Abstract
Short-Term Load Forecasting (STLF) is the most appropriate type of forecasting for both electricity consumers and generators. In this paper, STLF in a Microgrid (MG) is performed via the hybrid applications of machine learning. The proposed model is a modified Support Vector Regression [...] Read more.
Short-Term Load Forecasting (STLF) is the most appropriate type of forecasting for both electricity consumers and generators. In this paper, STLF in a Microgrid (MG) is performed via the hybrid applications of machine learning. The proposed model is a modified Support Vector Regression (SVR) and Long Short-Term Memory (LSTM) called SVR-LSTM. In order to forecast the load, the proposed method is applied to the data related to a rural MG in Africa. Factors influencing the MG load, such as various household types and commercial entities, are selected as input variables and load profiles as target variables. Identifying the behavioral patterns of input variables as well as modeling their behavior in short-term periods of time are the major capabilities of the hybrid SVR-LSTM model. To present the efficiency of the suggested method, the conventional SVR and LSTM models are also applied to the used data. The results of the load forecasts by each network are evaluated using various statistical performance metrics. The obtained results show that the SVR-LSTM model with the highest correlation coefficient, i.e., 0.9901, is able to provide better results than SVR and LSTM, which have the values of 0.9770 and 0.9809, respectively. Finally, the results are compared with the results of other studies in this field, which continued to emphasize the superiority of the SVR-LSTM model. Full article
(This article belongs to the Special Issue Smart Microgrid Systems)
Show Figures

Figure 1

Review

Jump to: Research

39 pages, 4200 KiB  
Review
A Comprehensive Review on Brushless Doubly-Fed Reluctance Machine
by Omid Sadeghian, Sajjad Tohidi, Behnam Mohammadi-Ivatloo and Fazel Mohammadi
Sustainability 2021, 13(2), 842; https://doi.org/10.3390/su13020842 - 16 Jan 2021
Cited by 10 | Viewed by 4215
Abstract
The Brushless Doubly-Fed Reluctance Machine (BDFRM) has been widely investigated in numerous research studies since it is brushless and cageless and there is no winding on the rotor of this emerging machine. This feature leads to several advantages for this machine in comparison [...] Read more.
The Brushless Doubly-Fed Reluctance Machine (BDFRM) has been widely investigated in numerous research studies since it is brushless and cageless and there is no winding on the rotor of this emerging machine. This feature leads to several advantages for this machine in comparison with its induction counterpart, i.e., Brushless Doubly-Fed Induction Machine (BDFIM). Less maintenance, less power losses, and also more reliability are the major advantages of BDFRM compared to BDFIM. The design complexity of its reluctance rotor, as well as flux patterns for indirect connection between the two windings mounted on the stator including power winding and control winding, have restricted the development of this machine technology. In the literature, there is not a comprehensive review of the research studies related to BDFRM. In this paper, the previous research studies are reviewed from different points of view, such as operation, design, control, transient model, dynamic model, power factor, Maximum Power Point Tracking (MPPT), and losses. It is revealed that the BDFRM is still evolving since the theoretical results have shown that this machine operates efficiently if it is well-designed. Full article
(This article belongs to the Special Issue Smart Microgrid Systems)
Show Figures

Figure 1

Back to TopTop