sustainability-logo

Journal Browser

Journal Browser

Optimising Air Quality and Health Benefits of Transport Decarbonisation

A special issue of Sustainability (ISSN 2071-1050). This special issue belongs to the section "Sustainable Transportation".

Deadline for manuscript submissions: closed (1 March 2025) | Viewed by 14727

Special Issue Editors


E-Mail Website
Guest Editor
Centre for Future Transport and Cities, Coventry University, Coventry CV1 5FB, UK
Interests: transport policy; regulation and standards

E-Mail Website
Guest Editor
Institute of Applied Health Research, University of Birmingham, Edgbaston B15 2TT, UK
Interests: environmental epidemiology; public policy
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute of Applied Health Research, University of Birmingham, Edgbaston B15 2TT, UK
Interests: numerical modelling of air quality; software development; academic-to-practitioner knowledge transfer

E-Mail Website
Guest Editor
School of Mechanical Engineering, Coventry University, Coventry, UK
Interests: atomization and sprays; sustainability in engineering; air quality in resource poor regions; heat and mass transfer

Special Issue Information

Dear Colleagues,

There is a second major transport revolution, characterised by a future shift away from the internal combustion engine, with implications for existing business models, national infrastructure, and the way we travel. This transition presents opportunities and challenges for improving indoor and outdoor air quality and health, occurring in the context of disruptive changes in transport technology and evolving mobility patterns through demographic and behavioural changes in recent decades. The TRANSITION Clean Air Network (https://transition-air.org.uk/) is a programme led by the University of Birmingham in collaboration with 9 universities and over 20 cross-sector partners, which seeks to deliver air quality and health benefits associated with a transition to a low-emission transport economy.

Authors from engineering, public health, environmental and social sciences, alongside those representing business and not-for-profit organisations who seek to identify challenges and capitalise on opportunities to improve air-quality-related population health benefits associated with transport decarbonisation, are invited to submit their papers. Multidisciplinary research that bridges the physical, biological, social sciences, and the humanities is particularly encouraged. Submissions could relate but are not limited to the following topics and questions:

  • Characterising emerging air quality challenges—what are the current and future transport pollution sources and how will these determine health benefits and harms?
  • Understanding transport choices and behaviours—how will changes in mobility choices and patterns driven by transport decarbomisation change population exposure to air pollution?
  • Supporting industry-led research and innovation—obtaining key primary datasets, developing new technologies, or developing standards and/or test methods to assess compliance therewith;
  • Co-creating a framework for policy solutions—which planning processes/policy guidance need to be adapted to optimise public health benefits?

Dr. Huw Davies
Dr. Suzanne Bartington
Dr. James Levine
Dr. Nwabueze Emekwuru
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sustainability is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • air quality
  • public health
  • transport decarbonisation
  • policy
  • pollutants

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

18 pages, 662 KiB  
Article
Sustainability of Tourism and Economic Development in Three Religious Tourism Destinations: The Critical Role of Fossil Fuel Energy on Air Pollution and Human Health
by Melike Bildirici and Özgür Ömer Ersin
Sustainability 2025, 17(14), 6351; https://doi.org/10.3390/su17146351 - 11 Jul 2025
Abstract
The study examined the relations and Granger causality among environmental pollution, air quality, life expectancy, religious tourism, petroleum consumption and economic growth in three countries, Italy, Saudi Arabia and Türkiye, three countries with a prominent role of religious tourism, given the high shares [...] Read more.
The study examined the relations and Granger causality among environmental pollution, air quality, life expectancy, religious tourism, petroleum consumption and economic growth in three countries, Italy, Saudi Arabia and Türkiye, three countries with a prominent role of religious tourism, given the high shares of religious tourism revenues in their economies and due to pilgrimage-type religious tourism activities in total tourism activities. The study employed a yearly sample of 1975–2019 and novel Fourier-augmented vector autoregressive and Fourier Granger causality tests, under the structural breaks in the data. The findings indicate negative effects on environmental pollution and air quality from tourism in addition to such effects on life expectancy in all countries analyzed, and in this relation, fossil fuel consumption in these nations and its acceleration with tourism play crucial roles. These effects are amplified by economic growth coupled with tourism revenues that go in hand with high fossil fuel consumption, which further worsen the impacts on the environment. In the causality testing stage, the results determined unidirectional causality from tourism, fossil fuel energy consumption, and economic growth to both carbon dioxide emissions and to particulate matter 2.5. These effects are also reinforced by feedback effects between air pollution and life expectancy, which enhance the effects on both environment and air quality. These findings are used to suggest important policy recommendations, among which, the reduction in high dependency on fossil fuel in the energy mix is most central. Equally, policies are suggested to encourage sustainable tourism to reverse the adverse effects on health, environmental degradation and worsened air quality in these nations. Full article
Show Figures

Figure 1

35 pages, 1595 KiB  
Article
Analysis of the Synergies of Air Pollutant and Greenhouse Gas Emission Reduction in Typical Chemical Enterprises
by Qi Gong, Yatfei Chan, Yijia Xia, Weiqi Tang and Weichun Ma
Sustainability 2025, 17(14), 6263; https://doi.org/10.3390/su17146263 - 8 Jul 2025
Viewed by 107
Abstract
In this study, we selected the production processes and main products of three typical chemical enterprises in Shanghai, namely SH Petrochemical (part of the oil-refining sector), SK Ethylene, and HS Chlor-Alkali, to quantitatively assess the synergistic effects across technology, policy, and emission mechanisms. [...] Read more.
In this study, we selected the production processes and main products of three typical chemical enterprises in Shanghai, namely SH Petrochemical (part of the oil-refining sector), SK Ethylene, and HS Chlor-Alkali, to quantitatively assess the synergistic effects across technology, policy, and emission mechanisms. The localized air pollutant levels and greenhouse gas emissions of the three enterprises were calculated. The synergistic effects between the end-of-pipe emission reductions for air pollutants and greenhouse gas emissions were analyzed using the pollutant reduction synergistic and cross-elasticity coefficients, including technology comparisons (e.g., acrylonitrile gas incineration (AOGI) technology vs. traditional flare). Based on these data, we used the SimaPro software and the CML-IA model to conduct a life cycle environmental impact assessment regarding the production and upstream processes of their unit products. By combining the life cycle method and the scenario simulation method, we predicted the trends in the environmental impacts of the three chemical enterprises after the implementation of low-carbon development policies in the chemical industry in 2030. We also quantified the synergistic effects of localized air pollutant and greenhouse gas (GHG) emission reductions within the low-carbon development scenario by using cross-elasticity coefficients based on life cycle environmental impacts. The research results show that, for every ton of air pollutant reduced through end-of-pipe treatment measures, the HS Chlor-Alkali enterprise would increase its maximum CO2 emissions, amounting to about 80 tons. For SK Ethylene, the synergistic coefficient for VOC reduction and CO2 emissions when using AOGI thermal incineration technology is superior to that for traditional flare thermal incineration. The activities of the three enterprises had an impact on several environmental indicators, particularly the fossil fuel resource depletion potential, accounting for 69.48%, 53.94%, and 34.23% of their total environmental impact loads, respectively. The scenario simulations indicate that, in a low-carbon development scenario, the overall environmental impact loads of SH Petrochemical (refining sector), SK Ethylene, and HS Chlor-Alkali would decrease by 3~5%. This result suggests that optimizing the upstream power structure, using “green hydrogen” instead of “grey hydrogen” in hydrogenation units within refining enterprises, and reducing the consumption of electricity and steam in the production processes of ethylene and chlor-alkali are effective measures in reducing carbon emissions in the chemical industry. The quantification of the synergies based on life cycle environmental impacts revealed that there are relatively strong synergies for air pollutant and GHG emission reductions in the oil-refining industry, while the chlor-alkali industry has the weakest synergies. Full article
Show Figures

Figure 1

22 pages, 1200 KiB  
Article
Carbon Capture and Storage as a Decarbonisation Strategy: Empirical Evidence and Policy Implications for Sustainable Development
by Maxwell Kongkuah, Noha Alessa and Ilham Haouas
Sustainability 2025, 17(13), 6222; https://doi.org/10.3390/su17136222 - 7 Jul 2025
Viewed by 219
Abstract
This paper examines the impact of carbon capture and storage (CCS) deployment on national carbon intensity (CI) across 43 countries from 2010 to 2020. Using a dynamic common correlated effects (DCCE) log–log panel, we estimate the elasticity of CI with respect to sectoral [...] Read more.
This paper examines the impact of carbon capture and storage (CCS) deployment on national carbon intensity (CI) across 43 countries from 2010 to 2020. Using a dynamic common correlated effects (DCCE) log–log panel, we estimate the elasticity of CI with respect to sectoral CCS facility counts within four income-group panels and the full sample. In the high-income panel, CCS in direct air capture, cement, iron and steel, power and heat, and natural gas processing sectors produces statistically significant CI declines of 0.15%, 0.13%, 0.095%, 0.092%, and 0.087% per 1% increase in facilities, respectively (all p < 0.05). Upper-middle-income countries exhibit strong CI reductions in direct air capture (–0.22%) and cement (–0.21%) but mixed results in other sectors. Lower-middle- and low-income panels show attenuated or positive elasticities—reflecting early-stage CCS adoption and infrastructure barriers. Robustness checks confirm these patterns both before and after the 2015 Paris Agreement and between emerging and developed economy panels. Spatial analysis reveals that the United States and United Kingdom achieved 30–40% CI reductions over the decade, whereas China, India, and Indonesia realized only 10–20% declines (relative to a 2010 baseline), highlighting regional deployment gaps. Drawing on these detailed income-group insights, we propose tailored policy pathways: in high-income settings, expand tax credits and public–private infrastructure partnerships; in upper-middle-income regions, utilize blended finance and technology-transfer programs; and in lower-income contexts, establish pilot CCS hubs with international support and shared storage networks. We further recommend measures to manage CCS’s energy and water penalties, implement rigorous monitoring to mitigate leakage risks, and design risk-sharing contracts to address economic uncertainties. Full article
Show Figures

Figure 1

26 pages, 10537 KiB  
Article
Development of a Low-Cost Traffic and Air Quality Monitoring Internet of Things (IoT) System for Sustainable Urban and Environmental Management
by Lorand Bogdanffy, Csaba Romuald Lorinț and Aurelian Nicola
Sustainability 2025, 17(11), 5003; https://doi.org/10.3390/su17115003 - 29 May 2025
Viewed by 565
Abstract
In this research, we present the development and validation of a compact, resource-efficient (low-cost, low-energy), distributed, real-time traffic and air quality monitoring system. Deployed since November 2023 in a small town that relies on burning various fuels and waste for winter heating, the [...] Read more.
In this research, we present the development and validation of a compact, resource-efficient (low-cost, low-energy), distributed, real-time traffic and air quality monitoring system. Deployed since November 2023 in a small town that relies on burning various fuels and waste for winter heating, the system comprises three IoT units that integrate image processing and environmental sensing for sustainable urban and environmental management. Each unit uses an embedded camera and sensors to process live data locally, which are then transmitted to a central database. The image processing algorithm counts vehicles by type with over 95% daylight accuracy, while air quality sensors measure pollutants including particulate matter (PM), equivalent carbon dioxide (eCO2), and total volatile organic compounds (TVOCs). Data analysis revealed fluctuations in pollutant concentrations across monitored areas, correlating with traffic variations and enabling the identification of pollution sources and their relative impacts. Recorded PM10 daily average levels even reached eight times above the safe 24 h limits in winter, when traffic values were low, indicating a strong link to household heating. This work provides a scalable, cost-effective approach to traffic and air quality monitoring, offering actionable insights for urban planning and sustainable development. Full article
Show Figures

Figure 1

19 pages, 2048 KiB  
Article
Prediction of Annual Carbon Emissions Based on Carbon Footprints in Various Omani Industries to Draw Reduction Paths with LSTM-GRU Hybrid Model
by Chen Wang, Xiaomin Zhang, Zekai Nie and Sarita Gajbhiye Meshram
Sustainability 2025, 17(11), 4940; https://doi.org/10.3390/su17114940 - 28 May 2025
Viewed by 524
Abstract
Despite global efforts to address climate change, carbon dioxide (CO2) emissions are still on the rise. While carbon dioxide is essential for life on Earth, its increasing concentration due to human activities poses severe environmental and health risks. Therefore, accurately and [...] Read more.
Despite global efforts to address climate change, carbon dioxide (CO2) emissions are still on the rise. While carbon dioxide is essential for life on Earth, its increasing concentration due to human activities poses severe environmental and health risks. Therefore, accurately and efficiently predicting CO2 emissions is essential. Hence, this research delves deeply into the prediction of CO2 emissions by examining various deep learning models utilizing time series data to identify carbon dioxide levels in Oman. First, four important production materials of Oman (oil, gas, cement, and flaring), which have a great impact on CO2 emissions, were selected. Then, the time series related to the release of CO2 was collected from 1964 to 2022. After data collection, preprocessing was performed, in which outliers were removed and corrected, and data that had not been measured were completed using interpolation. Then, by dividing the data into two sections, education (1946–2004) and test (2022–2005) and creating scenarios, predictions were made. By creating four scenarios and modeling with two independent GRU and LSTM models and a hybrid LSTM-GRU model, annual carbon was predicted for Oman. The results were evaluated with three criteria: root mean square error (RMSE), mean absolute percentage error (MAPE), and correlation coefficient (r). The evaluations showed that the hybrid LSTM-GRU model with an error of 2.104 tons has the best performance compared to the rest of the models. By identifying key contributors to carbon footprints, these models can guide targeted interventions to reduce emissions. They can highlight the impact of industrial activities on per capita emissions, enabling policymakers to design more effective strategies. Therefore, in order to reduce pollution and increase the productivity of factories, using an advanced hybrid model, it is possible to identify the carbon footprint and make accurate predictions for different countries. Full article
Show Figures

Figure 1

20 pages, 4472 KiB  
Article
Energy Consumption and Carbon Footprint of the Port of Sines: Contribution to Maritime Transport Sustainability
by Teresa Batista, Carmen Luisa Vásquez, Rodrigo Ramírez-Pisco, Lucas de Aquino Marinho, Francisco António Borges and João Araújo
Sustainability 2025, 17(8), 3382; https://doi.org/10.3390/su17083382 - 10 Apr 2025
Cited by 1 | Viewed by 746
Abstract
Calculating the energy consumption and carbon footprint is essential for maritime industry sustainability, driving informed decisions and innovation. This study assesses the energy consumption and carbon footprint of the Port of Sines in Portugal to support its decarbonization and energy transition, based on [...] Read more.
Calculating the energy consumption and carbon footprint is essential for maritime industry sustainability, driving informed decisions and innovation. This study assesses the energy consumption and carbon footprint of the Port of Sines in Portugal to support its decarbonization and energy transition, based on the scopes defined by the Greenhouse Gas Protocol. The proposed calculation model is detailed using different data sources for the 2018–2022 period. For each terminal, the monthly and annual energy consumption and carbon footprint are calculated, considering land and maritime activities into the port jurisdiction area. The results show that more than 99% of the port’s total energy consumption and carbon footprint are due to the operations and activities of the different terminals. On average, the Port of Sines consumes 422,378.45 MWh/year and has a carbon footprint of 224.63185 tCO2eq/year. The analysis reveals a non-linear relationship between energy and carbon footprint, due to the different port activities, emphasizing the need for tailored decarbonization strategies for each terminal. Full article
Show Figures

Figure 1

30 pages, 3786 KiB  
Article
Governmental Functions in Establishing Alternative Marine Fuel Supply Chains in Shipping Decarbonization Governance
by Wenwen Li, Zhengliang Hu and Xinqiang Chen
Sustainability 2025, 17(7), 2808; https://doi.org/10.3390/su17072808 - 21 Mar 2025
Viewed by 393
Abstract
This study aims at exploring the importance of the governmental functions in establishing alternative marine fuel (AMF) supply chains at the early stage of shipping decarbonization and providing proposals of the main measures to be taken by governments. It first analyzes the significance [...] Read more.
This study aims at exploring the importance of the governmental functions in establishing alternative marine fuel (AMF) supply chains at the early stage of shipping decarbonization and providing proposals of the main measures to be taken by governments. It first analyzes the significance of these supply chains based on the adaptability analysis of AMFs from the perspective of their respective potential in reducing greenhouse gas emissions, costs, safety, and availability, mainly by way of a literature review. Then, the importance of governmental functions in establishing these supply chains is probed based on the features of these supply chains and by applying the theory of economics concerning the relationship between the government and the market. Finally, four specific measures to be taken by governments in establishing these supply chains are explored and proposed. The findings of a questionnaire investigation conducted in China are cited in support of the theoretical analysis. The main conclusions of this study reflecting its main contribution thereof are: AMF supply chains are crucial in achieving shipping decarbonization goals; government intervention is needed to rectify the disadvantages of market mechanisms in establishing these supply chains; as the main measures, governments need to develop strategic plans and policies, take appropriate market-based measures of tax incentives, fiscal subsidies, and/or other economic incentives, provide administrative guidance, and enhance international cooperation. Full article
Show Figures

Figure 1

23 pages, 5109 KiB  
Article
Exposures to Particles and Volatile Organic Compounds across Multiple Transportation Modes
by Nick Molden, Carl Hemming, Felix Leach, James G. Levine, Karl Ropkins and William Bloss
Sustainability 2023, 15(5), 4005; https://doi.org/10.3390/su15054005 - 22 Feb 2023
Cited by 6 | Viewed by 3351
Abstract
Travellers may be exposed to a wide range of different air pollutants during their journeys. In this study, personal exposures within vehicles and during active travel were tested in real-world conditions across nine different transport modes on journeys from London Paddington to Oxford [...] Read more.
Travellers may be exposed to a wide range of different air pollutants during their journeys. In this study, personal exposures within vehicles and during active travel were tested in real-world conditions across nine different transport modes on journeys from London Paddington to Oxford City Centre, in the United Kingdom. The modes tested covered cycling, walking, buses, coaches, trains and private cars. Such exposures are relevant to questions of traveller comfort and safety in the context of airborne diseases such as COVID-19 and a growing awareness of the health, safety and productivity effects of interior air quality. Pollutants measured were particle number (PN), particle mass (PM), carbon dioxide (CO2) and speciated volatile organic compounds (VOCs), using devices carried on or with the traveller, with pumped sampling. Whilst only a relatively small number of journeys were assessed—inviting future work to assess their statistical significance—the current study highlights where a particular focus on exposure reduction should be placed. Real-time results showed that exposures were dominated by short-term spikes in ambient concentrations, such as when standing on a train platform, or at the roadside. The size distribution of particles varied significantly according to the situation. On average, the coach created the highest exposures overall; trains had mixed performance, while private cars and active transport typically had the lowest exposures. Sources of pollutants included both combustion products entering the vehicle and personal care products from other passengers, which were judged from desk research on the most likely source of each individual compound. Although more exposed to exhaust emissions while walking or cycling, the active traveller had the benefit of rapid dilution of these pollutants in the open air. An important variable in determining total exposure was the journey length, where the speed of the private car was advantageous compared to the relative slowness of the coach. Full article
Show Figures

Figure 1

30 pages, 756 KiB  
Article
Meta-Analysis as Early Evidence on the Particulate Emissions Impact of EURO VI on Battery Electric Bus Fleet Transitions
by Jon Tivey, Huw C. Davies, James G. Levine, Josias Zietsman, Suzanne Bartington, Sergio Ibarra-Espinosa and Karl Ropkins
Sustainability 2023, 15(2), 1522; https://doi.org/10.3390/su15021522 - 12 Jan 2023
Cited by 1 | Viewed by 3104
Abstract
The current generation of Zero Emission Vehicle (ZEV) policies are designed to accelerate the transition away from conventional internal combustion engine (ICE) petrol and diesel vehicle fleets. However, the current focus on zero exhaust emissions and the lack of more detailed guidance regarding [...] Read more.
The current generation of Zero Emission Vehicle (ZEV) policies are designed to accelerate the transition away from conventional internal combustion engine (ICE) petrol and diesel vehicle fleets. However, the current focus on zero exhaust emissions and the lack of more detailed guidance regarding Non-Exhaust Emissions (NEEs) may mean that some of the trade-offs in transitioning to, e.g., Battery Electric Vehicle (BEV) fleets may be missed by many in the commercial sector. Here, as part of early work on the scoping of the First Bus EURO VI Diesel Vehicle (E6DV) to BEV fleet upgrades, we estimate E6DV total particulate emissions to be ca. 62–85 and 164–213 mg.veh1.km1 for PM2.5 and PM10, respectively, and that the majority, typically 93–97%, are NEEs. We also discuss the complex interaction between E6DV/BEV properties and estimate potential changes resulting from the transition to BEVs as ranging from a decrease of ca. 2–12% to an increase of ca. 12–50% depending on a combination of weight difference, regenerative brake performance and journey type. Finally, we propose metrics that would allow fleet operators more insight into a wider range of emission outcomes at the scoping stage of a fleet upgrade. Full article
Show Figures

Figure 1

17 pages, 4935 KiB  
Article
Impacts of COVID-19 Lockdown on Traffic Flow, Active Travel and Gaseous Pollutant Concentrations; Implications for Future Emissions Control Measures in Oxford, UK
by Ajit Singh, Tianjiao Guo, Tony Bush, Pedro Abreu, Felix C. P. Leach, Brian Stacey, George Economides, Ruth Anderson, Stuart Cole, G. Neil Thomas, Francis D. Pope and Suzanne E. Bartington
Sustainability 2022, 14(23), 16182; https://doi.org/10.3390/su142316182 - 4 Dec 2022
Cited by 3 | Viewed by 2821
Abstract
The COVID-19 lockdown provided a unique opportunity to test the impacts of changes in travel patterns on air quality and the environment. Therefore, this study provides insights into the impacts of COVID-19 emergency public health “lockdown” measures upon traffic flow, active travel and [...] Read more.
The COVID-19 lockdown provided a unique opportunity to test the impacts of changes in travel patterns on air quality and the environment. Therefore, this study provides insights into the impacts of COVID-19 emergency public health “lockdown” measures upon traffic flow, active travel and gaseous pollutant concentrations (NO, NO2 and O3) in Oxford city centre during 2020 using time-series analysis and linear regression methods. Comparisons of traffic counts indicated pronounced changes in traffic volume associated with national lockdown periods. Car volume reduced by 77.5% (statistically significant) during the first national lockdown, with lesser changes in goods vehicles and public transport (bus) activity during the second lockdown. Cycle flow reduced substantively during the first lockdown only. These changes resulted in a reduction in nitric oxide (NO) and nitrogen dioxide (NO2) concentrations of 75.1% and 47.4%, respectively, at roadside, and 71.8% and 34.1% at urban background during the first lockdown period. In contrast ozone (O3) concentrations increased at the urban background site by 22.3% during the first lockdown period, with no significant changes in gaseous concentrations during the second lockdown at either roadside or urban background location. The diurnal pattern of peak mean NO and NO2 concentrations reduced in magnitude and was shifted approximately 2 h earlier in the morning and 2 h later in the evening (roadside) and 3 h earlier in the morning and 3 h later in the evening (urban background). Our findings provide an example of how gaseous air quality in urban environments could respond to future urban traffic restrictions, suggesting benefits from reductions in peak and daily NO2 exposures may be offset by health harms arising from increases in ground level O3 concentrations in the summer months. Full article
Show Figures

Figure 1

Review

Jump to: Research

58 pages, 949 KiB  
Review
Excess Pollution from Vehicles—A Review and Outlook on Emission Controls, Testing, Malfunctions, Tampering, and Cheating
by Robin Smit, Alberto Ayala, Gerrit Kadijk and Pascal Buekenhoudt
Sustainability 2025, 17(12), 5362; https://doi.org/10.3390/su17125362 - 10 Jun 2025
Viewed by 1099
Abstract
Although the transition to electric vehicles (EVs) is well underway and expected to continue in global car markets, most vehicles on the world’s roads will be powered by internal combustion engine vehicles (ICEVs) and fossil fuels for the foreseeable future, possibly well past [...] Read more.
Although the transition to electric vehicles (EVs) is well underway and expected to continue in global car markets, most vehicles on the world’s roads will be powered by internal combustion engine vehicles (ICEVs) and fossil fuels for the foreseeable future, possibly well past 2050. Thus, good environmental performance and effective emission control of ICE vehicles will continue to be of paramount importance if the world is to achieve the stated air and climate pollution reduction goals. In this study, we review 228 publications and identify four main issues confronting these objectives: (1) cheating by vehicle manufacturers, (2) tampering by vehicle owners, (3) malfunctioning emission control systems, and (4) inadequate in-service emission programs. With progressively more stringent vehicle emission and fuel quality standards being implemented in all major markets, engine designs and emission control systems have become increasingly complex and sophisticated, creating opportunities for cheating and tampering. This is not a new phenomenon, with the first cases reported in the 1970s and continuing to happen today. Cheating appears not to be restricted to specific manufacturers or vehicle types. Suspicious real-world emissions behavior suggests that the use of defeat devices may be widespread. Defeat devices are primarily a concern with diesel vehicles, where emission control deactivation in real-world driving can lower manufacturing costs, improve fuel economy, reduce engine noise, improve vehicle performance, and extend refill intervals for diesel exhaust fluid, if present. Despite the financial penalties, undesired global attention, damage to brand reputation, a temporary drop in sales and stock value, and forced recalls, cheating may continue. Private vehicle owners resort to tampering to (1) improve performance and fuel efficiency; (2) avoid operating costs, including repairs; (3) increase the resale value of the vehicle (i.e., odometer tampering); or (4) simply to rebel against established norms. Tampering and cheating in the commercial freight sector also mean undercutting law-abiding operators, gaining unfair economic advantage, and posing excess harm to the environment and public health. At the individual vehicle level, the impacts of cheating, tampering, or malfunctioning emission control systems can be substantial. The removal or deactivation of emission control systems increases emissions—for instance, typically 70% (NOx and EGR), a factor of 3 or more (NOx and SCR), and a factor of 25–100 (PM and DPF). Our analysis shows significant uncertainty and (geographic) variability regarding the occurrence of cheating and tampering by vehicle owners. The available evidence suggests that fleet-wide impacts of cheating and tampering on emissions are undeniable, substantial, and cannot be ignored. The presence of a relatively small fraction of high-emitters, due to either cheating, tampering, or malfunctioning, causes excess pollution that must be tackled by environmental authorities around the world, in particular in emerging economies, where millions of used ICE vehicles from the US and EU end up. Modernized in-service emission programs designed to efficiently identify and fix large faults are needed to ensure that the benefits of modern vehicle technologies are not lost. Effective programs should address malfunctions, engine problems, incorrect repairs, a lack of servicing and maintenance, poorly retrofitted fuel and emission control systems, the use of improper or low-quality fuels and tampering. Periodic Test and Repair (PTR) is a common in-service program. We estimate that PTR generally reduces emissions by 11% (8–14%), 11% (7–15%), and 4% (−1–10%) for carbon monoxide (CO), hydrocarbons (HC), and oxides of nitrogen (NOx), respectively. This is based on the grand mean effect and the associated 95% confidence interval. PTR effectiveness could be significantly higher, but we find that it critically depends on various design factors, including (1) comprehensive fleet coverage, (2) a suitable test procedure, (3) compliance and enforcement, (4) proper technician training, (5) quality control and quality assurance, (6) periodic program evaluation, and (7) minimization of waivers and exemptions. Now that both particulate matter (PM, i.e., DPF) and NOx (i.e., SCR) emission controls are common in all modern new diesel vehicles, and commonly the focus of cheating and tampering, robust measurement approaches for assessing in-use emissions performance are urgently needed to modernize PTR programs. To increase (cost) effectiveness, a modern approach could include screening methods, such as remote sensing and plume chasing. We conclude this study with recommendations and suggestions for future improvements and research, listing a range of potential solutions for the issues identified in new and in-service vehicles. Full article
Show Figures

Figure 1

Back to TopTop