sensors-logo

Journal Browser

Journal Browser

Topical Collection "Multi-Sensor Information Fusion"

Printed Edition Available!
A printed edition of this Special Issue is available here.

Editors

Prof. Xue-Bo Jin
Website
Collection Editor
Beijing Technology and Business University, Beijing 100048, China
Interests: multisensor fusion; statistical signal processing; video/image processing; Bayesian theory; time series analysis; artificial intelligence; target tracking and dynamic analysis
Special Issues and Collections in MDPI journals
Dr. Yuan Gao

Collection Editor
Heilongjiang University, Harbin 150080, China
Interests: information fusion; state estimation; modern time series analysis; system identification

Topical Collection Information

Dear Colleagues,

Information fusion techniques can integrate a large amount of data and knowledge, representing the same real-world object, and obtain a consistent, accurate and useful representation of that object. These data may be independent or redundant and can be obtained by different sensors at the same time, or at different times. A suitable combination of investigative methods can substantially increase the profit of information in comparison with that from a single sensor.

Multi-sensor information fusion has been a key issue in sensor research and has been applied in many fields, such as geospatial information systems, business intelligence, oceanography, discovery science, intelligent transport systems, and wireless sensor networks, etc. Recently, thanks to the vast developments in senor and computer memory technologies, more and more sensors are being used in practical systems and a large amount of measurement data is recorded and restored, which may actually be "time series big data". For example, sensors in machines and process control industries can generate a lot of data, which have real, actionable business value. The fusion of these data can greatly improve productivity through digitization.

The classical multi-sensor information fusion technique can effectively deal with a limited amount of sensor data, and can even obtain optimal results in real time. However, regarding "big series time data", we have to consider how to deal with the mass of sensor data in real-time processes, and how to model the multi-sensor system based on the huge amount of data, etc. The development of sensor systems has created many new challenges in multi-sensor information fusion theory and its application. Therefore, the innovations of information fusion still need to be studiously pursued in future research works.

The goal of this Special Issue is to report on innovative ideas and solutions for the methods of multi-sensor information fusion in the emerging applications era, focusing on development, adoption and applications.

Prof. Xue-Bo Jin
Dr. Yuan Gao
Collection Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Tracking by the big data from multi-sensor system
  • Information (speech or image, etc.) fusion processing
  • Knowledge cognitive based on multi-sensor system
  • Fusion decision theory
  • Fusion estimation and control algorithms
  • Modeling by the big data from multi-sensor system
  • The structure and/or levels of multi-sensor fusion system
  • Uncertain information integration
  • Possibility theory and other reasoning methods
  • Remote sensing data processing
  • The basic theory of the information fusion
  • Artificial intelligence (AI) technology for multi-sensor fusion system

Published Papers (48 papers)

2020

Jump to: 2019, 2018

Open AccessArticle
Average Consensus over Mobile Wireless Sensor Networks: Weight Matrix Guaranteeing Convergence without Reconfiguration of Edge Weights
Sensors 2020, 20(13), 3677; https://doi.org/10.3390/s20133677 - 30 Jun 2020
Abstract
Efficient data aggregation is crucial for mobile wireless sensor networks, as their resources are significantly constrained. Over recent years, the average consensus algorithm has found a wide application in this technology. In this paper, we present a weight matrix simplifying the average consensus [...] Read more.
Efficient data aggregation is crucial for mobile wireless sensor networks, as their resources are significantly constrained. Over recent years, the average consensus algorithm has found a wide application in this technology. In this paper, we present a weight matrix simplifying the average consensus algorithm over mobile wireless sensor networks, thereby prolonging the network lifetime as well as ensuring the proper operation of the algorithm. Our contribution results from the theorem stating how the Laplacian spectrum of an undirected simple finite graph changes in the case of adding an arbitrary edge into this graph. We identify that the mixing parameter of Best Constant weights of a complete finite graph with an arbitrary order ensures the convergence in time-varying topologies without any reconfiguration of the edge weights. The presented theorems and lemmas are verified over evolving graphs with various parameters, whereby it is demonstrated that our approach ensures the convergence of the average consensus algorithm over mobile wireless sensor networks in spite of no edge reconfiguration. Full article
Show Figures

Figure 1

Open AccessArticle
Dam Safety Evaluation Based on Interval-Valued Intuitionistic Fuzzy Sets and Evidence Theory
Sensors 2020, 20(9), 2648; https://doi.org/10.3390/s20092648 - 06 May 2020
Abstract
Considering the multi-sources, heterogeneity and complexity of dam safety assessment, a dam safety assessment model based on interval-valued intuitionistic fuzzy set and evidence theory is proposed to perform dam safety reliability evaluations. In the proposed model, the dynamic reliability based on the supporting [...] Read more.
Considering the multi-sources, heterogeneity and complexity of dam safety assessment, a dam safety assessment model based on interval-valued intuitionistic fuzzy set and evidence theory is proposed to perform dam safety reliability evaluations. In the proposed model, the dynamic reliability based on the supporting degree is applied to modify the data from homologous information. The interval-valued intuitionistic fuzzy set is used to describing the uncertainty and fuzziness between heterogeneous information. Evidence theory is employed to integrate the data from heterogeneous information. Finally, a multiple-arch dam undergoing structural reinforcement is taken as an example. The evaluation result before reinforcement shows that the safety degree of the dam is low and the potential risk is more likely to be located at the dam section #13. From the geological survey before reinforcement, there exist weak fracture zone and broken mud belt in the foundation of the dam section #13. The comparison between the evaluation results before and after reinforcement indicates that the dam become safer and more stable after reinforcement. Full article
Show Figures

Figure 1

Open AccessArticle
Semantic Segmentation of Natural Materials on a Point Cloud Using Spatial and Multispectral Features
Sensors 2020, 20(8), 2244; https://doi.org/10.3390/s20082244 - 15 Apr 2020
Abstract
The characterization of natural spaces by the precise observation of their material properties is highly demanded in remote sensing and computer vision. The production of novel sensors enables the collection of heterogeneous data to get a comprehensive knowledge of the living and non-living [...] Read more.
The characterization of natural spaces by the precise observation of their material properties is highly demanded in remote sensing and computer vision. The production of novel sensors enables the collection of heterogeneous data to get a comprehensive knowledge of the living and non-living entities in the ecosystem. The high resolution of consumer-grade RGB cameras is frequently used for the geometric reconstruction of many types of environments. Nevertheless, the understanding of natural spaces is still challenging. The automatic segmentation of homogeneous materials in nature is a complex task because there are many overlapping structures and an indirect illumination, so the object recognition is difficult. In this paper, we propose a method based on fusing spatial and multispectral characteristics for the unsupervised classification of natural materials in a point cloud. A high-resolution camera and a multispectral sensor are mounted on a custom camera rig in order to simultaneously capture RGB and multispectral images. Our method is tested in a controlled scenario, where different natural objects coexist. Initially, the input RGB images are processed to generate a point cloud by applying the structure-from-motion (SfM) algorithm. Then, the multispectral images are mapped on the three-dimensional model to characterize the geometry with the reflectance captured from four narrow bands (green, red, red-edge and near-infrared). The reflectance, the visible colour and the spatial component are combined to extract key differences among all existing materials. For this purpose, a hierarchical cluster analysis is applied to pool the point cloud and identify the feature pattern for every material. As a result, the tree trunk, the leaves, different species of low plants, the ground and rocks can be clearly recognized in the scene. These results demonstrate the feasibility to perform a semantic segmentation by considering multispectral and spatial features with an unknown number of clusters to be detected on the point cloud. Moreover, our solution is compared to other method based on supervised learning in order to test the improvement of the proposed approach. Full article
Show Figures

Figure 1

Open AccessArticle
On Image Fusion of Ground Surface Vibration for Mapping and Locating Underground Pipeline Leakage: An Experimental Investigation
Sensors 2020, 20(7), 1896; https://doi.org/10.3390/s20071896 - 29 Mar 2020
Abstract
This paper is concerned with imaging techniques for mapping and locating underground pipeline leakage. Ground surface vibrations induced by the propagating axisymmetric wave can be measured by an array of acoustic/vibration sensors, with the extraction of magnitude information used to determine the position [...] Read more.
This paper is concerned with imaging techniques for mapping and locating underground pipeline leakage. Ground surface vibrations induced by the propagating axisymmetric wave can be measured by an array of acoustic/vibration sensors, with the extraction of magnitude information used to determine the position of leak source. A method of connected graph traversal is incorporated into the vibroacoustic technique to obtain the spatial image with better accuracy compared to the conventional magnitude contour plot. Measurements are made on a dedicated cast iron water pipe by an array of seven triaxial geophones. The spectral characteristics of the propagation of leak noise signals from underground water pipes to the ground surface are reported. Furthermore, it is demonstrated that suspicious leakage areas can be readily identified by extracting and fusing the feature patterns at low frequencies where leak noise dominates. The results agree well with the real leakage position in the underground pipeline. Full article
Show Figures

Figure 1

Open AccessArticle
Real-Time Onboard 3D State Estimation of an Unmanned Aerial Vehicle in Multi-Environments Using Multi-Sensor Data Fusion
Sensors 2020, 20(3), 919; https://doi.org/10.3390/s20030919 - 09 Feb 2020
Abstract
The question of how to estimate the state of an unmanned aerial vehicle (UAV) in real time in multi-environments remains a challenge. Although the global navigation satellite system (GNSS) has been widely applied, drones cannot perform position estimation when a GNSS signal is [...] Read more.
The question of how to estimate the state of an unmanned aerial vehicle (UAV) in real time in multi-environments remains a challenge. Although the global navigation satellite system (GNSS) has been widely applied, drones cannot perform position estimation when a GNSS signal is not available or the GNSS is disturbed. In this paper, the problem of state estimation in multi-environments is solved by employing an Extended Kalman Filter (EKF) algorithm to fuse the data from multiple heterogeneous sensors (MHS), including an inertial measurement unit (IMU), a magnetometer, a barometer, a GNSS receiver, an optical flow sensor (OFS), Light Detection and Ranging (LiDAR), and an RGB-D camera. Finally, the robustness and effectiveness of the multi-sensor data fusion system based on the EKF algorithm are verified by field flights in unstructured, indoor, outdoor, and indoor and outdoor transition scenarios. Full article
Show Figures

Figure 1

Open AccessArticle
A Novel Evidence Conflict Measurement for Multi-Sensor Data Fusion Based on the Evidence Distance and Evidence Angle
Sensors 2020, 20(2), 381; https://doi.org/10.3390/s20020381 - 09 Jan 2020
Cited by 1
Abstract
As an important method for uncertainty modeling, Dempster–Shafer (DS) evidence theory has been widely used in practical applications. However, the results turned out to be almost counter-intuitive when fusing the different sources of highly conflicting evidence with Dempster’s combination rule. In previous researches, [...] Read more.
As an important method for uncertainty modeling, Dempster–Shafer (DS) evidence theory has been widely used in practical applications. However, the results turned out to be almost counter-intuitive when fusing the different sources of highly conflicting evidence with Dempster’s combination rule. In previous researches, most of them were mainly dependent on the conflict measurement method between the evidence represented by the evidence distance. However, it is inaccurate to characterize the evidence conflict only through the evidence distance. To address this issue, we comprehensively consider the impacts of the evidence distance and evidence angle on conflicts in this paper, and propose a new method based on the mutual support degree between the evidence to characterize the evidence conflict. First, the Hellinger distance measurement method is proposed to measure the distance between the evidence, and the sine value of the Pignistic vector angle is used to characterize the angle between the evidence. The evidence distance indicates the dissimilarity between the evidence, and the evidence angle represents the inconsistency between the evidence. Next, two methods are combined to get a new method for measuring the mutual support degree between the evidence. Afterward, the weight of each evidence is determined by using the mutual support degree between the evidence. Then, the weights of each evidence are utilized to modify the original evidence to achieve the weighted average evidence. Finally, Dempster’s combination rule is used for fusion. Some numerical examples are given to illustrate the effectiveness and reasonability for the proposed method. Full article
Show Figures

Figure 1

Open AccessArticle
A Multisensor Data Fusion Method Based on Gaussian Process Model for Precision Measurement of Complex Surfaces
Sensors 2020, 20(1), 278; https://doi.org/10.3390/s20010278 - 03 Jan 2020
Abstract
As multisensor measurement technology is rapidly applied in industrial production, one key issue is the data fusion procedure by combining several datasets from multiple sensors to obtain the overall geometric measurement. In this paper, a multisensor data fusion method based on a Gaussian [...] Read more.
As multisensor measurement technology is rapidly applied in industrial production, one key issue is the data fusion procedure by combining several datasets from multiple sensors to obtain the overall geometric measurement. In this paper, a multisensor data fusion method based on a Gaussian process model is proposed for complex surface measurements. A robust surface registration method based on the adaptive distance function is firstly used to unify the coordinate systems of different measurement datasets. By introducing an adjustment model, the residuals between several independent datasets from different sensors are then approximated to construct a Gaussian process model-based data fusion system. The proposed method is verified through both simulation verification and actual experiments, indicating that the proposed method can fuse multisensor measurement datasets with better fusion accuracy and faster computational efficiency compared to the existing method. Full article
Show Figures

Figure 1

2019

Jump to: 2020, 2018

Open AccessArticle
Extrinsic Calibration between Camera and LiDAR Sensors by Matching Multiple 3D Planes
Sensors 2020, 20(1), 52; https://doi.org/10.3390/s20010052 - 20 Dec 2019
Cited by 2
Abstract
This paper proposes a simple extrinsic calibration method for a multi-sensor system which consists of six image cameras and a 16-channel 3D LiDAR sensor using a planar chessboard. The six cameras are mounted on a specially designed hexagonal plate to capture omnidirectional images [...] Read more.
This paper proposes a simple extrinsic calibration method for a multi-sensor system which consists of six image cameras and a 16-channel 3D LiDAR sensor using a planar chessboard. The six cameras are mounted on a specially designed hexagonal plate to capture omnidirectional images and the LiDAR sensor is mounted on the top of the plates to capture 3D points in 360 degrees. Considering each camera–LiDAR combination as an independent multi-sensor unit, the rotation and translation between the two sensor coordinates are calibrated. The 2D chessboard corners in the camera image are reprojected into 3D space to fit to a 3D plane with respect to the camera coordinate system. The corresponding 3D point data that scan the chessboard are used to fit to another 3D plane with respect to the LiDAR coordinate system. The rotation matrix is calculated by aligning normal vectors of the corresponding planes. In addition, an arbitrary point on the 3D camera plane is projected to a 3D point on the LiDAR plane, and the distance between the two points are iteratively minimized to estimate the translation matrix. At least three or more planes are used to find accurate external parameters between the coordinate systems. Finally, the estimated transformation is refined using the distance between all chessboard 3D points and the LiDAR plane. In the experiments, quantitative error analysis is done using a simulation tool and real test sequences are also used for calibration consistency analysis. Full article
Show Figures

Figure 1

Open AccessArticle
Artificial Marker and MEMS IMU-Based Pose Estimation Method to Meet Multirotor UAV Landing Requirements
Sensors 2019, 19(24), 5428; https://doi.org/10.3390/s19245428 - 09 Dec 2019
Cited by 1
Abstract
The fully autonomous operation of multirotor unmanned air vehicles (UAVs) in many applications requires support of precision landing. Onboard camera and fiducial marker have been widely used for this critical phase due to its low cost and high effectiveness. This paper proposes a [...] Read more.
The fully autonomous operation of multirotor unmanned air vehicles (UAVs) in many applications requires support of precision landing. Onboard camera and fiducial marker have been widely used for this critical phase due to its low cost and high effectiveness. This paper proposes a six-degrees-of-freedom (DoF) pose estimation solution for UAV landing based on an artificial marker and a micro-electromechanical system (MEMS) inertial measurement unit (IMU). The position and orientation of the landing maker are measured in advance. The absolute position and heading of the UAV are estimated by detecting the marker and extracting corner points with the onboard monocular camera. To achieve continuous and reliable positioning when the marker is occasionally shadowed, IMU data is fused by an extended Kalman filter (EKF). The error terms of the IMU sensor are modeled and estimated. Field experiments show that the positioning accuracy of the proposed system is at centimeter level, and the heading error is less than 0.1 degrees. Comparing to the marker-based approach, the roll and pitch angle errors decreased by 33% and 54% on average. Within five seconds of vision outage, the average drifts of the horizontal and vertical position were 0.41 and 0.09 m, respectively. Full article
Show Figures

Figure 1

Open AccessArticle
Time-Domain Data Fusion Using Weighted Evidence and Dempster–Shafer Combination Rule: Application in Object Classification
Sensors 2019, 19(23), 5187; https://doi.org/10.3390/s19235187 - 26 Nov 2019
Cited by 3
Abstract
To apply data fusion in time-domain based on Dempster–Shafer (DS) combination rule, an 8-step algorithm with novel entropy function is proposed. The 8-step algorithm is applied to time-domain to achieve the sequential combination of time-domain data. Simulation results showed that this method is [...] Read more.
To apply data fusion in time-domain based on Dempster–Shafer (DS) combination rule, an 8-step algorithm with novel entropy function is proposed. The 8-step algorithm is applied to time-domain to achieve the sequential combination of time-domain data. Simulation results showed that this method is successful in capturing the changes (dynamic behavior) in time-domain object classification. This method also showed better anti-disturbing ability and transition property compared to other methods available in the literature. As an example, a convolution neural network (CNN) is trained to classify three different types of weeds. Precision and recall from confusion matrix of the CNN are used to update basic probability assignment (BPA) which captures the classification uncertainty. Real data of classified weeds from a single sensor is used test time-domain data fusion. The proposed method is successful in filtering noise (reduce sudden changes—smoother curves) and fusing conflicting information from the video feed. Performance of the algorithm can be adjusted between robustness and fast-response using a tuning parameter which is number of time-steps( t s ). Full article
Show Figures

Figure 1

Open AccessArticle
A Novel Subspace Alignment-Based Interference Suppression Method for the Transfer Caused by Different Sample Carriers in Electronic Nose
Sensors 2019, 19(22), 4846; https://doi.org/10.3390/s19224846 - 07 Nov 2019
Abstract
A medical electronic nose (e-nose) with 31 gas sensors is used for wound infection detection by analyzing the bacterial metabolites. In practical applications, the prediction accuracy drops dramatically when the prediction model established by laboratory data is directly used in human clinical samples. [...] Read more.
A medical electronic nose (e-nose) with 31 gas sensors is used for wound infection detection by analyzing the bacterial metabolites. In practical applications, the prediction accuracy drops dramatically when the prediction model established by laboratory data is directly used in human clinical samples. This is a key issue for medical e-nose which should be more worthy of attention. The host (carrier) of bacteria can be the culture solution, the animal wound, or the human wound. As well, the bacterial culture solution or animals (such as: mice, rabbits, etc.) obtained easily are usually used as experimental subjects to collect sufficient sensor array data to establish the robust predictive model, but it brings another serious interference problem at the same time. Different carriers have different background interferences, therefore the distribution of data collected under different carriers is different, which will make a certain impact on the recognition accuracy in the detection of human wound infection. This type of interference problem is called “transfer caused by different sample carriers”. In this paper, a novel subspace alignment-based interference suppression (SAIS) method with domain correction capability is proposed to solve this interference problem. The subspace is the part of space whose dimension is smaller than the whole space, and it has some specific properties. In this method, first the subspaces of different data domains are gotten, and then one subspace is aligned to another subspace, thereby the problem of different distributions between two domains is solved. From experimental results, it can be found that the recognition accuracy of the infected rat samples increases from 29.18% (there is no interference suppression) to 82.55% (interference suppress by SAIS). Full article
Show Figures

Figure 1

Open AccessArticle
Paradox Elimination in Dempster–Shafer Combination Rule with Novel Entropy Function: Application in Decision-Level Multi-Sensor Fusion
Sensors 2019, 19(21), 4810; https://doi.org/10.3390/s19214810 - 05 Nov 2019
Cited by 3
Abstract
Multi-sensor data fusion technology in an important tool in building decision-making applications. Modified Dempster–Shafer (DS) evidence theory can handle conflicting sensor inputs and can be applied without any prior information. As a result, DS-based information fusion is very popular in decision-making applications, but [...] Read more.
Multi-sensor data fusion technology in an important tool in building decision-making applications. Modified Dempster–Shafer (DS) evidence theory can handle conflicting sensor inputs and can be applied without any prior information. As a result, DS-based information fusion is very popular in decision-making applications, but original DS theory produces counterintuitive results when combining highly conflicting evidences from multiple sensors. An effective algorithm offering fusion of highly conflicting information in spatial domain is not widely reported in the literature. In this paper, a successful fusion algorithm is proposed which addresses these limitations of the original Dempster–Shafer (DS) framework. A novel entropy function is proposed based on Shannon entropy, which is better at capturing uncertainties compared to Shannon and Deng entropy. An 8-step algorithm has been developed which can eliminate the inherent paradoxes of classical DS theory. Multiple examples are presented to show that the proposed method is effective in handling conflicting information in spatial domain. Simulation results showed that the proposed algorithm has competitive convergence rate and accuracy compared to other methods presented in the literature. Full article
Show Figures

Figure 1

Open AccessArticle
Three-Dimensional Measurement Method of Four-View Stereo Vision Based on Gaussian Process Regression
Sensors 2019, 19(20), 4486; https://doi.org/10.3390/s19204486 - 16 Oct 2019
Cited by 2
Abstract
Multisensor systems can overcome the limitation of measurement range of single-sensor systems, but often require complex calibration and data fusion. In this study, a three-dimensional (3D) measurement method of four-view stereo vision based on Gaussian process (GP) regression is proposed. Two sets of [...] Read more.
Multisensor systems can overcome the limitation of measurement range of single-sensor systems, but often require complex calibration and data fusion. In this study, a three-dimensional (3D) measurement method of four-view stereo vision based on Gaussian process (GP) regression is proposed. Two sets of point cloud data of the measured object are obtained by gray-code phase-shifting technique. On the basis of the characteristics of the measured object, specific composite kernel functions are designed to obtain the initial GP model. In view of the difference of noise in each group of point cloud data, the weight idea is introduced to optimize the GP model, which is the data fusion based on Bayesian inference method for point cloud data. The proposed method does not require strict hardware constraints. Simulations for the curve and the high-order surface and experiments of complex 3D objects have been designed to compare the reconstructing accuracy of the proposed method and the traditional methods. The results show that the proposed method is superior to the traditional methods in measurement accuracy and reconstruction effect. Full article
Show Figures

Figure 1

Open AccessArticle
Multisensor Multi-Target Tracking Based on GM-PHD Using Out-Of-Sequence Measurements
Sensors 2019, 19(19), 4315; https://doi.org/10.3390/s19194315 - 05 Oct 2019
Cited by 1
Abstract
In this paper, we study the issue of out-of-sequence measurement (OOSM) in a multi-target scenario to improve tracking performance. The OOSM is very common in tracking systems, and it would result in performance degradation if we used it inappropriately. Thus, OOSM should be [...] Read more.
In this paper, we study the issue of out-of-sequence measurement (OOSM) in a multi-target scenario to improve tracking performance. The OOSM is very common in tracking systems, and it would result in performance degradation if we used it inappropriately. Thus, OOSM should be fully utilized as far as possible. To improve the performance of the tracking system and use OOSM sufficiently, firstly, the problem of OOSM is formulated. Then the classical B1 algorithm for OOSM problem of single target tracking is given. Next, the random finite set (RFS)-based Gaussian mixture probability hypothesis density (GM-PHD) is introduced. Consequently, we derived the equation for re-updating of posterior intensity with OOSM. Implementation of GM-PHD using OOSM is also given. Finally, several simulations are given, and results show that tracking performance of GM-PHD using OOSM is better than GM-PHD using in-sequence measurement (ISM), which can strongly demonstrate the effectiveness of our proposed algorithm. Full article
Show Figures

Figure 1

Open AccessArticle
A Computational Framework for Data Fusion in MEMS-Based Cardiac and Respiratory Gating
Sensors 2019, 19(19), 4137; https://doi.org/10.3390/s19194137 - 24 Sep 2019
Abstract
Dual cardiac and respiratory gating is a well-known technique for motion compensation in nuclear medicine imaging. In this study, we present a new data fusion framework for dual cardiac and respiratory gating based on multidimensional microelectromechanical (MEMS) motion sensors. Our approach aims at [...] Read more.
Dual cardiac and respiratory gating is a well-known technique for motion compensation in nuclear medicine imaging. In this study, we present a new data fusion framework for dual cardiac and respiratory gating based on multidimensional microelectromechanical (MEMS) motion sensors. Our approach aims at robust estimation of the chest vibrations, that is, high-frequency precordial vibrations and low-frequency respiratory movements for prospective gating in positron emission tomography (PET), computed tomography (CT), and radiotherapy. Our sensing modality in the context of this paper is a single dual sensor unit, including accelerometer and gyroscope sensors to measure chest movements in three different orientations. Since accelerometer- and gyroscope-derived respiration signals represent the inclination of the chest, they are similar in morphology and have the same units. Therefore, we use principal component analysis (PCA) to combine them into a single signal. In contrast to this, the accelerometer- and gyroscope-derived cardiac signals correspond to the translational and rotational motions of the chest, and have different waveform characteristics and units. To combine these signals, we use independent component analysis (ICA) in order to obtain the underlying cardiac motion. From this cardiac motion signal, we obtain the systolic and diastolic phases of cardiac cycles by using an adaptive multi-scale peak detector and a short-time autocorrelation function. Three groups of subjects, including healthy controls (n = 7), healthy volunteers (n = 12), and patients with a history of coronary artery disease (n = 19) were studied to establish a quantitative framework for assessing the performance of the presented work in prospective imaging applications. The results of this investigation showed a fairly strong positive correlation (average r = 0.73 to 0.87) between the MEMS-derived (including corresponding PCA fusion) respiration curves and the reference optical camera and respiration belt sensors. Additionally, the mean time offset of MEMS-driven triggers from camera-driven triggers was 0.23 to 0.3 ± 0.15 to 0.17 s. For each cardiac cycle, the feature of the MEMS signals indicating a systolic time interval was identified, and its relation to the total cardiac cycle length was also reported. The findings of this study suggest that the combination of chest angular velocity and accelerations using ICA and PCA can help to develop a robust dual cardiac and respiratory gating solution using only MEMS sensors. Therefore, the methods presented in this paper should help improve predictions of the cardiac and respiratory quiescent phases, particularly with the clinical patients. This study lays the groundwork for future research into clinical PET/CT imaging based on dual inertial sensors. Full article
Show Figures

Figure 1

Open AccessArticle
Wasserstein Distance Learns Domain Invariant Feature Representations for Drift Compensation of E-Nose
Sensors 2019, 19(17), 3703; https://doi.org/10.3390/s19173703 - 26 Aug 2019
Cited by 3
Abstract
Electronic nose (E-nose), a kind of instrument which combines with the gas sensor and the corresponding pattern recognition algorithm, is used to detect the type and concentration of gases. However, the sensor drift will occur in realistic application scenario of E-nose, which makes [...] Read more.
Electronic nose (E-nose), a kind of instrument which combines with the gas sensor and the corresponding pattern recognition algorithm, is used to detect the type and concentration of gases. However, the sensor drift will occur in realistic application scenario of E-nose, which makes a variation of data distribution in feature space and causes a decrease in prediction accuracy. Therefore, studies on the drift compensation algorithms are receiving increasing attention in the field of the E-nose. In this paper, a novel method, namely Wasserstein Distance Learned Feature Representations (WDLFR), is put forward for drift compensation, which is based on the domain invariant feature representation learning. It regards a neural network as a domain discriminator to measure the empirical Wasserstein distance between the source domain (data without drift) and target domain (drift data). The WDLFR minimizes Wasserstein distance by optimizing the feature extractor in an adversarial manner. The Wasserstein distance for domain adaption has good gradient and generalization bound. Finally, the experiments are conducted on a real dataset of E-nose from the University of California, San Diego (UCSD). The experimental results demonstrate that the effectiveness of the proposed method outperforms all compared drift compensation methods, and the WDLFR succeeds in significantly reducing the sensor drift. Full article
Show Figures

Figure 1

Open AccessArticle
Adaptive Neuro-Fuzzy Fusion of Multi-Sensor Data for Monitoring a Pilot’s Workload Condition
Sensors 2019, 19(16), 3629; https://doi.org/10.3390/s19163629 - 20 Aug 2019
Abstract
To realize an early warning of unbalanced workload in the aircraft cockpit, it is required to monitor the pilot’s real-time workload condition. For the purpose of building the mapping relationship from physiological and flight data to workload, a multi-source data fusion model is [...] Read more.
To realize an early warning of unbalanced workload in the aircraft cockpit, it is required to monitor the pilot’s real-time workload condition. For the purpose of building the mapping relationship from physiological and flight data to workload, a multi-source data fusion model is proposed based on a fuzzy neural network, mainly structured using a principal components extraction layer, fuzzification layer, fuzzy rules matching layer, and normalization layer. Aiming at the high coupling characteristic variables contributing to workload, principal component analysis reconstructs the feature data by reducing its dimension. Considering the uncertainty for a single variable to reflect overall workload, a fuzzy membership function and fuzzy control rules are defined to abstract the inference process. An error feedforward algorithm based on gradient descent is utilized for parameter learning. Convergence speed and accuracy can be adjusted by controlling the gradient descent rate and error tolerance threshold. Combined with takeoff and initial climbing tasks of a Boeing 737–800 aircraft, crucial performance indicators—including pitch angle, heading, and airspeed—as well as physiological indicators—including electrocardiogram (ECG), respiration, and eye movements—were featured. The mapping relationship between multi-source data and the comprehensive workload level synthesized using the NASA task load index was established. Experimental results revealed that the predicted workload corresponding to different flight phases and difficulty levels showed clear distinctions, thereby proving the validity of data fusion. Full article
Show Figures

Figure 1

Open AccessArticle
Robust Non-Rigid Feature Matching for Image Registration Using Geometry Preserving
Sensors 2019, 19(12), 2729; https://doi.org/10.3390/s19122729 - 18 Jun 2019
Cited by 4
Abstract
In this paper, a robust non-rigid feature matching approach for image registration with geometry constraints is proposed. The non-rigid feature matching approach is formulated as a maximum likelihood (ML) estimation problem. The feature points of one image are represented by Gaussian mixture model [...] Read more.
In this paper, a robust non-rigid feature matching approach for image registration with geometry constraints is proposed. The non-rigid feature matching approach is formulated as a maximum likelihood (ML) estimation problem. The feature points of one image are represented by Gaussian mixture model (GMM) centroids, and are fitted to the feature points of the other image by moving coherently to encode the global structure. To preserve the local geometry of these feature points, two local structure descriptors of the connectivity matrix and Laplacian coordinate are constructed. The expectation maximization (EM) algorithm is applied to solve this ML problem. Experimental results demonstrate that the proposed approach has better performance than current state-of-the-art methods. Full article
Show Figures

Figure 1

Open AccessArticle
A Unified Multiple-Target Positioning Framework for Intelligent Connected Vehicles
Sensors 2019, 19(9), 1967; https://doi.org/10.3390/s19091967 - 26 Apr 2019
Cited by 2
Abstract
Future intelligent transport systems depend on the accurate positioning of multiple targets in the road scene, including vehicles and all other moving or static elements. The existing self-positioning capability of individual vehicles remains insufficient. Also, bottlenecks in developing on-board perception systems stymie further [...] Read more.
Future intelligent transport systems depend on the accurate positioning of multiple targets in the road scene, including vehicles and all other moving or static elements. The existing self-positioning capability of individual vehicles remains insufficient. Also, bottlenecks in developing on-board perception systems stymie further improvements in the precision and integrity of positioning targets. Vehicle-to-everything (V2X) communication, which is fast becoming a standard component of intelligent and connected vehicles, renders new sources of information such as dynamically updated high-definition (HD) maps accessible. In this paper, we propose a unified theoretical framework for multiple-target positioning by fusing multi-source heterogeneous information from the on-board sensors and V2X technology of vehicles. Numerical and theoretical studies are conducted to evaluate the performance of the framework proposed. With a low-cost global navigation satellite system (GNSS) coupled with an initial navigation system (INS), on-board sensors, and a normally equipped HD map, the precision of multiple-target positioning attained can meet the requirements of high-level automated vehicles. Meanwhile, the integrity of target sensing is significantly improved by the sharing of sensor information and exploitation of map data. Furthermore, our framework is more adaptable to traffic scenarios when compared with state-of-the-art techniques. Full article
Show Figures

Figure 1

Open AccessArticle
An EKF-Based Fixed-Point Iterative Filter for Nonlinear Systems
Sensors 2019, 19(8), 1893; https://doi.org/10.3390/s19081893 - 21 Apr 2019
Abstract
In this paper, a fixed-point iterative filter developed from the classical extended Kalman filter (EKF) was proposed for general nonlinear systems. As a nonlinear filter developed from EKF, the state estimate was obtained by applying the Kalman filter to the linearized system by [...] Read more.
In this paper, a fixed-point iterative filter developed from the classical extended Kalman filter (EKF) was proposed for general nonlinear systems. As a nonlinear filter developed from EKF, the state estimate was obtained by applying the Kalman filter to the linearized system by discarding the higher-order Taylor series items of the original nonlinear system. In order to reduce the influence of the discarded higher-order Taylor series items and improve the filtering accuracy of the obtained state estimate of the steady-state EKF, a fixed-point function was solved though a nested iterative method, which resulted in a fixed-point iterative filter. The convergence of the fixed-point function is also discussed, which provided the existing conditions of the fixed-point iterative filter. Then, Steffensen’s iterative method is presented to accelerate the solution of the fixed-point function. The final simulation is provided to illustrate the feasibility and the effectiveness of the proposed nonlinear filtering method. Full article
Show Figures

Figure 1

Open AccessArticle
Research about DoS Attack against ICPS
Sensors 2019, 19(7), 1542; https://doi.org/10.3390/s19071542 - 29 Mar 2019
Cited by 1
Abstract
This paper studies denial-of-services (DoS) attacks against industrial cyber-physical systems (ICPSs) for which we built a proper ICPS model and attack model. According to the impact of different attack rates on systems, instead of directly studying the time delay caused by the attacks [...] Read more.
This paper studies denial-of-services (DoS) attacks against industrial cyber-physical systems (ICPSs) for which we built a proper ICPS model and attack model. According to the impact of different attack rates on systems, instead of directly studying the time delay caused by the attacks some security zones are identified, which display how a DoS attack destroys the stable status of the ICPS. Research on security zone division is consistent with the fact that ICPSs’ communication devices actually have some capacity for large network traffic. The research on DoS attacks’ impacts on ICPSs by studying their operation conditions in different security zones is simplified further. Then, a detection method and a mimicry security switch strategy are proposed to defend against malicious DoS attacks and bring the ICPS under attack back to normal. Lastly, practical implementation experiments have been carried out to illustrate the effectiveness and efficiency of the method we propose. Full article
Show Figures

Figure 1

Open AccessArticle
A New Image Registration Algorithm Based on Evidential Reasoning
Sensors 2019, 19(5), 1091; https://doi.org/10.3390/s19051091 - 04 Mar 2019
Cited by 4
Abstract
Image registration is a crucial and fundamental problem in image processing and computer vision, which aims to align two or more images of the same scene acquired from different views or at different times. In image registration, since different keypoints (e.g., corners) or [...] Read more.
Image registration is a crucial and fundamental problem in image processing and computer vision, which aims to align two or more images of the same scene acquired from different views or at different times. In image registration, since different keypoints (e.g., corners) or similarity measures might lead to different registration results, the selection of keypoint detection algorithms or similarity measures would bring uncertainty. These different keypoint detectors or similarity measures have their own pros and cons and can be jointly used to expect a better registration result. In this paper, the uncertainty caused by the selection of keypoint detector or similarity measure is addressed using the theory of belief functions, and image information at different levels are jointly used to achieve a more accurate image registration. Experimental results and related analyses show that our proposed algorithm can achieve more precise image registration results compared to several prevailing algorithms. Full article
Show Figures

Figure 1

Open AccessArticle
Kalman Filtering for Attitude Estimation with Quaternions and Concepts from Manifold Theory
Sensors 2019, 19(1), 149; https://doi.org/10.3390/s19010149 - 03 Jan 2019
Cited by 3
Abstract
The problem of attitude estimation is broadly addressed using the Kalman filter formalism and unit quaternions to represent attitudes. This paper is also included in this framework, but introduces a new viewpoint from which the notions of “multiplicative update” and “covariance correction step” [...] Read more.
The problem of attitude estimation is broadly addressed using the Kalman filter formalism and unit quaternions to represent attitudes. This paper is also included in this framework, but introduces a new viewpoint from which the notions of “multiplicative update” and “covariance correction step” are conceived in a natural way. Concepts from manifold theory are used to define the moments of a distribution in a manifold. In particular, the mean and the covariance matrix of a distribution of unit quaternions are defined. Non-linear versions of the Kalman filter are developed applying these definitions. A simulation is designed to test the accuracy of the developed algorithms. The results of the simulation are analyzed and the best attitude estimator is selected according to the adopted performance metric. Full article
Show Figures

Figure 1

2018

Jump to: 2020, 2019

Open AccessArticle
Multi-Sensor Data Fusion for Real-Time Surface Quality Control in Automated Machining Systems
Sensors 2018, 18(12), 4381; https://doi.org/10.3390/s18124381 - 11 Dec 2018
Cited by 7
Abstract
Multi-sensor data fusion systems entail the optimization of a wide range of parameters related to the selection of sensors, signal feature extraction methods, and predictive modeling techniques. The monitoring of automated machining systems enables the intelligent supervision of the production process by detecting [...] Read more.
Multi-sensor data fusion systems entail the optimization of a wide range of parameters related to the selection of sensors, signal feature extraction methods, and predictive modeling techniques. The monitoring of automated machining systems enables the intelligent supervision of the production process by detecting malfunctions, and providing real-time information for continuous process optimization, and production line decision-making. Monitoring technologies are essential for the reduction of production times and costs, and an improvement in product quality, discarding the need for post-process quality controls. In this paper, a multi-sensor data fusion system for the real-time surface quality control based on cutting force, vibration, and acoustic emission signals was assessed. A total of four signal processing methods were analyzed: time direct analysis (TDA), power spectral density (PSD), singular spectrum analysis (SSA), and wavelet packet transform (WPT). Owing to the nonlinear and stochastic nature of the process, two predictive modeling techniques, multiple regression and artificial neural networks, were evaluated to correlate signal parametric characterization with surface quality. The results showed a high correlation of surface finish with cutting force and vibration signals. The signal processing methods based on signal decomposition in a combined time and frequency domain (SSA and WPT) exhibited better signal feature extraction, detecting excitation frequency ranges correlated to surface finish. The artificial neural network model obtained the highest predictive power, with better behavior for the whole data range. The proposed on-line multi-sensor data fusion provided significant improvements for in-process quality control, with excellent predictive power, reliability, and response times. Full article
Show Figures

Figure 1

Open AccessArticle
Hybrid Adaptive Cubature Kalman Filter with Unknown Variance of Measurement Noise
Sensors 2018, 18(12), 4335; https://doi.org/10.3390/s18124335 - 07 Dec 2018
Cited by 3
Abstract
This paper is concerned with the filtering problem caused by the inaccuracy variance of measurement noise in real nonlinear systems. A novel weighted fusion estimation method of multiple different variance estimators is presented to estimate the variance of the measurement noise. On this [...] Read more.
This paper is concerned with the filtering problem caused by the inaccuracy variance of measurement noise in real nonlinear systems. A novel weighted fusion estimation method of multiple different variance estimators is presented to estimate the variance of the measurement noise. On this basis, a hybrid adaptive cubature Kalman filtering structure is proposed. Furthermore, the information filter of the hybrid adaptive cubature Kalman filter is also studied, and the stability and filtering accuracy of the filter are theoretically discussed. The final simulation examples verify the validity and effectiveness of the hybrid adaptive cubature Kalman filtering methods proposed in this paper. Full article
Show Figures

Figure 1

Open AccessArticle
Observable Degree Analysis for Multi-Sensor Fusion System
Sensors 2018, 18(12), 4197; https://doi.org/10.3390/s18124197 - 30 Nov 2018
Cited by 4
Abstract
Multi-sensor fusion system has many advantages, such as reduce error and improve filtering accuracy. The observability of the system state is an important index to test the convergence accuracy and speed of the designed Kalman filter. In this paper, we evaluate different multi-sensor [...] Read more.
Multi-sensor fusion system has many advantages, such as reduce error and improve filtering accuracy. The observability of the system state is an important index to test the convergence accuracy and speed of the designed Kalman filter. In this paper, we evaluate different multi-sensor fusion systems from the perspective of observability. To adjust and optimize the filter performance before filtering, in this paper, we derive the expression form of estimation error covariance of three different fusion methods and discussed both observable degree of fusion center and local filter of fusion step. Based on the ODAEPM, we obtained their discriminant matrix of observable degree and the relationship among different fusion methods is given by mathematical proof. To confirm mathematical conclusion, the simulation analysis is done for multi-sensor CV model. The result demonstrates our theory and verifies the advantage of information fusion system. Full article
Show Figures

Figure 1

Open AccessArticle
Gaussian Process Based Bayesian Inference System for Intelligent Surface Measurement
Sensors 2018, 18(11), 4069; https://doi.org/10.3390/s18114069 - 21 Nov 2018
Cited by 2
Abstract
This paper presents a Gaussian process based Bayesian inference system for the realization of intelligent surface measurement on multi-sensor instruments. The system considers the surface measurement as a time series data collection process, and the Gaussian process is used as mathematical foundation to [...] Read more.
This paper presents a Gaussian process based Bayesian inference system for the realization of intelligent surface measurement on multi-sensor instruments. The system considers the surface measurement as a time series data collection process, and the Gaussian process is used as mathematical foundation to establish an inferring plausible model to aid the measurement process via multi-feature classification and multi-dataset regression. Multi-feature classification extracts and classifies the geometric features of the measured surfaces at different scales to design an appropriate composite covariance kernel and corresponding initial sampling strategy. Multi-dataset regression takes the designed covariance kernel as input to fuse the multi-sensor measured datasets with Gaussian process model, which is further used to adaptively refine the initial sampling strategy by taking the credibility of the fused model as the critical sampling criteria. Hence, intelligent sampling can be realized with consecutive learning process with full Bayesian treatment. The statistical nature of the Gaussian process model combined with various powerful covariance kernel functions offer the system great flexibility for different kinds of complex surfaces. Full article
Show Figures

Figure 1

Open AccessArticle
Multitarget Tracking Algorithm Based on Adaptive Network Graph Segmentation in the Presence of Measurement Origin Uncertainty
Sensors 2018, 18(11), 3791; https://doi.org/10.3390/s18113791 - 06 Nov 2018
Abstract
To deal with the problem of multitarget tracking with measurement origin uncertainty, the paper presents a multitarget tracking algorithm based on Adaptive Network Graph Segmentation (ANGS). The multitarget tracking is firstly formulated as an Integer Programming problem for finding the maximum a posterior [...] Read more.
To deal with the problem of multitarget tracking with measurement origin uncertainty, the paper presents a multitarget tracking algorithm based on Adaptive Network Graph Segmentation (ANGS). The multitarget tracking is firstly formulated as an Integer Programming problem for finding the maximum a posterior probability in a cost flow network. Then, a network structure is partitioned using an Adaptive Spectral Clustering algorithm based on the Nyström Method. In order to obtain the global optimal solution, the parallel A* search algorithm is used to process each sub-network. Moreover, the trajectory set is extracted by the Track Mosaic technique and Rauch–Tung–Striebel (RTS) smoother. Finally, the simulation results achieved for different clutter intensity indicate that the proposed algorithm has better tracking accuracy and robustness compared with the A* search algorithm, the successive shortest-path (SSP) algorithm and the shortest path faster (SPFA) algorithm. Full article
Show Figures

Figure 1

Open AccessArticle
An Improved Yaw Estimation Algorithm for Land Vehicles Using MARG Sensors
Sensors 2018, 18(10), 3251; https://doi.org/10.3390/s18103251 - 27 Sep 2018
Cited by 6
Abstract
This paper presents a linear Kalman filter for yaw estimation of land vehicles using magnetic angular rate and gravity (MARG) sensors. A gyroscope measurement update depending on the vehicle status and constraining yaw estimation is introduced. To determine the vehicle status, the correlations [...] Read more.
This paper presents a linear Kalman filter for yaw estimation of land vehicles using magnetic angular rate and gravity (MARG) sensors. A gyroscope measurement update depending on the vehicle status and constraining yaw estimation is introduced. To determine the vehicle status, the correlations between outputs from different sensors are analyzed based on the vehicle kinematic model and Coriolis theorem, and a vehicle status marker is constructed. In addition, a two-step measurement update method is designed. The method treats the magnetometer measurement update separately after the other updates and eliminates its impact on attitude estimation. The performances of the proposed algorithm are tested in experiments and the results show that: the introduced measurement update is an effective supplement to the magnetometer measurement update in magnetically disturbed environments; the two-step measurement update method makes attitude estimation immune to errors induced by magnetometer measurement update, and the proposed algorithm provides more reliable yaw estimation for land vehicles than the conventional algorithm. Full article
Show Figures

Figure 1

Open AccessArticle
Multitarget Tracking Algorithm Using Multiple GMPHD Filter Data Fusion for Sonar Networks
Sensors 2018, 18(10), 3193; https://doi.org/10.3390/s18103193 - 21 Sep 2018
Cited by 2
Abstract
Multitarget tracking algorithms based on sonar usually run into detection uncertainty, complex channel and more clutters, which cause lower detection probability, single sonar sensors failing to measure when the target is in an acoustic shadow zone, and computational bottlenecks. This paper proposes a [...] Read more.
Multitarget tracking algorithms based on sonar usually run into detection uncertainty, complex channel and more clutters, which cause lower detection probability, single sonar sensors failing to measure when the target is in an acoustic shadow zone, and computational bottlenecks. This paper proposes a novel tracking algorithm based on multisensor data fusion to solve the above problems. Firstly, under more clutters and lower detection probability condition, a Gaussian Mixture Probability Hypothesis Density (GMPHD) filter with computational advantages was used to get local estimations. Secondly, this paper provided a maximum-detection capability multitarget track fusion algorithm to deal with the problems caused by low detection probability and the target being in acoustic shadow zones. Lastly, a novel feedback algorithm was proposed to improve the GMPHD filter tracking performance, which fed the global estimations as a random finite set (RFS). In the end, the statistical characteristics of OSPA were used as evaluation criteria in Monte Carlo simulations, which showed this algorithm’s performance against those sonar tracking problems. When the detection probability is 0.7, compared with the GMPHD filter, the OSPA mean of two sensor and three sensor fusion was decrease almost by 40% and 55%, respectively. Moreover, this algorithm successfully tracks targets in acoustic shadow zones. Full article
Show Figures

Figure 1

Open AccessArticle
Semi-Supervised Segmentation Framework Based on Spot-Divergence Supervoxelization of Multi-Sensor Fusion Data for Autonomous Forest Machine Applications
Sensors 2018, 18(9), 3061; https://doi.org/10.3390/s18093061 - 12 Sep 2018
Cited by 1
Abstract
In this paper, a novel semi-supervised segmentation framework based on a spot-divergence supervoxelization of multi-sensor fusion data is proposed for autonomous forest machine (AFMs) applications in complex environments. Given the multi-sensor measuring system, our framework addresses three successive steps: firstly, the relationship of [...] Read more.
In this paper, a novel semi-supervised segmentation framework based on a spot-divergence supervoxelization of multi-sensor fusion data is proposed for autonomous forest machine (AFMs) applications in complex environments. Given the multi-sensor measuring system, our framework addresses three successive steps: firstly, the relationship of multi-sensor coordinates is jointly calibrated to form higher-dimensional fusion data. Then, spot-divergence supervoxels representing the size-change property are given to produce feature vectors covering comprehensive information of multi-sensors at a time. Finally, the Gaussian density peak clustering is proposed to segment supervoxels into sematic objects in the semi-supervised way, which non-requires parameters preset in manual. It is demonstrated that the proposed framework achieves a balancing act both for supervoxel generation and sematic segmentation. Comparative experiments show that the well performance of segmenting various objects in terms of segmentation accuracy (F-score up to 95.6%) and operation time, which would improve intelligent capability of AFMs. Full article
Show Figures

Figure 1

Open AccessArticle
A KPI-Based Probabilistic Soft Sensor Development Approach that Maximizes the Coefficient of Determination
Sensors 2018, 18(9), 3058; https://doi.org/10.3390/s18093058 - 12 Sep 2018
Cited by 1
Abstract
Advanced technology for process monitoring and fault diagnosis is widely used in complex industrial processes. An important issue that needs to be considered is the ability to monitor key performance indicators (KPIs), which often cannot be measured sufficiently quickly or accurately. This paper [...] Read more.
Advanced technology for process monitoring and fault diagnosis is widely used in complex industrial processes. An important issue that needs to be considered is the ability to monitor key performance indicators (KPIs), which often cannot be measured sufficiently quickly or accurately. This paper proposes a data-driven approach based on maximizing the coefficient of determination for probabilistic soft sensor development when data are missing. Firstly, the problem of missing data in the training sample set is solved using the expectation maximization (EM) algorithm. Then, by maximizing the coefficient of determination, a probability model between secondary variables and the KPIs is developed. Finally, a Gaussian mixture model (GMM) is used to estimate the joint probability distribution in the probabilistic soft sensor model, whose parameters are estimated using the EM algorithm. An experimental case study on the alumina concentration in the aluminum electrolysis industry is investigated to demonstrate the advantages and the performance of the proposed approach. Full article
Show Figures

Figure 1

Open AccessArticle
Globally Optimal Distributed Kalman Filtering for Multisensor Systems with Unknown Inputs
Sensors 2018, 18(9), 2976; https://doi.org/10.3390/s18092976 - 06 Sep 2018
Cited by 3
Abstract
In this paper, the state estimation for dynamic system with unknown inputs modeled as an autoregressive AR (1) process is considered. We propose an optimal algorithm in mean square error sense by using difference method to eliminate the unknown inputs. Moreover, we consider [...] Read more.
In this paper, the state estimation for dynamic system with unknown inputs modeled as an autoregressive AR (1) process is considered. We propose an optimal algorithm in mean square error sense by using difference method to eliminate the unknown inputs. Moreover, we consider the state estimation for multisensor dynamic systems with unknown inputs. It is proved that the distributed fused state estimate is equivalent to the centralized Kalman filtering using all sensor measurement; therefore, it achieves the best performance. The computation complexity of the traditional augmented state algorithm increases with the augmented state dimension. While, the new algorithm shows good performance with much less computations compared to that of the traditional augmented state algorithms. Moreover, numerical examples show that the performances of the traditional algorithms greatly depend on the initial value of the unknown inputs, if the estimation of initial value of the unknown input is largely biased, the performances of the traditional algorithms become quite worse. However, the new algorithm still works well because it is independent of the initial value of the unknown input. Full article
Show Figures

Figure 1

Open AccessArticle
A Time-Distributed Spatiotemporal Feature Learning Method for Machine Health Monitoring with Multi-Sensor Time Series
Sensors 2018, 18(9), 2932; https://doi.org/10.3390/s18092932 - 03 Sep 2018
Cited by 15
Abstract
Data-driven methods with multi-sensor time series data are the most promising approaches for monitoring machine health. Extracting fault-sensitive features from multi-sensor time series is a daunting task for both traditional data-driven methods and current deep learning models. A novel hybrid end-to-end deep learning [...] Read more.
Data-driven methods with multi-sensor time series data are the most promising approaches for monitoring machine health. Extracting fault-sensitive features from multi-sensor time series is a daunting task for both traditional data-driven methods and current deep learning models. A novel hybrid end-to-end deep learning framework named Time-distributed ConvLSTM model (TDConvLSTM) is proposed in the paper for machine health monitoring, which works directly on raw multi-sensor time series. In TDConvLSTM, the normalized multi-sensor data is first segmented into a collection of subsequences by a sliding window along the temporal dimension. Time-distributed local feature extractors are simultaneously applied to each subsequence to extract local spatiotemporal features. Then a holistic ConvLSTM layer is designed to extract holistic spatiotemporal features between subsequences. At last, a fully-connected layer and a supervised learning layer are stacked on the top of the model to obtain the target. TDConvLSTM can extract spatiotemporal features on different time scales without any handcrafted feature engineering. The proposed model can achieve better performance in both time series classification tasks and regression prediction tasks than some state-of-the-art models, which has been verified in the gearbox fault diagnosis experiment and the tool wear prediction experiment. Full article
Show Figures

Figure 1

Open AccessArticle
Hybrid Particle Swarm Optimization for Multi-Sensor Data Fusion
Sensors 2018, 18(9), 2792; https://doi.org/10.3390/s18092792 - 24 Aug 2018
Cited by 5
Abstract
A hybrid particle swarm optimization (PSO), able to overcome the large-scale nonlinearity or heavily correlation in the data fusion model of multiple sensing information, is proposed in this paper. In recent smart convergence technology, multiple similar and/or dissimilar sensors are widely used to [...] Read more.
A hybrid particle swarm optimization (PSO), able to overcome the large-scale nonlinearity or heavily correlation in the data fusion model of multiple sensing information, is proposed in this paper. In recent smart convergence technology, multiple similar and/or dissimilar sensors are widely used to support precisely sensing information from different perspectives, and these are integrated with data fusion algorithms to get synergistic effects. However, the construction of the data fusion model is not trivial because of difficulties to meet under the restricted conditions of a multi-sensor system such as its limited options for deploying sensors and nonlinear characteristics, or correlation errors of multiple sensors. This paper presents a hybrid PSO to facilitate the construction of robust data fusion model based on neural network while ensuring the balance between exploration and exploitation. The performance of the proposed model was evaluated by benchmarks composed of representative datasets. The well-optimized data fusion model is expected to provide an enhancement in the synergistic accuracy. Full article
Show Figures

Figure 1

Open AccessArticle
Centralized Fusion Approach to the Estimation Problem with Multi-Packet Processing under Uncertainty in Outputs and Transmissions
Sensors 2018, 18(8), 2697; https://doi.org/10.3390/s18082697 - 16 Aug 2018
Cited by 5
Abstract
This paper is concerned with the least-squares linear centralized estimation problem in multi-sensor network systems from measured outputs with uncertainties modeled by random parameter matrices. These measurements are transmitted to a central processor over different communication channels, and owing to the unreliability of [...] Read more.
This paper is concerned with the least-squares linear centralized estimation problem in multi-sensor network systems from measured outputs with uncertainties modeled by random parameter matrices. These measurements are transmitted to a central processor over different communication channels, and owing to the unreliability of the network, random one-step delays and packet dropouts are assumed to occur during the transmissions. In order to avoid network congestion, at each sampling time, each sensor’s data packet is transmitted just once, but due to the uncertainty of the transmissions, the processing center may receive either one packet, two packets, or nothing. Different white sequences of Bernoulli random variables are introduced to describe the observations used to update the estimators at each sampling time. To address the centralized estimation problem, augmented observation vectors are defined by accumulating the raw measurements from the different sensors, and when the current measurement of a sensor does not arrive on time, the corresponding component of the augmented measured output predictor is used as compensation in the estimator design. Through an innovation approach, centralized fusion estimators, including predictors, filters, and smoothers are obtained by recursive algorithms without requiring the signal evolution model. A numerical example is presented to show how uncertain systems with state-dependent multiplicative noise can be covered by the proposed model and how the estimation accuracy is influenced by both sensor uncertainties and transmission failures. Full article
Show Figures

Figure 1

Open AccessArticle
Health Management Decision of Sensor System Based on Health Reliability Degree and Grey Group Decision-Making
Sensors 2018, 18(7), 2316; https://doi.org/10.3390/s18072316 - 17 Jul 2018
Cited by 3
Abstract
Metal Oxide Semiconductor (MOS) gas sensor has been widely used in sensor systems for the advantages of fast response, high sensitivity, low cost, and so on. But, limited to the properties of materials, the phenomenon, such as aging, poisoning, and damage of the [...] Read more.
Metal Oxide Semiconductor (MOS) gas sensor has been widely used in sensor systems for the advantages of fast response, high sensitivity, low cost, and so on. But, limited to the properties of materials, the phenomenon, such as aging, poisoning, and damage of the gas sensitive material will affect the measurement quality of MOS gas sensor array. To ensure the stability of the system, a health management decision strategy for the prognostics and health management (PHM) of a sensor system that is based on health reliability degree (HRD) and grey group decision-making (GGD) is proposed in this paper. The health management decision-making model is presented to choose the best health management strategy. Specially, GGD is utilized to provide health management suggestions for the sensor system. To evaluate the status of the sensor system, a joint HRD-GGD framework is declared as the health management decision-making. In this method, HRD of sensor system is obtained by fusing the output data of each sensor. The optimal decision-making recommendations for health management of the system is proposed by combining historical health reliability degree, maintenance probability, and overhaul rate. Experimental results on four different kinds of health levels demonstrate that the HRD-GGD method outperforms other methods in decision-making accuracy of sensor system. Particularly, the proposed HRD-GGD decision-making method achieves the best decision accuracy of 98.25%. Full article
Show Figures

Figure 1

Open AccessArticle
A Practical Approach for High Precision Reconstruction of a Motorcycle Trajectory Using a Low-Cost Multi-Sensor System
Sensors 2018, 18(7), 2282; https://doi.org/10.3390/s18072282 - 14 Jul 2018
Cited by 3
Abstract
Motorcycle drivers are considered among the most vulnerable road users, as attested by the number of crashes increasing every year. The significant part of the fatalities relates to “single vehicle” loss of control in bends. During this investigation, a system based on an [...] Read more.
Motorcycle drivers are considered among the most vulnerable road users, as attested by the number of crashes increasing every year. The significant part of the fatalities relates to “single vehicle” loss of control in bends. During this investigation, a system based on an instrumented multi-sensor platform and an algorithmic study was developed to accurately reconstruct motorcycle trajectories achieved when negotiating bends. This system is used by the French Gendarmerie in order to objectively evaluate and to examine the way riders take their bends in order to better train riders to adopt a safe trajectory and to improve road safety. Data required for the reconstruction are acquired using a motorcycle that has been fully instrumented (in VIROLO++ Project) with several redundant sensors (reference sensors and low-cost sensors) which measure the rider actions (roll, steering) and the motorcycle behavior (position, velocity, acceleration, odometry, heading, and attitude). The proposed solution allowed the reconstruction of motorcycle trajectories in bends with a high accuracy (equal to that of fixed point positioning). The developed algorithm will be used by the French Gendarmerie in order to objectively evaluate and examine the way riders negotiate bends. It will also be used for initial training and retraining in order to better train riders to learn and estimate a safe trajectory and to increase the safety, efficiency and comfort of motorcycle riders. Full article
Show Figures

Figure 1

Open AccessArticle
Comparison of Data Preprocessing Approaches for Applying Deep Learning to Human Activity Recognition in the Context of Industry 4.0
Sensors 2018, 18(7), 2146; https://doi.org/10.3390/s18072146 - 03 Jul 2018
Cited by 11
Abstract
According to the Industry 4.0 paradigm, all objects in a factory, including people, are equipped with communication capabilities and integrated into cyber-physical systems (CPS). Human activity recognition (HAR) based on wearable sensors provides a method to connect people to CPS. Deep learning has [...] Read more.
According to the Industry 4.0 paradigm, all objects in a factory, including people, are equipped with communication capabilities and integrated into cyber-physical systems (CPS). Human activity recognition (HAR) based on wearable sensors provides a method to connect people to CPS. Deep learning has shown surpassing performance in HAR. Data preprocessing is an important part of deep learning projects and takes up a large part of the whole analytical pipeline. Data segmentation and data transformation are two critical steps of data preprocessing. This study analyzes the impact of segmentation methods on deep learning model performance, and compares four data transformation approaches. An experiment with HAR based on acceleration data from multiple wearable devices was conducted. The multichannel method, which treats the data for the three axes as three overlapped color channels, produced the best performance. The highest overall recognition accuracy achieved was 97.20% for eight daily activities, based on the data from seven wearable sensors, which outperformed most of the other machine learning techniques. Moreover, the multichannel approach was applied to three public datasets and produced satisfying results for multi-source acceleration data. The proposed method can help better analyze workers’ activities and help to integrate people into CPS. Full article
Show Figures

Figure 1

Open AccessArticle
Square-Root Unscented Information Filter and Its Application in SINS/DVL Integrated Navigation
Sensors 2018, 18(7), 2069; https://doi.org/10.3390/s18072069 - 28 Jun 2018
Cited by 5
Abstract
To address the problem of low accuracy for the regular filter algorithm in SINS/DVL integrated navigation, a square-root unscented information filter (SR-UIF) is presented in this paper. The proposed method: (1) adopts the state probability approximation instead of the Taylor model linearization in [...] Read more.
To address the problem of low accuracy for the regular filter algorithm in SINS/DVL integrated navigation, a square-root unscented information filter (SR-UIF) is presented in this paper. The proposed method: (1) adopts the state probability approximation instead of the Taylor model linearization in EKF algorithm to improve the accuracy of filtering estimation; (2) selects the most suitable parameter form at each filtering stage to simply the calculation complexity; (3) transforms the square root to ensure the symmetry and positive definiteness of the covariance matrix or information matrix, and then to enhance the stability of the filter. The simulation results indicate that the estimation accuracy of SR-UIF is higher than that of EKF, and similar to UKF; meanwhile the computational complexity of SR-UIF is lower than that of UKF. Full article
Show Figures

Figure 1

Open AccessArticle
Fire Source Range Localization Based on the Dynamic Optimization Method for Large-Space Buildings
Sensors 2018, 18(6), 1954; https://doi.org/10.3390/s18061954 - 15 Jun 2018
Cited by 2
Abstract
This paper is concerned to the fire localization problem for large-space buildings. Two kinds of circular fire source arrangement localization methods are proposed on the basis of the dynamic optimization technology. In the Range-Point-Range frame, a dynamic optimization localization is proposed to globally [...] Read more.
This paper is concerned to the fire localization problem for large-space buildings. Two kinds of circular fire source arrangement localization methods are proposed on the basis of the dynamic optimization technology. In the Range-Point-Range frame, a dynamic optimization localization is proposed to globally estimate the circle center of the circular arrangement to be determined based on all the point estimates of the fire source. In the Range-Range-Range frame, a dynamic optimization localization method is developed by solving a non-convex optimization problem. In this way, the circle center and the radius are obtained simultaneously. Additionally, the dynamic angle bisector method is evaluated. Finally, a simulation with three simulation scenes is provided to illustrate the effectiveness and availability of the proposed methods. Full article
Show Figures

Figure 1

Open AccessArticle
Data Fusion Architectures for Orthogonal Redundant Inertial Measurement Units
Sensors 2018, 18(6), 1910; https://doi.org/10.3390/s18061910 - 12 Jun 2018
Abstract
This work looks at the exploitation of large numbers of orthogonal redundant inertial measurement units. Specifically, the paper analyses centralized and distributed architectures in the context of data fusion algorithms for those sensors. For both architectures, data fusion algorithms based on Kalman filter [...] Read more.
This work looks at the exploitation of large numbers of orthogonal redundant inertial measurement units. Specifically, the paper analyses centralized and distributed architectures in the context of data fusion algorithms for those sensors. For both architectures, data fusion algorithms based on Kalman filter are developed. Some of those algorithms consider sensors location, whereas the others do not, but all estimate the sensors bias. A fault detection algorithm, based on residual analysis, is also proposed. Monte-Carlo simulations show better performance for the centralized architecture with an algorithm considering sensors location. Due to a better estimation of the sensors bias, the latter provides the most precise and accurate estimates and the best fault detection. However, it requires a much longer computational time. An analysis of the sensors bias correlation is also done. Based on the simulations, the biases correlation has a small effect on the attitude rate estimation, but a very significant one on the acceleration estimation. Full article
Show Figures

Figure 1

Open AccessArticle
An Extension to Deng’s Entropy in the Open World Assumption with an Application in Sensor Data Fusion
Sensors 2018, 18(6), 1902; https://doi.org/10.3390/s18061902 - 11 Jun 2018
Cited by 6
Abstract
Quantification of uncertain degree in the Dempster-Shafer evidence theory (DST) framework with belief entropy is still an open issue, even a blank field for the open world assumption. Currently, the existed uncertainty measures in the DST framework are limited to the closed world [...] Read more.
Quantification of uncertain degree in the Dempster-Shafer evidence theory (DST) framework with belief entropy is still an open issue, even a blank field for the open world assumption. Currently, the existed uncertainty measures in the DST framework are limited to the closed world where the frame of discernment (FOD) is assumed to be complete. To address this issue, this paper focuses on extending a belief entropy to the open world by considering the uncertain information represented as the FOD and the nonzero mass function of the empty set simultaneously. An extension to Deng’s entropy in the open world assumption (EDEOW) is proposed as a generalization of the Deng’s entropy and it can be degenerated to the Deng entropy in the closed world wherever necessary. In order to test the reasonability and effectiveness of the extended belief entropy, an EDEOW-based information fusion approach is proposed and applied to sensor data fusion under uncertainty circumstance. The experimental results verify the usefulness and applicability of the extended measure as well as the modified sensor data fusion method. In addition, a few open issues still exist in the current work: the necessary properties for a belief entropy in the open world assumption, whether there exists a belief entropy that satisfies all the existed properties, and what is the most proper fusion frame for sensor data fusion under uncertainty. Full article
Show Figures

Figure 1

Open AccessArticle
Multi-Focus Fusion Technique on Low-Cost Camera Images for Canola Phenotyping
Sensors 2018, 18(6), 1887; https://doi.org/10.3390/s18061887 - 08 Jun 2018
Cited by 3
Abstract
To meet the high demand for supporting and accelerating progress in the breeding of novel traits, plant scientists and breeders have to measure a large number of plants and their characteristics accurately. Imaging methodologies are being deployed to acquire data for quantitative studies [...] Read more.
To meet the high demand for supporting and accelerating progress in the breeding of novel traits, plant scientists and breeders have to measure a large number of plants and their characteristics accurately. Imaging methodologies are being deployed to acquire data for quantitative studies of complex traits. Images are not always good quality, in particular, they are obtained from the field. Image fusion techniques can be helpful for plant breeders with more comfortable access plant characteristics by improving the definition and resolution of color images. In this work, the multi-focus images were loaded and then the similarity of visual saliency, gradient, and color distortion were measured to obtain weight maps. The maps were refined by a modified guided filter before the images were reconstructed. Canola images were obtained by a custom built mobile platform for field phenotyping and were used for testing in public databases. The proposed method was also tested against the five common image fusion methods in terms of quality and speed. Experimental results show good re-constructed images subjectively and objectively performed by the proposed technique. The findings contribute to a new multi-focus image fusion that exhibits a competitive performance and outperforms some other state-of-the-art methods based on the visual saliency maps and gradient domain fast guided filter. The proposed fusing technique can be extended to other fields, such as remote sensing and medical image fusion applications. Full article
Show Figures

Figure 1

Open AccessArticle
A Multimodal Deep Log-Based User Experience (UX) Platform for UX Evaluation
Sensors 2018, 18(5), 1622; https://doi.org/10.3390/s18051622 - 18 May 2018
Cited by 10
Abstract
The user experience (UX) is an emerging field in user research and design, and the development of UX evaluation methods presents a challenge for both researchers and practitioners. Different UX evaluation methods have been developed to extract accurate UX data. Among UX evaluation [...] Read more.
The user experience (UX) is an emerging field in user research and design, and the development of UX evaluation methods presents a challenge for both researchers and practitioners. Different UX evaluation methods have been developed to extract accurate UX data. Among UX evaluation methods, the mixed-method approach of triangulation has gained importance. It provides more accurate and precise information about the user while interacting with the product. However, this approach requires skilled UX researchers and developers to integrate multiple devices, synchronize them, analyze the data, and ultimately produce an informed decision. In this paper, a method and system for measuring the overall UX over time using a triangulation method are proposed. The proposed platform incorporates observational and physiological measurements in addition to traditional ones. The platform reduces the subjective bias and validates the user’s perceptions, which are measured by different sensors through objectification of the subjective nature of the user in the UX assessment. The platform additionally offers plug-and-play support for different devices and powerful analytics for obtaining insight on the UX in terms of multiple participants. Full article
Show Figures

Figure 1

Open AccessArticle
A Framework of Covariance Projection on Constraint Manifold for Data Fusion
Sensors 2018, 18(5), 1610; https://doi.org/10.3390/s18051610 - 17 May 2018
Cited by 4
Abstract
A general framework of data fusion is presented based on projecting the probability distribution of true states and measurements around the predicted states and actual measurements onto the constraint manifold. The constraint manifold represents the constraints to be satisfied among true states and [...] Read more.
A general framework of data fusion is presented based on projecting the probability distribution of true states and measurements around the predicted states and actual measurements onto the constraint manifold. The constraint manifold represents the constraints to be satisfied among true states and measurements, which is defined in the extended space with all the redundant sources of data such as state predictions and measurements considered as independent variables. By the general framework, we mean that it is able to fuse any correlated data sources while directly incorporating constraints and identifying inconsistent data without any prior information. The proposed method, referred to here as the Covariance Projection (CP) method, provides an unbiased and optimal solution in the sense of minimum mean square error (MMSE), if the projection is based on the minimum weighted distance on the constraint manifold. The proposed method not only offers a generalization of the conventional formula for handling constraints and data inconsistency, but also provides a new insight into data fusion in terms of a geometric-algebraic point of view. Simulation results are provided to show the effectiveness of the proposed method in handling constraints and data inconsistency. Full article
Show Figures

Figure 1

Open AccessArticle
A Weighted Combination Method for Conflicting Evidence in Multi-Sensor Data Fusion
Sensors 2018, 18(5), 1487; https://doi.org/10.3390/s18051487 - 09 May 2018
Cited by 30
Abstract
Dempster–Shafer evidence theory is widely applied in various fields related to information fusion. However, how to avoid the counter-intuitive results is an open issue when combining highly conflicting pieces of evidence. In order to handle such a problem, a weighted combination method for [...] Read more.
Dempster–Shafer evidence theory is widely applied in various fields related to information fusion. However, how to avoid the counter-intuitive results is an open issue when combining highly conflicting pieces of evidence. In order to handle such a problem, a weighted combination method for conflicting pieces of evidence in multi-sensor data fusion is proposed by considering both the interplay between the pieces of evidence and the impacts of the pieces of evidence themselves. First, the degree of credibility of the evidence is determined on the basis of the modified cosine similarity measure of basic probability assignment. Then, the degree of credibility of the evidence is adjusted by leveraging the belief entropy function to measure the information volume of the evidence. Finally, the final weight of each piece of evidence generated from the above steps is obtained and adopted to modify the bodies of evidence before using Dempster’s combination rule. A numerical example is provided to illustrate that the proposed method is reasonable and efficient in handling the conflicting pieces of evidence. In addition, applications in data classification and motor rotor fault diagnosis validate the practicability of the proposed method with better accuracy. Full article
Show Figures

Figure 1

Open AccessArticle
A Closed-Form Error Model of Straight Lines for Improved Data Association and Sensor Fusing
Sensors 2018, 18(4), 1236; https://doi.org/10.3390/s18041236 - 17 Apr 2018
Abstract
Linear regression is a basic tool in mobile robotics, since it enables accurate estimation of straight lines from range-bearing scans or in digital images, which is a prerequisite for reliable data association and sensor fusing in the context of feature-based SLAM. This paper [...] Read more.
Linear regression is a basic tool in mobile robotics, since it enables accurate estimation of straight lines from range-bearing scans or in digital images, which is a prerequisite for reliable data association and sensor fusing in the context of feature-based SLAM. This paper discusses, extends and compares existing algorithms for line fitting applicable also in the case of strong covariances between the coordinates at each single data point, which must not be neglected if range-bearing sensors are used. Besides, in particular, the determination of the covariance matrix is considered, which is required for stochastic modeling. The main contribution is a new error model of straight lines in closed form for calculating quickly and reliably the covariance matrix dependent on just a few comprehensible and easily-obtainable parameters. The model can be applied widely in any case when a line is fitted from a number of distinct points also without a priori knowledge of the specific measurement noise. By means of extensive simulations, the performance and robustness of the new model in comparison to existing approaches is shown. Full article
Show Figures

Figure 1

Back to TopTop