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Abstract: This paper proposes a novel interconnected observer to get good estimates of attitude and
gyro bias from high-noise vector measurements. The observer is derived based on the theory of
nonlinear and linear cascade systems, and its error dynamics have the properties of global exponential
stability and robustness to bounded noise. These properties ensure the convergence and boundedness
of the attitude and gyro bias estimation errors. To obtain higher estimation accuracy, an approach to
calculate time-varying gains for the proposed auxiliary observer is designed under the premise of
considering noise terms in the rate gyro and vector sensors. The simulation results show that when
the vector sensors’ outputs contain high-level noise, the proposed observer with time-varying gains
yields better performance in both the transient and steady-state phases.

Keywords: attitude estimation; nonlinear observer; global exponential stability; robustness;
navigation; low-cost sensor

1. Introduction

Attitude estimation of a rigid body is an indispensable part of navigation. Questions of estimating
attitude have been a field of concern for decades due to its numerous applications in various systems,
such as unmanned underwater vehicles (UUVs) [1], unmanned aerial vehicles (UAVs) [2], and others [3].
A rigid body’s attitude can be resolved by integrating the angular velocity from a rate gyro output.
However, even with high-precision gyros, the accumulated drift over time can affect the accuracy of
the attitude estimation, not to mention the low-cost ones. A typical approach to estimate attitude is to
utilize algebraic methods of vector measurements only by comparing vectors measured in either the
body-fixed coordinate frame or the reference frame with vectors measured in the other. Triad and Quest
in [4] used two or more nonparallel vector measurements to determine the attitude. Unfortunately,
bias and noise can easily corrupt the vector measurements. Therefore, combining angular velocity
sensors with vector sensors (e.g., accelerometers, magnetometers, star trackers, or sun sensors) has
been developed for improving the estimation accuracy.

The current approaches for estimating attitude and gyro bias from vector sensors and rate gyros
can be summarized into two classes, stochastic filtering algorithms (such as EKF, UKF, and their
variants; see [5–7]) and nonlinear observers (e.g., [8,9]). Although EKFs and UKFs have been widely
used, they cannot guarantee convergence in strongly nonlinear systems, and UKFs may increase
the computational cost. In recent years, more efforts have been made in constructing nonlinear
observers. In [10,11], nonlinear complementary filters designed on the special orthogonal group SO(3)
for low-cost measurement units became the foundation of other observers. On this basis, Grip et al. [12]
developed semi-globally stable observers with gyro bias and time-varying reference vectors. After that,
they came up with an alternative semi-global attitude observer in the unit quaternion space [13] by
employing the theory of cascaded linear and nonlinear system observers, which appeared in [14,15].
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For obtaining globally stable observers, some studies adopt the SO(3) topological constraint lifting
methods before estimating the attitude rotation matrix, such as Batista et al. [16,17], Grip et al. [9,18],
Bryne et al. [19], and Fusini et al. [20]; in addition, the nonlinear observers in [18–20] are all based
on extensions or various applications of the observer in [9]. Among these observers, except the
observer in [16] attained global asymptotical stability; others achieved global exponential stability.
Besides et al. [21,22] proposed two different “geometry-free” nonlinear observers and verified that the
former has the property of global asymptotic stability, while the latter has global exponential stability.
All the aforementioned nonlinear observers apply at least two vector measurements combined with
gyro measurements. Unlike them, the methods described by Batista et al. [23,24] merely use a signal
vector observation, coupled with a persistency-of-excitation (PE) condition, and also reach global
exponential stability.

Most observers mentioned the preceding are designed and proved under the assumption of
noise-free scenarios and do not allow vector measurement bias. Like [25–27], researchers took noise
terms of the linear cascade system into account just when deriving and calculating the time-varying
gains of the linear system observer, which means they do not consider the gyro and vector sensor
noise. Therefore, a noisy attitude observer model was given in [28] while discussing and proofing
the cascade attitude observer’s robustness to bounded noise and stochastic noise on all sensors.
Additionally, [12] first offered a method of estimating body-fixed vector bias, using an exponential
convergence algorithm, and then employing this method in cascade attitude and gyro bias observers
to improve the estimation accuracy. Moreover, Martin et al. [29] presented a nonlinear “non-geometry”
observer, regarded a bias of one vector observation and rate gyro. They verified that considering one
vector measurement bias can also obtain global asymptotic stability and local exponential stability.
The literature we listed has estimated the gyro bias on the premises that the rate gyro exists, and its
accumulated drift is controllable. If those premises are not true, another trend requiring attention is
angular velocity reconstruction without applying rate gyros to obtain reasonable gyro bias estimation.
Recently, relatively simple angular velocity estimation observers have been proposed by Magnis and
Petit [30,31]. These observers reconstruct the angular velocity directly from the vector measurements,
even a single vector measurement, without any attitude information or gyro measurements, and quickly
convergence. However, users need to assume that all the torques applied to the rigid body are known.
To solve this problem, Magnis et al. [32] extended their work to estimate torques even with varying
rotation rates and unknown direction. Notably, these angular velocity estimation observers can make
a positive contribution to gyro bias estimation.

We consider the attitude and gyro bias estimation using a rate gyro and two or more vector
sensors. Built on the theory of Grip et al. [15] for cascaded nonlinear and linear systems, the primary
contribution of this paper is to construct an interconnected nonlinear observer to estimate attitude and
gyro bias from the re-estimated vector measurements. The proposed observer includes two cascaded
subsystems: a nonlinear attitude and gyro bias observer modified from the nonlinear observer in [9],
and a linear vector measurement observer devised to filter the vector measurements, called an auxiliary
observer. This paper analyzes the proposed observer’s stability and gives its noisy error dynamics
to study its robustness. When proving its robustness to bounded noise, the input-to-state stability
theorem is used, and all the sensors’ noise is regarded. Beyond that, the time-varying gains computed
from the discrete Riccati equation, for the auxiliary observer, is designed to improve its accuracy and
robustness. This model also thinks about noise on all sensors.

We begin with the required sensor models and assumptions in Section 2. We design the globally
interconnected observer and analyze its stability in Section 3. Section 4 briefly proves the proposed
observer’s robustness to bounded noise. Section 5 discusses the results of the numerical simulation
with several cases in detail. Section 6 concludes this paper.
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Notation and Preliminaries

The operator (·)T denotes the transpose of a vector or matrix; ‖ · ‖ represents the vectors’ Euclidean
norm and the matrices’ Frobenius norm; and E[·] forms the expectation of its inputs. The symbols In×n

and 0m×n denote the n× n identity matrix and the m× n zero element matrix, respectively. For a vector

R3, defined as r = [ r1 r2 r3 ]
T

, its skew-symmetric is denoted by S(r), where

S(r) =


0 −r3 r2

r3 0 −r1

−r2 r1 0

, (1)

so that for any a ∈ R3, S(r)a = r × a, where × means the vector cross product. Given a linear
function, vex(·) denotes the inverse operation of S(r), such that vex(S(r)) = r. For a square matrix
U, Pa(U) =

(
U−UT

)
/2 denotes its skew-symmetric part, tr(U) means its trace,

∣∣∣tr(U)
∣∣∣ ≤ √3‖U‖;

for a symmetric matrix U, tr(US(r)) = 0. Furthermore, the trace of a skew-symmetric matrix is zero,
and there exists tr

(
ST(r)S(a)

)
= 2rTa. A block-diagonal matrix U3 of two square matrices U1 and U2

is indicated with U3 = blkdiag(U1, U2). The saturation operation of a vector or matrix argument to
the interval [−L, L] is performed by satL(·). Proj(·) is a projection operator whose function here is to
preserve its inputs in a predefined bound.

In general, we need two coordinate frames to describe the attitude: the body-fixed frame
and the reference frame. The body-fixed frame, denoted by {B}, is on the rigid body; its origin is
rigorously fastened to the body’s center of mass. The reference frame is ordinarily unmoving, called
an inertial frame {I}. Here, the north–east–down (NED) navigation frame, denoted by {N}, is used
as the inertial frame, which means that the rotation of the Earth would be ignored in low-precision
applications. RN

B ∈ SO(3) represents a rotation matrix from {B} to {N}, where SO(3) is defined by
SO(3) :=

{
U ∈ R3×3

∣∣∣det(U) = 1, UUT = UTU = I3
}
. For convenience, let R ≡ RN

B . Furthermore, it is
known that a vector norm remains unchanged after rotation, i.e., ‖Ra‖ = ‖a‖. By using superscript
indexes to represent a vector decomposed in different coordinate frames, we have xN as the component
of x in frame {N}, and xB is the same. According to the definition of R, the relationship between the
above vector components can be written as xN = RxB.

2. Problem Statement

2.1. Sensor Model

Consider a rigid body consisting of a triaxial rate gyro and two or more additional vector sensors,
such as accelerometers and magnetometers. The attitude kinematics about the rotation matrix satisfy

.
R = RS(ω), (2)

where ω ∈ R3 is the angular velocity of {B} with reference to {N}, expressed in {B}, and [33] gave its
normal model:

ω = ωm − bω − ηω, (3)
.
bω = 0, (4)

where ωm is the outputs of the gyro; bω ∈ R3 is a constant gyro bias vector; and ηω is the sensor noise.
As described, at least two other sensors provide nonparallel vector measurements, so let M ≥ 2,

and suppose that two sets of M vector measurements
{
vi ∈ R3, i = 1, . . . , M

}
and

{
vmi ∈ R3, i = 1, . . . , M

}
in the body-fixed frame are available. The measurement model is

vmi = vi + ηi, (5)
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where vmi ∈ R3, i = 1, . . . , M denotes the corresponding sensor outputs; and ηi ∈ R3, i = 1, . . . , M is the
sensor noise on measurement i. The vector measurement vi, in the body-fixed frame, of the known
constant vectors vN

i , when expressed in the reference frame (NED frame), conform to the following
relationship:

vi = RTvN
i . (6)

In this paper, vector measurements stand for a set of vectors measured in the body-fixed frame
from other vector sensors, except for rate gyros, and satisfy Equation (6).

Omit the noisy terms in Equations (3)–(5) and substitute Equations (3) and (6) into Equations (2)
and (5), respectively. We can get the noisy-free nonlinear system model as follows:

.
R = RS(ωm − bω).
bω = 0
vi = RTvN

i , i = 1, . . . , M
, (7)

where ωm = ω + bω in this noiseless system. The following observer design also utilizes this
noiseless system.

2.2. Assumptions

Throughout this work, consider the following assumptions:

Assumption 1. At least two vectors in the body-fixed frame are not parallel to each other, i.e., there exists a
constant γ > 0, for all t ≥ 0, there are i, j ∈ 1, . . . , M and i , j, such that ‖vi × v j‖ ≥ γ > 0.

Assumption 2. The gyro output signal ωm and its derivative
.
ωm are bounded for all t ≥ 0.

Assumption 3. The gyro bias bω is constant; there exists a known constant lb > 0, such that ‖bω‖ ≤ lb.

The first two assumptions are standard assumptions in attitude estimation; see, e.g., [12,13,17,20].
Assumption 1 is necessary to guarantee uniform observability. Assumption 3 is about gyro bias; also,
we assume that vN

i , i = 1, . . . , M and
.
vN

i , i = 1, . . . , M are all continuous at t and uniformly bounded.
In this paper, we choose two non-collinear vector measurements denoted by v1 and v2 in the

body-fixed frame, corresponding to vN
1 and vN

2 in the inertial frame, where vN
1 and vN

2 are also
independent of each other; the above assumptions are equally applicable.

3. Nonlinear Interconnected Observer Design

As shown in Figure 1, the proposed nonlinear interconnected observer includes two subsystems.
The first subsystem is an attitude observer, which estimates the rotation matrix and gyro bias established
on comparing at least two nonparallel vector measurements in two corresponding coordinate frames.
If the attitude observer directly applies the vector sensors’ outputs as its input, the injection term will
contain the vector measurement noise. This injection noise can change the accuracy of the attitude
observer. Therefore, to reduce the impact of the measurement noise, we construct the second subsystem,
an auxiliary observer for estimating the vector measurements and feeding the estimated value back to
the attitude observer. The interconnected system

∑
1 −

∑
2 is based on the theory of Grip in [15].
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Figure 1. Overall structure of the total observer.
∑

1 denotes the attitude observer.
∑

2 denotes the
auxiliary observer.

3.1. Subsystem
∑

1: Attitude Observer

The general framework of
∑

1 introduced here for the rotation matrix R and gyro bias bω is similar
to that in Grip et al. [18], expressed as

∑
1

:


.

R̂ = R̂S
(
ωm − b̂ω

)
+ θKPΓ

.
b̂ω = Proj

(
‖b̂ω‖ ≤ lb̂,−kvvex

(
Pa

(
R̂T

s KPΓ
))) , (8)

where θ, KP, and kv are tunable parameters, tuned to obtain stability. In more detail, θ ≥ 1 is a scaling
factor; KP is a symmetric positive–definite gain matrix; and kv > 0 is a scalar gain. Function Proj(·)
denotes a parameter projection operator to ensure the estimated gyro bias is bounded by ‖b̂‖ ≤ lb̂,
see [9] for detail; and lb̂ is a constant, lb̂ > lb. R̂s = sat1

(
R̂
)
. Referencing the TRIAD algorithm [4],

the injection term Γ is defined by

Γ
(
v1, vN

1 , v2, vN
2 , R̂

)
:= ANAT

B −ANAT
NR̂, (9)

AB :=
[

v1 v2 v1 × v2
]
, (10)

AN :=
[

vN
1 vN

2 vN
1 × vN

2

]
, (11)

which is different from the design strategy of J := ANAT
B − R̂ABAT

B in [18]. Note that AB and AN are
defined to fulfill Assumption 1. Besides, in the attitude observer, the rotation matrix R̂ does not strictly
adhere to the topological structure of SO(3).

Property 1. For all t > 0, AB and AN are piecewise continuous in t and uniformly bounded by‖AN‖ = ‖AB‖ ≤ LA.
For all t > 0, there is a constant β1 > 0, such that ANAT

N ≥ β1I3×3.

Define the estimation errors of the rotation matrix and gyro bias as R̃ = R − R̂, b̃ω = bω − b̂ω.
The error dynamics can be written as

.

R̃ = RS(ωm − bω) − R̂S
(
ωm − b̂ω

)
− θKPΓ

.

b̃ω = −Proj
(
b̂ω,−kvvex

(
Pa

(
R̂T

s KPΓ
))) . (12)

Lemma 1. For any choice of KP > 0 and kv > 0, there exists a constant θ∗ ≥ 1, such that, for all θ ≥ θ∗,
the origin R̃ = R− R̂ = 0 and b̃ω = bω − b̂ω = 0 of Equation (12) is global exponential stability (GES).
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Proof. Having that AB = RTAN, we can rewrite Γ = ANAT
NR̃, thus ‖Γ‖ = ‖ANAT

NR̃‖ ≤ ‖AN‖
2
‖R̃‖ ≤

L2
A‖R̃‖. Hence, ‖Γ‖ in the present observer also remains linear in ‖R̃‖, so the remaining proof is

analogous to [18]. �

To reduce the vector measurement noise injection, we utilized the estimated vector measurements
instead of the output signals of the vector sensors. Therefore we replaced every occurrence of v1 and
v2 in AB by the estimated states v̂1 and v̂2, using ÂB to replace AB in term Γ. Thus, Γ̂ and ÂB take the
following forms:

Γ̂
(
v̂1, vN

1 , v̂2, vN
2 , R̂

)
:= ANÂT

B −ANAT
NR̂, (13)

ÂB =
[

v̂1 v̂2 v̂1 × v̂2
]
. (14)

Consequently, with the feedback, the error dynamics of
∑

1 are

∑
1

:


.

R̂ = R̂S
(
ωm − b̂ω

)
+ θKPΓ̂

.
b̂ω = Proj

(
‖b̂ω‖ ≤ lb̂,−kvvex

(
Pa

(
R̂T

s KPΓ̂
))) . (15)

Notice that, in Equation (9), J has been changed by Γ to facilitate subsequent derivation, because
the second term of Γ is to ensure that ‖Γ̃‖ is a linearity to ‖ÃB‖, where Γ̃ := Γ − Γ̂ and ÃB := AB − ÂB.

3.2. Subsystem
∑

2: Auxiliary Observer

To weaken the injection of vector measurement noise in
∑

1, we determine that the vector
measurements are not available as the input of

∑
1, as seen in Figure 2. Consequently, in this stage,

we design an auxiliary observer whose role is to estimate the vector measurements for feeding the
attitude observer. Since vN

1 and vN
2 are constants, from Equations (5) and (6), the derivative of the

vector measurements is given by { .
v1 = v1 ×ω
.
v2 = v2 ×ω

. (16)
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∑

1 and linear
∑

2 interconnected system.

Combine the above equations with the measurement equation, Equation (6), and let i = 1, 2. Then,
to estimate the states of the linear system in Equation (16), give the observer in a noiseless scenario:

∑
2

:


.
v̂1 = v̂1 ×

(
ωm − b̂ω

)
+ K1(v1 − v̂1)

.
v̂2 = v̂2 ×

(
ωm − b̂ω

)
+ K2(v2 − v̂2)

, (17)

where the gain matrices K1 and K2 are positive. Notice that the auxiliary observer is closely related to
that introduced by Martin et al. [22]. The main difference between them is that the auxiliary observer
uses the estimated gyro bias as an input rather than an estimated state, and the error system of

∑
2 is

linear. Compared with the extended linear cascade subsystem in [15], our framework can be viewed as
a simplified version because it only contains the additional items.
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What is noteworthy is that the structure of the auxiliary observer
∑

2 makes it possible to use
time-varying reference vectors in the inertial frame, since the knowledge of the constant vectors vN

1
and vN

2 is not employed.

3.3. Stability Analysis

To analyze the stability, define the estimation errors of
∑

2 as ṽ1 = v1 − v̂1, ṽ2 = v2 − v̂2. The error
dynamics of system

∑
2 are 

.
ṽ1 = −

(
ωm − b̂ω

)
× ṽ1 −K1ṽ1 + d̃1

.
ṽ2 = −

(
ωm − b̂ω

)
× ṽ2 −K2ṽ2 + d̃2

, (18)

where d̃ = [̃d1, d̃2]
T
= [−v1 × b̃ω,−v2 × b̃ω]

T
is viewed as an input. Since v1 and v2 are uniformly

bounded and ‖S(v1)‖ =
√

2‖v1‖, then ‖̃d‖ ≤
√

2
(
‖v1‖

2
‖̃bω‖

2
+ ‖v2‖

2
‖̃bω‖

2
)1/2
≤ L1‖̃bω‖ for some L1 > 0,

which satisfies Assumption 3 in [15]. Let ṽ = [̃v1, ṽ2]
T and transform the error dynamics in Equation

(18) into a linear time-varying (LTV) error system:

.
ṽ = (A−KC)̃v + Bd̃, (19)

where A =

 −S
(
ωm − b̂ω

)
03×3

03×3 −S
(
ωm − b̂ω

) , B =

[
I3×3 03×3

03×3 I3×3

]
, C =

[
I3×3 03×3

03×3 I3×3

]
, K =[

K1 03×3

03×3 K2

]
. To guarantee the stability of the observer error dynamics, K must be selected to

make sure that the matrix A−KC is Hurwritz, as stated in Theorem 1 below.
According to the definition of Γ̂ in the present paper, the error dynamics of

∑
1 are

.

R̃ = RS(ωm − bω) − R̂S
(
ωm − b̂ω

)
− θKPΓ̂

.

b̃ω = −Proj
(
b̂ω,−kvvex

(
Pa

(
R̂T

s KPΓ̂
))) . (20)

Theorem 1. Let HK(s) = (Is−A + KC)−1B, and let θ be chosen to warrant stability. There exists a κ > 0,
such that if K is chosen to assure that A−KC is Hurwritz and ‖HK(s)‖∞ < κ, then the origin of Equations (19)
and (20) are GES. Moreover, a K that fulfills these conditions can be found all the time.

Proof. This proof acts similarly to [18]. First, (A, C) and (A, B) are easily verified to be observable
and controllable, respectively. The pair (A, B, C) is left-invertible. According to the properties of
the skew-symmetric matrix, we can infer that (A, B, C) is the minimum phase. As mentioned above,
K should be chosen to fulfill the conditions of Theorem 1, and the same as for proof of Lemma 1, ‖b̂ω‖
must be in the definition domain of ‖b̂ω‖ ≤ lb̂. Next, choosing the same Lyapunov function candidate

V as in [18], we get the equation of
.

V, which is

.
V ≤ −β2

(
‖R̃‖

2
+ ‖̃bω‖

2
)
+ tr

(
R̃

T
θKPΓ̃

)
−µtr

(
S
(
Proj

(
b̂ω, τ(Γ)

)
− Proj

(
b̂ω, τ

(
Γ̂
)))

RTR̃
)

−µtr
(
S
(̃
bω

)
RTθKPΓ̃

)
+

2θµ
kv

b̃
T
ω

(
Proj

(
b̂ω, τ(Γ)

)
− Proj

(
b̂ω, τ

(
Γ̂
))) (21)

where τ(Γ) = −kvvex
(
Pa

(
R̂T

s KPΓ
))

, and recall that Γ̃ = Γ − Γ̂. Write Γ̃ = AN(AB − ÂB)
T
= ANÃB

T;

it follows that ‖̃Γ‖ ≤ ‖AN‖‖ÃB‖, where ‖AN‖ ≤ LA; see Property 1. Using the inequality ‖v1 × v2‖
2
≤
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2
√

2
(
‖v1‖

2 + ‖v2‖
2
)

derived from the inequality in [34], we can bound ‖ÃB‖ in the following way: Let ÃB =

AB − ÂB = [ v1 − v̂1 v2 − v̂2 v1 × v2 − v̂1 × v̂2 ], ṽ1 = v1 − v̂1, and ṽ2 = v2 − v̂2, then we have

‖S(v1)v2 − S(v̂1)v̂2‖ = ‖S(v1)v2 − S(v1 − ṽ1)(v2 − ṽ2)‖

= ‖S(v1 )̃v2 + S(̃v1)v2 − S(̃v1)(̃v2)‖

≤ ‖S(v1 )̃v2‖+ ‖S(̃v1)v2‖+ ‖S(̃v1)(̃v2)‖

≤
√

2
(
‖v1‖‖̃v2‖+ ‖̃v1‖‖v2‖+ 2

(
‖̃v1‖

2 + ‖̃v2‖
2
)1/2

)
≤
√

2
(
h1‖̃v2‖+ h2‖̃v1‖+ 2

(
‖̃v1‖

2 + ‖̃v2‖
2
)1/2

)
≤ h3

(
‖̃v1‖

2 + ‖̃v2‖
2
)1/2

, (22)

for some constant h3 > 0, where h1 and h2 are bound on v1 and v2, respectively. Then the norm of
ÃB becomes

‖ÃB‖ =
(
‖̃v1‖

2 + ‖̃v2‖
2 + ‖S(v1)v2 − S(v̂1)v̂2‖

2
)1/2

≤

(
‖̃v1‖

2 + ‖̃v2‖
2 + h2

3

(
‖̃v1‖

2 + ‖̃v2‖
2
))1/2

≤ γ1
(
‖̃v1‖

2 + ‖̃v2‖
2
)1/2

(23)

for some γ1 > 0. Given ‖̃v‖ =
(
‖̃v1‖

2 + ‖̃v2‖
2
)1/2

, it is easy to get that ‖Γ̃‖ ≤ ‖AN‖‖ÃB‖ ≤ LAγ1‖̃v‖.

Hence, ‖θKPΓ̃‖ ≤ θLAγ1‖KP‖‖̃v‖. With the additional properties from Lemma 3 in [9], such that
‖Proj

(
b̂ω, τ

)
‖ ≤ τ, ‖vex(Pa(U))‖ ≤ ‖U‖/

√
2, there exists a γ2 > 0, such that ‖τ(Γ)‖ − ‖τ

(
Γ̂
)
‖ ≤ γ2‖̃v‖.

Likewise, there is a constant γ3 > 0, such that ‖Proj
(
b̂, τ(Γ)

)
− Proj

(
b̂, τ

(
Γ̂
))
‖ ≤ γ3‖̃v‖. Then

.
V becomes

.
V ≤ −β2

(
‖R̃‖

2
+ ‖̃bω‖

2
)
+
√

3θ‖KP‖
∣∣∣γ1

∣∣∣‖R̃‖‖̃v‖
+
√

6µγ3‖R̃‖‖̃v‖+
√

6µθ‖KP‖
∣∣∣γ1

∣∣∣‖̃bω‖‖̃v‖+ 2θµγ3
kv
‖̃bω‖‖̃v‖

≤ −β2ξ2 + γ4ξ‖̃v‖

(24)

for some γ4 > 0, β2 > 0, where ξ :=
(
‖R̃‖

2
+ ‖̃bω‖

2
)1/2

. �

Following the proof of Lemma 2 in [9], and using the same function W = ṽTPṽ for some

positive definite matrix P, one gets
.

W ≤ −‖̃v‖2 + κ2
‖̃d‖

2
. From the above analysis we can obtain

‖̃d‖ ≤ L1‖̃bω‖ ≤ L1
(
‖R̃‖+ ‖̃bω‖

)
. Thus,

.
W ≤ −‖̃v‖2 + κ2γ2

5ξ
2 for some γ5 > 0. Considering the Lyapunov

function Y = W + gV, we get
.
Y < 0 for all adequately small κ. Therefore, this error system is GES.

3.4. Gain Selection

The task of this section is to choose the tunable gains. KP, kv and θ of the attitude observer are
chosen to conform to Lemma 1, and K of the auxiliary observer should be selected to secure the total
observer’s stability. In practice, one can first choose arbitrary KP, kv, and then tune other gains to achieve
stability, of which KP and K can be selected constants for improving the computational efficiency.

Additionally, according to the structure of Equation (18), we can find that it is straightforward to
design time-varying gains for the auxiliary observer. One solution is to resolve the discrete time-varying
Ricatti equation. This solution is similar to Kalman filter equations; the details are similar as in [25].
Furthermore, the utility of this method is that the noise and small interference items of the vector
sensors can be under consideration. To make the derivations easier, we substitute vi, i = 1, 2 with
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vi + ni, i = 1, 2 and replace ωm with ωm + ηω in Equation (17), like [28], to get the dynamics of the
noisy auxiliary observer

∑
′

2

∑
′

2
:


.
v̂1 = v̂1 ×

(
ωm + ηω − b̂ω

)
+ K1(v1 + η1 − v̂1)

.
v̂2 = v̂2 ×

(
ωm + ηω − b̂ω

)
+ K2(v2 + η2 − v̂2)

. (25)

Then, from Equations (25) and (16), the estimation error dynamics of
∑
′

2 are
.
ṽ1 =

.
v1 −

.
v̂1 = −S

(
ωm − b̂ω

)̃
v1 −K1ṽ1 + d̃1 + S(v̂1)ηω −K1η1

.
ṽ2 =

.
v2 −

.
v̂2 = −S

(
ωm − b̂ω

)̃
v2 −K2ṽ2 + d̃2 + S(v̂2)ηω −K2η2

. (26)

Recall that d̃ = [̃d1, d̃2]
T
= [−v1 × b̃ω,−v2 × b̃ω]

T
, ṽ = [̃v1, ṽ2]

T, given an input u, and u = d̃; thus,
the LTV error system with noise terms is

.
ṽ = (A−KC)̃v + Bu + Bηu −Kηv, (27)

where K and the (A,B,C) matrices are the same as before, ηu is correlated with gyro noise, which
gives ηu = [S(v̂1)ηω, S(v̂2)ηω]

T. ηv is driven by vector measurement noise, having ηv = [η1,η2]
T.

As stated in Assumption 1, the two vector measurements are noncorrelated, thus defining the
process noise covariance matrix and measurement noise covariance matrix as Q = blkdiag(Q1, Q2)

and Rv = blkdiag(Rv1, Rv2), respectively. Regarding Q, Q1 = E[S(v̂1)ηωηT
ωST(v̂1)] and Q2 =

E[S(v̂2)ηωηT
ωST(v̂2)], which are obtained from the gyro measurement noise. Concerning R, the matrices

Rv1 and Rv2 are from the vector measurement noise by Rv1 = E[η1ηT
1 ] and Rv2 = E[η2ηT

2 ]. For computing
K, the following discrete Kalman filtering formulas can be used:

Pk|k−1 = FkPk−1|k−1FT
k + Qk (28)

Kk = Pk|k−1CT
k

(
CkPk|k−1CT

k + Rvk
)−1

(29)

Pk|k = (I−KkCk)Pk|k−1 (30)

where (·)k means the discrete matrix at time tk. Given the discretization of the state matrices, Fk = eA∆t

and Qk =
∫ tk+1

tk
eA∆tBQBTeAT∆tds, in which ∆t = tk+1 − tk is the sampling interval. Pk|k−1 and Pk

denote the covariance of the estimated error ṽ. In addition to producing time-varying gains, another
advantage of this method is that it regards vector measurement noise at any time, and in some cases,
smaller interference items can also be regarded as noise items.

4. Robustness to Noise

All analyses of the stability in Section 3.3 are performed under the assumption that there is a
noise-free scenario. In fact, all sensors’ measurements cannot avoid noise interference. Our main work
of this section is to analyze the observer’s robustness to the noise on sensor measurements. Toward
this end, assume that all noise is bounded. We start with the noise of the rate gyro and vector sensors
under consideration by substituting ωm + ηω for ωm, vi + ni, i = 1, 2 for vi, i = 1, 2. Hence, in the
presence of bounded noise, the dynamics of the attitude observer Equation (8) are replaced with

∑
′

1
:


.

R̂ = R̂S
(
ωm + ηω − b̂ω

)
+ θKPΓ

.
b̂ω = Proj

(
‖b̂ω‖ ≤ lb̂,−kvvex

(
Pa

(
R̂T

s KPΓ
))) , (31)
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where Γ can be written as

Γ
(
v1 + η1, vN

1 , v2 + η2, vN
2 , R̂

)
:= ANA

T
B −ANAT

NR̂, (32)

and AB is denoted by

AB =
[

v1 + η1 v2 + η2 (v1 + η1) × (v2 + η2)
]
. (33)

Then the error dynamics are
.

R̃ = RS(ωm − bω) − R̂S
(
ωm + ηω − b̂ω

)
− θKPΓ

.

b̃ω = −Proj
(
b̂ω,−kvvex

(
Pa

(
R̂T

s KPΓ
))) . (34)

Note that the noisy system dynamics and noisy error dynamics of the auxiliary observer are given
by Equations (25) and (26).

Assumption 4. For all t ≥ 0, the sensor measurement noise ηω and ηi, i = 1, 2 are all uniformly bounded.

Theorem 2. Under the condition of Lemma 1, consider the attitude observer Equation (8), and let the input
u1 = [ηω,ηv]

T meet Assumption 4, then the attitude observer error dynamics Equation (34) are input-to-state
stable.

Proof. See Appendix A. �

Theorem 3. Under the condition of Theorem 1, consider the auxiliary observer Equation (17), and let the

input u2 = [̃bω,ηu,ηv]
T

meet Assumption 4, then the attitude observer error dynamics Equation (25) are
input-to-state stable.

Proof. See Appendix B. �

Remark 1. The premise of Theorem 3 is that the gyro bias estimation errors are bounded under Theorem 2.

5. Simulation Results and Discussion

In this section, via a simulated attitude estimation system, we evaluated the proposed nonlinear
interconnected observer (named NLIO) by comparing it with the nonlinear observer (NLO) proposed
by Grip et al. [18], the cascade observer (NLCO) discussed in [28], and the multiplicative extended
Kalman filter (MEKF) [35]. With fixed gains and time-varying gains, we called the proposed
observer NLIO-FG and NLIO-TV, respectively. Consider the attitude and heading reference system
(AHRS) that consists of a triaxial rate gyro and two triaxial vector sensors: an accelerometer and a
magnetometer. All sensors were low-cost and had a frequency of 100 Hz. The attitude trajectory in
each simulation was driven byω = [0.1 sin((π/12)t),−0.2 cos((π/10)t), 0.1 sin((π/12)t)]T, and lasted
500 s. Besides, the rate gyro bias was bω = [−0.017,−0.017, 0.017]Trad/s. Assume that the gravitational
and magnetic fields are available, denoted as gN = [0, 0, g]T and magN = [0.3128, 0, 0.4282]TG,
where g = 9.81m/s2. All sensor noise was assumed as Gaussian white noise, and the rate gyro
noise followed ηω ∼ N(0, (10−3rad/s)2

). Here, two simulations were conducted to illustrate the
performance of our proposed observer. We carried out 100 independent runs with each case and
calculated the mean-absolute error (MAE) and root-mean-squared error (RMSE) of the Euler angles to
assess the estimation accuracy. Note that, in this paper, we assumed that the acceleration of the rigid
body is quite small and negligible compared with the gravity vector.
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5.1. Simulation A: Comparsion of NLIO and NLO

In this section, we aim to compare the performance of the NLO and the NLIO, because the attitude
observer frameworks of the NLO and the NLIO have many similarities, and the NLIO can be seen as a
development of the NLO. Four cases are given as follows, with different initial attitude values and
vector sensor noise.

In all four cases, we established two sets of tuning gains for attitude observers in the NLO
and NLIO. These were KP = 15I3×3(for NLO, NLIO-FG, and NLIO-TV) and KP = 5I3×3(for NLO-a
and NILO-TV-a). The scaling gain of the gyro bias observer was fixed to kv = 0.2I3×3; the scaling
parameter θ was fixed to θ = 1. Meanwhile, the initial covariance matrix of the NLIO-TV was
P0|0 = blkdiag

(
10−5I3×3, 5× 10−7I3×3

)
.

Case 1. The initial attitude was chosen randomly from a uniform distribution [−π, π], and the initial gyro bias
was [0, 0, 0]Trad/s. The noise of the accelerometer and magnetometer was set to η1 ∼ N(0, (5× 10−3g)2

) and
η2 ∼ N(0, (8× 10−3G)

2
), respectively. In this simulation, there were random initial attitude values for all

observers. The cascaded auxiliary observer gains of the NLIO-FG were chosen as K1 = 5.6I3×3, K2 = 3.3I3×3.

From Figure 3, we can find that the auxiliary observers of the NLIOs can weaken the measurement
noise and has good convergence, and the auxiliary observer with time-varying gains has better
performance. Figures 4 and 5 show the attitude and gyro bias estimation errors for each observer,
respectively. These figures illustrate that the NLIO-TV slightly outperforms other observers by applying
the time-varying gains to the auxiliary observer and using the estimated vector measurements as
the attitude observer’s inputs. With the random initial attitude in [−π, π], we can see all observers
can converge fast in the initial seconds of the transient phase, especially the NLIOs. Tables 1 and 2
give the MAE values and RMSE values of the Euler angles, which represent the transient and
steady-state performance of all observers. It is indicated that under the same attitude observer gains,
the performance of the NLIO-FG is only better than the NLO in yaw. This means that a single auxiliary
observer gain cannot meet the higher accuracy requirements of all the Euler angles.Sensors 2020, 20, x FOR PEER REVIEW 12 of 24 
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(a) Accelerometer measurement estimation errors evaluated by the auxiliary observers of the nonlinear
observer (NLO) and nonlinear interconnected observer (NLIO). (b) Magnetometer measurement
estimation errors evaluated by the auxiliary observers of the NLO and NLIOs. Since the NLO does
not estimate the vector measurements, its vector measurement errors are identical to the difference
between the sensor measurements and the truth values. The measurement errors’ formula is expressed
as |vm − vtruth|. For the NLIO, the vector measurement estimation error refers to the difference between

the sensor measurement value and the truth value. Its formula is expressed as
∣∣∣∣∣^v− vtuth

∣∣∣∣∣. To interpret

the references to the color and line types in this figure, readers are invited to refer to the web version of
this article.
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Case 2. The initial attitude and gyro bias were [0, 0, 0]Trad and [0, 0, 0]Trad/s; there was mixed-Gaussian noise
of the accelerometer and magnetometer, which follow η1 ∼ 0.8N(0, (5× 10−3g)2

) + 0.2N(0, (5× 10−2g)2
),

η2 ∼ 0.8N(0, (8× 10−3G)
2
) + 0.2N(0, (8× 10−2G)

2
).

In this case, we assumed the vector measurement noise follows a mixed Gaussian distribution.
The proposed observer gains were K1 = 4.7I3×3 and K2 = 1.5I3×3. We can find in Figure 6 that the
auxiliary observers of the NLIOs can minimize the measurement noise to a level similar to that made
in Case 1. However, there is high-level noise on the vector sensors here compared to Case 1. Figures 7
and 8 show that the NLIOs have better performance than the NLOs with identical KP; obviously,
with different tuning, the NLIO-TV is better than the NLO-a, which has an unaggressive KP, performing
significantly better than the NLO. The results of the NLIO-FG in pitch also show that a single auxiliary
observer gain cannot satisfy all accuracy requirements. It can be seen from the steady-state MAEs and
RMSEs in Tables 3 and 4 that, compared to Case 1, the observers’ performance in Case 2 is degraded
because of the mixed high-level noise. Yet, overall, the performance of the NLIO-TV and NLIO-FG is
better than that of the NLO, especially the NLIO-TV.Sensors 2020, 20, x FOR PEER REVIEW 14 of 24 
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Table 3. MAEs of attitude for all the observers in Case 2.

Transient (0–200 s) Steady-State (300–500 s)

Roll (deg) Pitch (deg) Yaw (deg) Roll (deg) Pitch (deg) Yaw (deg)

NLO 0.1972 0.1478 0.7514 0.1968 0.1476 0.7498
NLO-a 0.1331 0.0904 0.4293 0.1295 0.0886 0.4280

NLIO-FG 0.1902 0.1037 0.2757 0.1836 0.0991 0.2566
NLIO-TV 0.1400 0.0726 0.2341 0.1061 0.0649 0.2253

Table 4. RMSEs of attitude for all the observers in Case 2.

Transient (0–200 s) Steady-State (300–500 s)

Roll (deg) Pitch (deg) Yaw (deg) Roll (deg) Pitch (deg) Yaw (deg)

NLO 0.1853 0.9419 0.1576 0.1850 0.9400 0.1573
NLO-a 0.1133 0.5383 0.1069 0.1109 0.5364 0.1043

NLIO-FG 0.1289 0.3704 0.1585 0.1234 0.3213 0.1548
NLIO-TV 0.1079 0.3461 0.0990 0.0810 0.2820 0.0870

Case 3. The initial values of the attitude and gyro bias were the same as in Case 2. The accelerometer
noise and magnetometer noise were five times as the above cases, such that η1 ∼ N(0, (5× 5× 10−3g)2

),
η2 ∼ N(0, (5× 8× 10−3G)

2
) in 110s ≤ t ≤ 190s. About this case, the proposed observer tuning gains were set

to K1 = 5.5I3×3, K2 = 1.8I3×3. As seen in Figures 9–11, between 110 s and 190 s, all observers are sensitive to
the added noise, and the auxiliary observers of the NLIOs still have a strong attenuating effect on the added
noise, especially that of the NLIO-TV. In general, the auxiliary observer with time-varying gains works better on
reducing the impact of vector sensor noise in all cases. Moreover, the NLIO-TV still performs significantly better
than the others.
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NLIOs. (b) Magnetometer measurement estimation errors evaluated by the auxiliary observers of the
NLO and NLIOs.
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Case 4. In the above cases, we conclude that it is necessary to choose time-varying gains for the auxiliary
observer. In order to compare the performance of the NLO and the NLIO-TV, we made the following comparison
and still ran 100 times the same conditions of Case 2. The results in Figures 12 and 13 show that the NLIOs have
significant advantages in attitude estimation and gyro bias estimation than the NLOs. Furthermore, the MAEs
in Table 5 prove this. Meanwhile, we can obtain that the NLIO has a lower sensitivity to KP than the NLO.Sensors 2020, 20, x FOR PEER REVIEW 17 of 24 
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Table 5. MAEs of attitude for NLO and NLIO-TV with different parameters.

Transient (0–200 s) Steady-State (300–500 s)

Roll (deg) Pitch (deg) Yaw (deg) Roll (deg) Pitch (deg) Yaw (deg)

NLO 0.1969 0.1480 0.7508 0.1968 0.1476 0.7523
NLO-a 0.1330 0.0904 0.4296 0.1296 0.0884 0.4302

NLIO-TV 0.1304 0.0870 0.2901 0.1252 0.0842 0.2818
NLIO-TV-a 0.1237 0.0761 0.2641 0.1112 0.0710 0.2537

5.2. Simulation B: Comparison of NLCO, MEKF, and NLIO-TV

In this section, we addressed a simulation to compare the performance of the NLIO-TV against the
NLCO and the MEKF. The initial attitude was generated randomly from a uniform distribution [−π, π],
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and the initial gyro bias was [0, 0, 0]Trad/s. The noise of the accelerometer and magnetometer
was set to η1 ∼ 0.8N(0, (5× 10−3g)2

) + 0.2N(0, (5× 10−2g)2
), η2 ∼ 0.8N(0, (8× 10−3G)

2
) +

0.2N(0, (8× 10−2G)
2
). In this case, the initial attitude values were randomly selected in a domain,

and the vector measurement noise was mixed Gaussian noise. We chose the gyro bias parameters
and the vector measurement parameters of the NLCO as b1 = 1.5, b1 = 0.3, and m1 = m2 = 0.02.
Fix the tuning gains for the attitude observers in the NLIO-TV as KP = 1.5I3×3, kv = 0.2I3×3. The initial
covariance matrix of the NLIO-TV and the MEKF were PNLIO 0|0 = blkdiag

(
10−5I3×3, 5× 10−7I3×3

)
and

PMEKF 0|0 = blkdiag
(
10−4I3×3, 1× 10−7I3×3

)
, respectively.

The results in Figures 14 and 15 show that the NLIO-TV has notable advantages in attitude
estimation and gyro bias estimation than the NLCO and MEKF in the transient phase. With large
initial angle errors, the NLIO-TV converge more quickly than the NLCO and MEKF, which is because
the MEKF only works well at small initial angle errors. In the steady-state phase, the MEKF performs
better than the NLCO and NLIO-TV. Although MEKF performs well at the steady-state phase, it is
a locally stable observer and requires strict initial conditions. Furthermore, the MAEs and RSMEs
in Tables 6 and 7 also record the excellent performance of NLIO-TV in the transient phase. Overall,
the NLIO-TV is superior to the NLCO.
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Table 6. MAEs of attitude for all observers.

Transient (0–200 s) Steady-State (300–500 s)

Roll (deg) Pitch (deg) Yaw (deg) Roll (deg) Pitch (deg) Yaw (deg)

MEKF 3.8376 2.9606 4.7822 0.0689 0.0681 0.0950
NLCO 4.6182 1.9867 6.9415 0.1667 0.0878 0.1477

NLIO-TV 2.1399 0.3371 0.5107 0.0964 0.0533 0.1777

Table 7. RMSEs of attitude for all observers.

Transient (0–200 s) Steady-State (300–500 s)

Roll (deg) Pitch (deg) Yaw (deg) Roll (deg) Pitch (deg) Yaw (deg)

MEKF 6.5455 10.785 1.3573 0.0689 0.1178 0.0556
NLCO 7.0986 16.998 1.2130 0.1667 0.1798 0.1423

NLIO-TV 3.6250 3.3297 0.3448 0.0964 0.2216 0.0813

5.3. Discussion

Notice that the convergence speed of the attitude and gyro bias estimation errors can be controlled
by tuning the attitude observer’s tunable parameters. As discussed in Section 3.4, cascaded observer
tuning usually selects the proper values of KP and kv first, and then adjusts the linear system gains to
get stability. Previous results show that the accuracy of the NLIO will not be greatly affected by KP,
which indicates that the auxiliary observer reduces part of the vector sensor noise before estimating
the attitude and gyro bias. However, the selection of KP can influence the initial convergence rate of
the NLIO.

Although the NLIO increases the computational burden, it can obtain more accurate estimates
because of more adaptable and insensitive characteristics to the given KP and kv. Furthermore, for the
NLIO-FG, it is not easy to select a fixed gain for each channel, and constant adjustment is required to
achieve excellent attitude estimation.

Therefore, the best choice is the NLIO-TV, which adds the gyro and vector measurement noise
terms to the observer error model. By scaling Q and Rv, uncertain noise and small interference items
can also be considered. Besides, when the vector measurement noise is small, the NLO can be used to
save calculation time.

When vector measurements have high noise levels, the NLIO-TV has apparent advantages because
of the following reasons:

• The auxiliary observer is designed by avoiding injecting more measurement noise, which is
reflected in the estimated vector measurement used in the first term of the dynamic equation.

• The auxiliary observer weakens the measurement noise when estimating the vector measurements.
Utilizing the estimated vector measurement for estimating the attitude and gyro bias can effectively
improve accuracy and robustness.

• Noise terms are taken into account in its filtering part. The previous derivation shows that the
NLIO-FG also has the first two advantages.

Lastly, according to Section 4, it is worth noting that as long as the noise terms or small interference
terms are bounded, the estimation errors of the attitude, gyro bias, and vector measurement are bounded.

6. Conclusions

We have introduced an interconnected observer with global exponential stability for attitude
and gyro bias estimation by designing its structure, analyzing its stability and robustness to noise,
and evaluating its performance through simulation. To obtain better accuracy and robustness, we have
further proposed a method to compute the time-varying gains of the auxiliary observer by adding
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noise terms to the error dynamics model. The simulation results showed that our approach with
time-varying gains is conducive to the rapid convergence of attitude and gyro bias estimation and
suppression of vector measurement noise compared with other nonlinear observers. Future work will
concentrate on utilizing time-varying reference vectors in the proposed observer and extending the
proposed observer in the GNSS/INS system, which can be simulated and validated using NaveGo [36].
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Appendix A. Proof of Theorem 2

Proof. Proof. Under Assumption 4, consider the bounded input u1 = [ηω,ηv]
T, thus ‖ηω‖ ≤ ‖u1‖,

η1 ≤ ‖u1‖ and η2 ≤ ‖u1‖. From Equations (9) and (32), get that Γ − Γ = ANA
T
B −ANAT

B = AN

(
A

T
B −AT

B

)
.

Define εΓ = Γ − Γ and ε := AB −AB, then it is possible to write εΓ = ANεT, where ε = [η1 η2 v1 × η2 +

η1 × v2 + η1 × η2]. Then the error dynamics of attitude observer Equation (34) can be written as
.

R̃ = R̃S(ωm − bω) −
(
R− R̃

)
S
(̃
bω

)
−

(
R− R̃

)
S(ηω) − θKPΓ − θKPεΓ
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b̃ω = −proj
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b̂ω, τ(Γ) + τ(εΓ)

)
where τ(εΓ) = −kvvex

(
Pa

(
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s KPεΓ

))
. Using the Lyapunov-like function in [18],

V1 :=
1
2
‖R̃‖

2
− µtr

(
S
(̃
bω

)
RTR̃

)
+
µθ

kv
b̃ωb̃

T
ω

where 0 < µ < 1. Its derivative accompanying the above noisy error dynamics is

.
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b̃ω

)
RTR̃

)
− µtr

(
S
(̃
bω

) .
R

T
R̃
)
− µtr

(
S
(̃
bω

)
RT

.

R̃
)
+

2µθ
kv

b̃
T
ω

.

b̃ω

= tr
(
R̃

T
R̃S(ωm − bω) − R̃

T(
R− R̃

)
S
(̃
bω

)
− R̃

T(
R− R̃

)
S(ηω) − θR̃

T
KPΓ − θR̃

T
KPεΓ

)
+µtr

(
S
(
proj

(
b̂ω, τ(Γ) + τ(εΓ)

))
RTR̃

)
− µtr

(
S
(̃
bω

)
ST(ωm − bω)RTR̃

)
−µtr

(
S
(̃
bω

)
RTR̃S

(
ωm − bω + b̃ω

))
+ µtr

(
S
(̃
bω

)
RT

(
R− R̃

)(̃
bω

))
+ µθtr

(
S
(̃
bω

)
RTKPΓ

)
+µθtr

(
S
(̃
bω

)
RT

(
R− R̃

)
S(ηω)

)
+ µθtr

(
S
(̃
bω

)
RTKPεΓ

)
−

2µθ
kv

b̃
T
ω

(
proj

(
b̂ω, τ(Γ) + τ(εΓ)

))
Combining the recalled equation Γ = ANAT

NR̃
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with Property 1, we get

tr
(
R̃

T
KPΓ

)
= tr
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where λmin(KP) denotes the minimum eigenvalue of KP. In accordance with the definition of ε and εΓ,
and the inequality ‖v1 × v2‖

2
≤ 2
√

2
(
‖v1‖

2 + ‖v2‖
2
)

appeared in preceding section, we can bound the
above with

‖ε‖ =
(
‖η1‖

2 + ‖η2‖
2 + ‖v1 × η2 + η1 × v2 + η1 × η2‖

2
)1/2

≤

(
2‖u1‖

2 + 2‖v1‖
2
‖η2‖

2 + 2‖v2‖
2
‖η1‖

2 + 2‖η1 × η2‖
2
)1/2

≤

(
2‖u1‖

2 + 4L2
A‖u1‖

2 + 2
√

2
(
‖η1‖

2 + ‖η2‖
2
))1/2

≤

((
2 + 4L2

A

)
‖u1‖

2 + 4
√

2‖u1‖
2
)1/2

=
(
2 + 4

√
2 + 4L2

A

)1/2
‖u1‖

thus, ‖εΓ‖ ≤ ‖AN‖‖ε‖ ≤ LA
(
2 + 4

√
2 + 4L2

A

)1/2
‖u1‖ ≤ β3‖u1‖, for some β3 > 0.

Then recall
∣∣∣tr(U)

∣∣∣ ≤ √3‖U‖, thus tr
(
R̃

T
RS

(̃
bω

))
≤
√

6‖R̃‖‖̃bω‖, tr
(
R̃

T
RS(ηω)

)
≤
√

6‖R̃‖‖u1‖, and

∣∣∣∣∣tr(R̃T
KPεΓ

)∣∣∣∣∣ ≤ √3‖KPR̃
T
εΓ‖ ≤

√
3‖KP‖‖R̃‖‖εΓ‖

≤
√

3β3‖KP‖‖R̃‖‖u1‖ ≤ β4‖R̃‖‖u1‖

for some β4 > 0. Then using some properties mentioned in Section 2, the first term of
.

V1 is bounded

by −θβ1λmin(KP)‖R̃‖
2
+
√

6‖R̃‖‖̃bω‖+
√

6‖R̃‖‖u1‖+ θβ4‖R̃‖‖u1‖. Under Assumption 2 and 3, we give
‖ωm − bω‖ ≤ Lω, ‖̃bω‖ ≤ L̃b, such that the third term is bounded by 2

√
3µLω‖R̃‖‖̃bω‖. Similarity,

the fourth term is bounded by 2
√

3µ
(
Lω + L̃b

)
‖R̃‖‖̃bω‖, and the bounds on the seventh and eighth terms

are 2
√

3µ‖̃bω‖‖u1‖+ 2
√

3µLb‖R̃‖‖u1‖ and
√

6θµβ3‖KP‖‖̃bω‖‖u1‖. According to the properties of matrix

trace, we can bound the fifth term by −2µ‖̃bω‖
2
. For the second term, recalling that ‖Proj

(
b̂ω, τ

)
‖ ≤

τ, then we obtain ‖Proj
(
b̂ω, τ(Γ)

)
‖ ≤ 3

√
2|kv|‖KP‖L2

A‖R̃‖/2, ‖Proj
(
b̂ω, τ(εΓ)

)
‖ ≤ 3

√
2‖KP‖L2

Aβ3‖u1‖/2,
therefore, we have

µtr
(
S
(
proj

(
b̂ω, τ(Γ) + τ(εΓ)

))
RTR̃

)
≤ 3
√

3µ|kv|‖KP‖L2
A‖R̃‖

2
+ 3
√

3µ‖KP‖L2
Aβ3‖u1‖‖R̃‖

Think of the sixth term and the last term together, and use the inequality in [18], giving

µθtr
(
S
(̃
bω

)
RTKPΓ

)
−

2µθ
kv

b̃
T
ω

(
proj

(
b̂ω, τ(Γ) + τ(εΓ)

))
≤
√

6µθ‖KP‖L̃bL2
A‖R̃‖

2
− µθtr

(
S
(̃
bω

)
RT

s KPεΓ

)
≤
√

6µθ‖KP‖L̃bL2
A‖R̃‖

2
+
√

6µθβ3‖KP‖L̃b‖R̃‖‖u1‖

Combine all terms of
.

V, and then we have

.
V1 ≤ −θβ1λmin(KP)‖R̃‖

2
+
√

6‖R̃‖‖̃bω‖+
√

6‖R̃‖‖u1‖+ θβ4‖R̃‖‖u1‖

+3
√

3µ|kv|‖KP‖L2
A‖R̃‖

2
+ 3
√

3µ‖KP‖L2
Aβ3‖R̃‖‖u1‖+ 2

√
3µLω‖R̃‖‖̃bω‖

+2
√

3µ
(
Lω + L̃b

)
‖R̃‖‖̃bω‖ − 2µ‖̃bω‖

2
+ 2
√

3µ‖̃bω‖‖u1‖+ 2
√

3µLb‖R̃‖‖u1‖

+
√

6θµβ3‖KP‖‖̃bω‖‖u1‖+
√

6θµ‖KP‖L̃bL2
A‖R̃‖

2
+
√

6θµβ3‖KP‖L̃b‖R̃‖‖u1‖

≤ −β2

(
‖R̃‖

2
+ ‖̃bω‖

2
)
+ β5

(
‖R̃‖+ ‖̃bω‖

)
‖u1‖

≤ −β2ξ2 + β6ξ‖u1‖
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for some β2 > 0, β5 > 0 and β6 > 0. Where ξ =
(
‖R̃‖

2
+ ‖̃bω‖

2
)1/2

, we can see that ξ represents the

norm of estimation error [R̃, b̃ω]
T

. Since β6 > 0, given 0 < ` < 1, rewrite the above inequality as

.
V1 ≤ −β2(1− `)ξ2

− β2`ξ

(
ξ−

β6

β2`
‖u1‖

)
Hence, for all ξ ≥ β6‖u1‖/β2`, there exists

.
V ≤ −β2(1− `)ξ2. This proof is invoking Theorem

4.19 in [37]. That means the error dynamics of the attitude observer are input-to-state stable with the
bounded input signals. �

Appendix B. Proof of Theorem 3

Proof. Under Assumption 4, consider the bounded input u2 = [̃bω,ηu,ηv]
T

and the estimated error
x̃ = [̃v1, ṽ2]

T, then define the Lyapunov-like function
.

V2 = ‖̃x‖2/2. Recall that ‖̃d‖ ≤ L1‖̃bω‖ and K is
positive, it is easy to indicate that

.
V2 = 1

2

(
.
x̃

T
x̃ + x̃T

.
x̃
)

= 1
2 x̃T

(
K + KT

)̃
x + x̃Td̃− x̃TKηv + x̃Tηu

≤ −λmin(K)‖̃x‖2 +
√

2L1‖̃x‖‖u2‖ − λmin(K)‖̃x‖‖u2‖+ ‖̃x‖‖u2‖

= −λ‖̃x‖2 + α‖̃x‖‖u2‖

where λ = λmin(K), α =
√

2L1 + 1− λ. Fix 0 < χ < 1, the above inequality can be rewritten as

.
V2 ≤ −λ(1− χ)‖̃x‖

2
− λχ‖̃x‖

(
‖̃x‖ −

α
λχ
‖u2‖

)
Thus, for all ‖̃x‖ ≥ α‖u2‖/λχ, such that

.
V2 ≤ −λ(1− χ)‖̃x‖

2. This proof is invoking Theorem 4.19
in [37]. �
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