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Abstract: Aiming towards state estimation and information fusion for nonlinear systems with
heavy-tailed measurement noise, a variational Bayesian Student’s t-based cubature information filter
(VBST-CIF) is designed. Furthermore, a multi-sensor variational Bayesian Student’s t-based cubature
information feedback fusion (VBST-CIFF) algorithm is also derived. In the proposed VBST-CIF,
the spherical-radial cubature (SRC) rule is embedded into the variational Bayes (VB) method for a
joint estimation of states and scale matrix, degree-of-freedom (DOF) parameter, as well as an auxiliary
parameter in the nonlinear system with heavy-tailed noise. The designed VBST-CIF facilitates
multi-sensor fusion, allowing to derive a VBST-CIFF algorithm based on multi-sensor information
feedback fusion. The performance of the proposed algorithms is assessed in target tracking scenarios.
Simulation results demonstrate that the proposed VBST-CIF/VBST-CIFF outperform the conventional
cubature information filter (CIF) and cubature information feedback fusion (CIFF) algorithms.

Keywords: nonlinear multi-sensor system; heavy-tailed noise; student’s t distribution; spherical-radial
cubature rule; information fusion

1. Introduction

The Kalman filter (KF) is an optimal state estimator for linear state-space systems [1–3]. It is widely
used, owing to its optimality, in many applications like, e.g., localization, control, target tracking,
and signal processing [4–17]. In reality, however, systems are usually characterized by strong
non-linearities which make the conventional KF inappropriate. To this end, nonlinear filtering methods
have been developed like, e.g., function approximation, deterministic sampling, and Monte Carlo
estimation methods [18–20]. The function approximation method adopted by the extended Kalman
filter (EKF) approximates the nonlinear system equations through truncated Taylor expansions [21].
However, the Jacobian matrix is not computable for systems with non-smooth non-linearities [21].
As for the deterministic sampling method, its main representatives are the unscented Kalman filter
(UKF), cubature Kalman filter (CKF), etc. [22,23]. Unfortunately, the state error covariance matrix
(SECM) in UKF may result non-positive definite for high-dimensional systems, possibly leading to
filter divergence [23]. To overcome the drawbacks of UKF, Arasaratnam and Haykin proposed CKF
in 2009 [23]. CKF approximates the posterior probability density function (PDF) by means of the
spherical-radial cubature (SRC) rule, thus resulting in improved filtering accuracy for high-dimensional
systems [24]. Moreover, compared to the Monte Carlo estimation approach exploited by particle filters
(PFs), CKF is not affected by particle depletion issues.
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Recall that the KF (and also EKF, UKF, and CKF) can also be implemented in the alternative
information filter (IF) form wherein the inverse covariance (information) matrix is propagated
instead of the covariance. In this respect, the IF form greatly simplifies the measurement update
compared to the traditional covariance form [25]. In this way, it facilitates multi-sensor fusion,
wherein measurements from different sensors are fused via directly adding information contributions
to the information matrix and vector [26]. Considering the above-stated superiority in the multi-sensor
case, the cubature information filter (CIF) will be adopted as a filtering approach in this paper.

Unfortunately, the existing CIF assumes the known and constant measurement noise covariance
matrix (MNCM) [27]. However, due to the complex environment where the sensor is located, it is prone
to measurement outliers. This might induce a heavy-tailed measurement noise [28]. Actually, an outlier
is characterized by the abnormality of its measurement value; correspondingly, outliers might give rise
to a heavy-tailed distribution of the measurement noise. There are many practical applications where
there is heavy-tailed noise [29–32]. For instance, in vision-aided inertial navigation, either computer
vision data contaminated by outliers or sonar data corrupted by phase noise may lead to heavy-tailed
noise [29]. In the detection of FM signals, heavy-tailed noise can be produced by thunderstorms or an
iceberg breakup in under-ice acoustics [30]. In target tracking scenarios, measurement outliers come
from unreliable sensors and/or targets [31], while in target detection with synthetic aperture radar,
heavy-tailed noise occurs due to clutter and buried or obscured observed targets [32], etc. Compared
to Gaussian noise (hypothesized by conventional CIF), heavy-tailed noise is characterized by greater
uncertainty in its distribution tails, yielding the heavy-tailed shape of the PDF [33]. Under the above
circumstance, the filtering accuracy of CIF may deteriorate and filter divergence may occur, due to the
discrepancy between the assumed noise statistics and the true one.

To tackle the filtering problem under heavy-tailed noise, several adaptive methods have been
developed, including generalized maximum likelihood [34], multi-model [35], and joint estimation [36]
methods. Specifically, a representative of generalized maximum likelihood estimation is the
Huber-based filter, which minimizes the combined l1 and l2 norms [37] and, however, leads to
limited estimation performance [38]. An alternative is the multi-model approach, which models
the unknown noise as a random parameter switching according to a Markov Chain and is able
to adaptively estimate the system state [35]. Unfortunately, it is limited by the selected sets of
models. The greater is the deviation between the selected models and real noise model, the worse the
estimation performance of this method [36]. Furthermore, its computational complexity will increase
significantly as the number of unknown parameters and selected models increases. The joint estimation
method includes expectation-maximization (EM) and variational Bayes (VB) approaches [36]. The EM
approach identifies and estimates system states as well as hidden variables through expectation (E)
and maximization (M) steps. However, it is difficult to obtain the analytical solution for E and M
estimates in the case of high-dimensional systems.

Conversely, another joint estimation method, the VB approach, can avoid the aforementioned
drawbacks of the EM approach for high-dimensional systems. By searching an approximation for
the true joint distribution, the VB approach is widely used in the adaptive joint estimation of noise
statistics [27,29,38–42]. Agamennoni et al. proposed a robust Kalman filter by exploiting a flexible
model [39] and also introduced a structured variational approximation approach for heavy-tailed
noise [40]. However, the use of these filters is restricted to linear systems. Huang et al. [38] also
presented a linear Student’s t (ST) filter. By modeling heavy-tailed noise with ST distribution,
the system state as well as noise statistics are adaptively estimated through VB iterations. Unfortunately,
this approach is only applicable to linear systems, too. Although there has been some research work on
nonlinear systems in [29,41,42], the proposed filters rely on the covariance filter form, instead of the IF
form, in order to jointly estimate system state, SECM, and noise statistics, thus resulting into complex
computation. Moreover, the current VB approach cannot be embedded into nonlinear CIF directly,
since the computation of noise parameters like the scale matrix involves a nonlinear function and,
therefore, requires the use of the SRC rule. Hence, to jointly estimate states and parameters of the noise
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statistics (especially the scale matrix) via the information filter framework is still an open problem in
nonlinear systems with heavy-tailed noise. In addition, the existing research work is only able to deal
with single-sensor estimation problems. For nonlinear multi-sensor systems with heavy-tailed noise,
the current state-of-art does not allow to estimate and fuse the states as well as noise statistics.

To conclude, there still exist the following issues to be addressed for the state estimation of
nonlinear multi-sensor systems. On the one hand, the nonlinear information filter cannot be embedded
into the current VB framework, since the scale matrix cannot be directly computed in the same way
as for linear or nonlinear systems in the covariance filter form. On the other hand, it is not suited
to multi-sensor systems. There are different heavy-tailed noise signals when multiple sensors are
working in a multi-sensor system. This makes the conventional filter for the single-sensor case fail to
fuse different estimated states. Thus, for nonlinear systems with heavy-tailed noise, especially systems
with multiple sensors, it is still an open issue how to jointly estimate system state and noise statistics
by combining information from different sensors.

To solve the above mentioned problems, an adaptive variational Bayesian Student’s t-based
cubature information filter (VBST-CIF) algorithm is developed. Furthermore a variational Bayesian
Student’s t-based cubature information feedback fusion (VBST-CIFF) algorithm is proposed for
nonlinear multi-sensor systems with heavy-tailed noise. Key contributions of this paper are
the following.

(1) The information filter form is adopted for simplified computation and facilitation of
multi-sensor fusion.

(2) A novel VBST-CIF algorithm for nonlinear systems with heavy-tailed noise is proposed. The SRC
rule is introduced into the VB approach for joint estimation of states and noise statistics,
by employing the ST distribution for modeling heavy-tailed noise.

(3) The proposed VBST-CIF algorithm is further extended to multi-sensor fusion, deriving a novel
VBST-CIFF algorithm. The proposed VBST-CIFF algorithm facilitates multi-sensor fusion in
nonlinear systems with different heavy-tailed measurement noise statistics for each sensor.

(4) Simulation and experimental results show that the proposed VBST-CIF/VBST-CIFF algorithms
outperform conventional CIF and cubature information feedback fusion (CIFF) algorithms in
scenarios concerning nonlinear systems with heavy-tailed noise.

The rest of the paper is organized as follows. First, the problem of state estimation for nonlinear
systems with heavy-tailed measurement noise is formulated in Section 2. Then, the SRC rule and ST
distribution are introduced in Section 3, wherein the ST distribution is utilized to model heavy-tailed
noise and the VBST-CIF algorithm is also derived. Furthermore, a VBST-CIFF algorithm is provided for
multi-sensor fusion of nonlinear systems with heavy-tailed noise in Section 4. In Section 5, the proposed
VBST-CIF and VBST-CIFF algorithms are tested in nonlinear target tracking scenarios. Conclusions are
provided in Section 6.

2. Problem Formulation

Consider the following model:

xk = f (xk−1) + wk−1 (1)

yk = h(xk) + vk (2)

where: k denotes the discrete time index; xk and yk are the state and measurement vector, respectively;
f and h denote state transition and, respectively, measurement function; wk is a zero-mean Gaussian
process noise with covariance Qk, i.e., wk ∼ N (0, Qk), while vk is heavy-tailed measurement noise;
N (µ, Σ) denotes a Gaussian random variable with mean µ and variance Σ. Moreover, it is assumed
that wi and vj are uncorrelated for any i and j.

Conventional CIF can deal with state estimation in the Gaussian case. It has been introduced
in [43] under the assumption that measurement noise has Gaussian distribution. Unfortunately,
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for systems (1) and (2) affected by heavy-tailed measurement noise, it may lead to non-accurate
estimation because of the deviation between the assumed noise model and the actual one.

To this end, Huang et al. [38] have proposed an adaptive filter for linear systems. Nevertheless,
such a filter is limited to linear single-sensor systems and is not suited to multi-sensor nonlinear
systems. Although there are some methods for nonlinear state estimation, how to calculate the matrix
parameter of heavy-tailed noise is still an open issue. Specifically, the posterior distribution parameters
of the heavy-tailed noise contain a matrix related to the measurement matrix in traditional linear
systems. Unfortunately, such a matrix cannot be directly obtained for nonlinear systems, thus implying
that the analytical solution for joint estimation of system state as well as the noise parameters is not
possible. On the other hand, for multi-sensor systems, multiple noise matrices need to be estimated,
one for each sensor s. Hence, how to estimate these parameters together with the system state and
fuse them still remains another open issue.

To conclude, the following problems still need to be addressed for the state estimation of a
nonlinear system with heavy-tailed measurement noise.

(1) The conventional CIF assumes Gaussian measurement noise distribution. For systems with
heavy-tailed noise, CIF is not able to estimate states and the noise statistics simultaneously.

(2) The current VB approach based on the conventional KF framework is not suited to
nonlinear systems. In particular, the unknown noise matrix parameter is difficult to obtain
in nonlinear systems;

(3) For multi-sensor systems with measurement noise signals of the various sensors possibly having
different statistics, it is an open issue to estimate and fuse states as well as noise statistics.

Therefore, a novel adaptive filter for a multi-sensor nonlinear system with heavy-tailed
measurement noise will be proposed in this paper. Results in this work will help to deal with
state estimation and data fusion problems for nonlinear systems with heavy-tailed measurement noise.

3. Variational Bayesian Student’s t-Based Cubature Information Filter

3.1. Spherical-Radial Cubature Rule

The main ingredient of the CIF for nonlinear systems is the SRC rule. Based on the prior mean and
covariance, an initial set of sampling points are selected and then propagated through the nonlinear
function, thus providing transformed sampling points. Then, by weighting these transformed sampling
points, the posterior mean and variance can be obtained. Specifically, the SRC rule operates as follows.

Nonlinear filtering involves integrals of this form:

Int(I) =
∫
Rn

I(x) exp(−xTx)dx (3)

where I(·) is a nonlinear function and Rn denotes the integration domain. Let x = rg with gTg = 1
and r ∈ [0, ∞], so that xTx = r2, where g is a direction vector and r is the radius. Then, integration in
(3) can be rewritten as:

Int(I) =
∫ ∞

0

∫
Ξ

I(rg) rn−1 exp(−r2)dσ(g)dr (4)

where Ξ = {g ∈ Rn|gTg = 1} denotes an n-dimensional unit sphere surface and σ(·) is an element on
Ξ. Thus, the integration in (4) can be transformed into a spherical integration:

Sph(r) =
∫

Ξ
I(rg)dσ(g) (5)

and a radial integration:
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Int =
∫ ∞

0
Sph(r)rn−1 exp(−r2)dr . (6)

Hence, for a Gaussian integration, it turns out that:

∫
Rn

I(x)N (x; µ, Σ)dx ∼=
1

2n

2n

∑
i=1

I(
√

Σri + µ) (7)

where:
√

Σ can be obtained by performing Cholesky decomposition of Σ; ri =
√

n {e}i, {e}i being the

i-th column of {e}, with, for example, {e} =
{[

1
0

]
,

[
0
1

]
,

[
−1

0

]
,

[
0
−1

]}
if {e} ∈ R2.

3.2. Student’s t Distribution and Time Update

The ST distribution [38] can be described as:

St(α; 0, M, κ) =
∫ +∞

0
N (α; 0, M/γ) G

(
γ;

κ

2
,

κ

2

)
dγ (8)

where: St(·; µ, M, κ) represents the ST PDF with mean µ, scale matrix M, and degree of freedom (DOF)
parameter κ; γ denotes an auxiliary parameter; N (·; µ, M) is the Gaussian PDF with mean µ and
variance M; G(·; a, b) denotes the Gamma PDF with parameters a and b.

Since the measurement noise has heavy-tailed characteristic, it can be modeled as an ST
distribution with zero mean, scale matrix Rk, and DOF κk [38] as parameters, i.e.,

St(vk; 0, Rk, κk) =
∫ +∞

0
N (vk; 0, Rk/γk) G

(
γk;

κk
2

,
κk
2

)
dγk (9)

where γk denotes the auxiliary parameter at time k.
Prior distributions of Rk, κk, as well as γk, are selected as inverse Wishart and, respectively,

Gamma distribution, i.e.,

p(Rk−1) = IW(Rk−1; δ̂k−1|k−1, ∆̂k−1|k−1) (10)

p(γk−1) = G(γk−1; âk−1|k−1, b̂k−1|k−1) (11)

p(κk−1) = G(κk−1; φ̂k−1|k−1, Φ̂k−1|k−1) (12)

where IW(·) denotes the inverse Wishart distribution [44] and δ̂k−1|k−1, ∆̂k−1|k−1 are its parameters
estimated at time k − 1. Likewise, âk−1|k−1, b̂k−1|k−1 and φ̂k−1|k−1, Φ̂k−1|k−1 are the corresponding
estimated distribution parameters of γk−1 and, respectively, κk−1.

Time updating is performed by applying a forgetting factor τ to the prior estimates [44], i.e.,

δ̂k|k−1 = τ(δ̂k−1|k−1 − nz − 1) + nz + 1 (13)

∆̂k|k−1 = τ∆̂k−1|k−1 (14)

φ̂k|k−1 = τφ̂k−1|k−1 (15)

Φ̂k|k−1 = τΦ̂k−1|k−1 (16)

where: nz denotes the dimension of the measurement vector yk; k|k− 1 stands for prediction from time
k− 1 to k, while k− 1|k− 1 stands for the filtered estimation at k− 1.

Suppose that the prior state estimate and SECM are x̂k−1|k−1 and Pk−1|k−1, respectively.
By applying the SRC rule to the prior information, we have:
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Pk−1|k−1 = Tk−1TT
k−1 (17)

χi,k−1 = Tk−1ri + x̂k−1|k−1 (i = 1, 2, . . . , 2nx) (18)

Ψi,k−1 = f (χi,k−1) (19)

where: Tk−1 is a matrix obtained by performing the Cholesky decomposition of Pk−1|k−1; ri represents
the i-th column of {e} in the SRC rule; χi,k−1 denotes the i-th sampling point; nx is the dimension of xk;
Ψi,k−1 denotes the corresponding transformed i-th sampling obtained by propagating χi,k−1 through
f (·). To this end, the predicted x̂k|k−1 as well as Pk|k−1 are obtained as:

x̂k|k−1 =
1

2nx

2nx

∑
i=1

Ψi,k−1 (20)

Pk|k−1 =
1

2nx

2nx

∑
i=1

Ψi,k−1ΨT
i,k−1 − x̂k|k−1 x̂T

k|k−1 + Qk−1 . (21)

Thus, the predicted information matrix and state vector, Zk|k−1 and ζk|k−1, are obtained through

Zk|k−1 = P−1
k|k−1 (22)

ζk|k−1 = Zk|k−1 x̂k|k−1 . (23)

3.3. Variational Bayesian Student’s t-Based Cubature Information Filter (VBST-CIF)

The joint posterior PDF of system state xk, scale matrix Rk, DOF parameter κk, and auxiliary
parameter γk, denoted as p(xk, Rk, κk, γk|y1:k), needs to be computed. However, for the nonlinear
system (1) and (2), an analytical solution for p(xk, Rk, κk, γk|y1:k) is impossible to obtain. For the
purpose of obtaining an approximate solution, the VB approach is introduced.

The key idea of the VB approach is to get an approximate posterior distribution q(·) via minimizing
the Kullback–Leibler divergence (KLD) between the approximate q(·) and true one p(·) [36], i.e.,

q∗ = arg min KLD (q||p) (24)

where the KLD is defined as:

KLD (q||p) ≡
∫

q(·) log
q(·)
p(·) d(·) . (25)

Hence, the problem can be transformed into searching an approximate q(·) that minimizes the KLD
between itself and the true p(·), i.e.,

q∗(·) = arg min (q(·) || p(xk, Rk, κk, γk|y1:k)) . (26)

The joint posterior distribution of the parameters to be estimated is approximated via the following
factored form [36]:

p(xk, Rk, κk, γk|y1:k) ∼= qx(xk) qR(Rk) qκ(κk) qγ(γk) (27)

where qx(·), qR(·), qκ(·), and qγ(·) represent approximate posterior PDFs for xk, Rk, κk, and γk,
respectively. By applying logarithm to (27), it can be deduced that:

log q(ξ) = EΩ(−ξ)(log p(Ω, y1:k)) + cξ

Ω ≡ {xk, Rk, κk, γk} (28)
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where: Ω is the set of parameters (xk, Rk, κk, γk) that need to be estimated; ξ is an element of Ω;
Ω(−ξ) denotes the complementary set of ξ in Ω; E(·) denotes the expectation operator; cξ is a quantity
that is independent of ξ.

By exploiting the hierarchical Gaussian form in [38], it can be obtained that:

p(xk, Rk, κk, γk, y1:k)

= N
(

yk; h(xk),
Rk
γk

)
N
(

xk; x̂k|k−1, Pk|k−1

)
IW(Rk; δk, ∆k) G

(
γk;

κk
2

,
κk
2

)
G (κk; φk, Φk) p(y1:k−1) (29)

Setting ξ = Rk,

log q(j+1)(ξ) = log q(j+1)(Rk)

=− 0.5 (δ̂k|k−1 + nz + 2) log(Rk)− 0.5 tr {[∆̂k|k−1 + E(j+1)(γk) B(j)
k ] R−1

k }+ cR (30)

from which we have:

q(j+1)(Rk) = IW
(

Rk; δ̂
(j+1)
k|k , ∆̂

(j+1)
k|k

)
(31)

whose parameters δ̂
(j+1)
k|k and ∆̂

(j+1)
k|k can be obtained by:

δ̂
(j+1)
k|k = δ̂k|k−1 + 1 (32)

∆̂
(j+1)
k|k = ∆̂k|k−1 + E(j+1)(γk)B(j)

k (33)

where B(j)
k can be obtained via the SRC rule as follows:

P(j)
k|k = TkTT

k (34)

χ
(j)
i,k = Tkri + x̂(j)

k|k (35)

Y(j)
i,k = h(χ(j)

i,k ) (36)

ŷ(j)
k|k =

1
2nx

2nx

∑
i=1

Y(j)
i,k (37)

B(j)
k =

1
2nx

2nx

∑
i=1

Y(j)
i,k Y(j)

i,k

T
− ŷ(j)

k|k(ŷ
(j)
k|k)

T. (38)

Next, setting ξ = γk, we get:

log q(j+1)(ξ) = log q(j+1)(γk)

=

(
nz + E(j)(κk)

2
− 1

)
log(γk)− 0.5 {tr [B(j)

k E(j)(R−1
k )] + E(j)(κk)}γk + cγ (39)

from which:

q(j+1)(γk) = G
(

γk; â(j+1)
k|k , b̂(j+1)

k|k

)
(40)

where:

â(j+1)
k|k = 0.5 (nz + E(j)(κk)) (41)

b̂(j+1)
k|k = −0.5 {tr [B(j)

k E(j)(R−1
k )] + E(j)(κk)}. (42)
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Then, setting ξ = κk, we get

log q(j+1)(ξ) =log q(j+1)(κk)

=
κk
2

log
( κk

2

)
− log Γ

( κk
2

)
+
( κk

2
− 1
)

E(j+1)(log (γk))−
κk
2

E(j+1)(γk) + (φ̂k|k−1 − 1) log (κk)− Φ̂k|k−1κk + cκ (43)

from which we have:

q(j+1)(κk) = G
(

κk; φ̂
(j+1)
k|k , Φ̂

(j+1)
k|k

)
(44)

where:

φ̂
(j+1)
k|k = φ̂k|k−1 + 0.5 (45)

Φ̂
(j+1)
k|k = Φ̂k|k−1 − 0.5E(j+1)(log(γk)) + 0.5E(j+1)(γk)− 0.5. (46)

Finally, setting ξ = xk,

log q(j+1)(ξ) = log q(j+1)(xk)

=− 0.5(xk − x̂k|k−1)
TE(j)(P−1

k|k−1)(xk − x̂k|k−1)

− 0.5 E(j)(γk)(yk − h(xk))
TE(j)(R−1

k )(yk − h(xk)) + cx (47)

according to which we have:

q(j+1)(xk) = N
(

xk; x̂(j+1)
k|k , P(j+1)

k|k

)
(48)

where x̂(j+1)
k|k and P(j+1)

k|k are the estimated state and SECM in the j-th VB iteration, respectively.

In order to obtain x̂(j+1)
k|k and P(j+1)

k|k , the associated information matrix and information vector

contributions I(j+1)
k and, respectively, ι

(j+1)
k should be first computed. By utilizing a linearized error

propagation method [26], they can be obtained as follows:

I(j+1)
k = HT

k (R̃(j+1)
k|k )

−1
Hk (49)

ι
(j+1)
k = HT

k (R̃(j+1)
k|k )

−1
(yk − ŷk|k−1 + Hk x̂k|k−1) (50)

where R̃(j+1)
k|k denotes the estimated scale matrix and Hk a pseudo-measurement matrix. Then,

exploiting (31) and a property of the inverse Wishart distribution, it can be obtained that:

E(j+1)(R−1
k ) = (δ̂

(j+1)
k|k − nz − 1)(∆̂(j+1)

k|k )−1 . (51)

Similarly, taking into account (40) and (44) as well as a property of the Gamma distribution, we have:

E(j+1)(κk) = φ̂
(j+1)
k|k /Φ̂

(j+1)
k|k (52)

E(j+1)(γk) = â(j+1)
k|k /b̂(j+1)

k|k . (53)

Then, R̃(j+1)
k|k is computed as:

R̃(j+1)
k|k = (δ̂

(j+1)
k|k − nz − 1)−1∆̂

(j+1)
k|k . (54)
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Moreover, the pseudo-measurement matrix Hk in (49) and (50) can be obtained as:

Hk = PT
xz,k|k−1Zk|k−1 (55)

where Pxz,k|k−1 is computed by means of the SRC rule as follows:

Pk|k−1 = Tk|k−1TT
k|k−1 (56)

χi,k|k−1 = Tk|k−1ri + x̂k|k−1 (57)

Yi,k|k−1 = h(χi,k|k−1) (58)

ŷk|k−1 =
1

2nx

2nx

∑
i=1

Yi,k|k−1 (59)

Pxz,k|k−1 =
1

2nx

2nx

∑
i=1

χi,k−1YT
i,k−1 − x̂k|k−1ŷT

k|k−1 . (60)

Then, the information matrix and vector are updated as follows:

Z(j+1)
k|k = Zk|k−1 + I(j+1)

k (61)

ζ
(j+1)
k|k = ζk|k−1 + ι

(j+1)
k . (62)

Finally, we have:

x̂(j+1)
k|k = Z(j+1)

k|k \ζ(j+1)
k|k (63)

P(j+1)
k|k = Z(j+1)

k|k \Inx (64)

where Inx denotes the nx × nx identity matrix. To summarize the above developments, the pseudocode
of VBST-CIF is reported in Algorithm 1.

Algorithm 1 Time-recursion of VBST-CIF

Input: x̂k−1|k−1, Pk−1|k−1, δ̂k−1|k−1, ∆̂k−1|k−1, φ̂k−1|k−1, Φ̂k−1|k−1, yk, Qk−1, τ

Step 1: Time update:

(1) Compute x̂k|k−1 and Pk|k−1 based on the SRC rule by (17)–(21).

(2) Compute Zk|k−1 and ζk|k−1 by (22) and (23).

(3) Compute δ̂k|k−1 and ∆̂k|k−1 by (13) and (14).

(4) Compute φ̂k|k−1 and Φ̂k|k−1 by (15) and (16).

Step 2: Variational fixed point iterations:

Initialize:

x̂(0)k|k = x̂k|k−1, P(0)
k|k = Pk|k−1, δ̂

(0)
k|k = δ̂k|k−1, ∆̂

(0)
k|k = ∆̂k|k−1, φ̂

(0)
k|k = φ̂k|k−1, Φ̂

(0)
k|k = Φ̂k|k−1

Measurement update:

(1) Perform Cholesky decomposition of Pk|k−1 and cubature sampling via (56) and (57) .

(2) Compute Pxz,k|k−1 by (58)–(60).

(3) Variational parameter update:
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for j = 0, 1, . . . , N − 1 do

(a) Compute q(j+1) (Rk) by (31):

Compute B(j)
k by (34)–(38).

Update δ̂
(j+1)
k|k and ∆̂

(j+1)
k|k by (32) and (33).

(b) Compute q(j+1) (γk) by (40):

Compute â(j+1)
k|k and b̂(j+1)

k|k by (41) and (42).

(c) Compute q(j+1) (κk) by (44):

Update φ̂
(j+1)
k|k and Φ̂

(j+1)
k|k by (45) and (46).

(d) Compute q(j+1) (xk) by (48):

Compute R̃(j+1)
k|k by (54).

Compute Hk by (55).

Update Z(j+1)
k|k and ζ

(j+1)
k|k by (61) and (62).

Compute x̂(j+1)
k|k and P(j+1)

k|k by (63) and (64).

end for

Step 3: State update:

x̂k|k = x̂(N)
k|k , Pk|k = P(N)

k|k , δ̂k|k = δ̂
(N)
k|k , ∆̂k|k = ∆̂

(N)
k|k , φ̂k|k = φ̂

(N)
k|k , Φ̂k|k = Φ̂

(N)
k|k

Output: x̂k|k, Pk|k, δ̂k|k, ∆̂k|k, φ̂k|k, Φ̂k|k

4. Variational Bayesian Student’s t-Based Cubature Information Feedback Fusion (VBST-CIFF)

4.1. Multi-Sensor Cubature Information Feedback Fusion (CIFF)

The information feedback fusion (IFF) algorithm derived in this section is suitable for multi-sensor
fusion. The overall structure of the IFF is schematized in Figure 1, where each local filter receives raw
measurements from the relative sensor and produces sensor-dependent variables to be used by the
information fusion center in order to update the information matrix and state vector, which are then
fed back to the local filters.

Based on the structure of IFF, the CIFF algorithm is derived as follows. Consider that there are S
sensors. For each sensor s, s ∈ {1, 2, . . . , S}, a measurement yk,s is available at time k, i.e.,

yk,s = hs(xk) + vk,s (65)

where hs(·) denotes the measurement function of sensor s, and vk,s the corresponding measurement
noise. It is assumed that vk,m and vk,n are uncorrelated for any m 6= n. Let, at time k − 1,
the state estimate and SECM for all sensors be x̂k−1|k−1 and, respectively, Pk−1|k−1. Correspondingly,
the initial information vector and matrix for all sensors are ζk−1|k−1 and Zk−1|k−1, respectively. Then,
by exploiting the SRC rule, predicted ζk−1|k and Zk−1|k can be obtained, i.e.,

(Zk−1|k−1)
−1 = Tk−1TT

k−1 (66)

where Zk−1|k−1 is the inverse of Pk−1|k−1. Transforming χi,k−1 in (18) through f (·), we have Ψi,k−1 in
(19). Then, predicted Zk|k−1 and ζk|k−1, are computed via (22) and (23).
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Multiple sensors
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Local 

Filter 1
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Filter 2
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Filter S
...

Information

Fusion Center

...

Figure 1. Multi-sensor information feedback fusion.

At the fusion center, the estimated information vector and matrix can, therefore, be updated
as follows:

ζk|k = ζk|k−1 +
S

∑
s=1

ιk,s (67)

Zk|k = Zk|k−1 +
S

∑
s=1

Ik,s (68)

where: the local sensor contributions Ik,s and ιk,s are given by:

Ik,s = HT
k,sR−1

k,s Hk (69)

ιk,s = HT
k,sR−1

k,s (yk,s − ŷk|k−1,s + Hk x̂k|k−1) ; (70)

the pseudo-measurement matrix Hk,s of sensor s can be obtained through the statistical linearized error
propagation approach as in Section 3.3; Rk,s denotes the MNCM of sensor s; ŷk|k−1,s can be obtained by
the SRC rule as in the conventional CIF [25].

4.2. Variational Bayesian Student’s t-Based Cubature Information Feedback Fusion (VBST-CIFF)

Consider now that each sensor s is characterized by heavy-tailed measurement noise vk,s. In the
time-update, the parameters δ̂k|k−1,s, ∆̂k|k−1,s, φ̂k|k−1,s, and Φ̂k|k−1,s for sensor s, can be obtained
via (71)–(74), respectively, i.e.,

δ̂k|k−1,s = τ(δ̂k−1|k−1,s − nz − 1) + nz + 1 (71)

∆̂k|k−1,s = τ∆̂k−1|k−1,s (72)

φ̂k|k−1,s = τφ̂k−1|k−1,s (73)

Φ̂k|k−1,s = τΦ̂k−1|k−1,s . (74)
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Then, in the measurement update, the estimated scale matrix for sensor s is given by:

R̃(j+1)
k|k,s =

(
δ̂
(j+1)
k|k,s − nz − 1

)−1
∆̂
(j+1)
k|k,s (75)

where δ̂
(j+1)
k|k,s and ∆̂

(j+1)
k|k,s can be obtained via:

δ̂
(j+1)
k|k,s = δ̂k|k−1 + 1 (76)

∆̂
(j+1)
k|k,s = ∆̂k|k−1 + E(j+1)(γk,s)B(j)

k,s (77)

where B(j)
k,s can be derived in the same way as in (34)–(38) with cubature sampling points transformed

through hs(·) as:

Yi,k|k−1,s = hs(χi,k|k−1,s) (78)

ŷk|k−1,s =
1

2nz

2nz

∑
i=1

Yi,k|k−1,s (79)

in which the original sampling points χi,k|k−1,s are given by (56) and (57). Furthermore, E(j+1)(γk,s) for
sensor s can be obtained by:

E(j+1)(γk,s) = â(j+1)
k|k,s /b̂(j+1)

k|k,s (80)

where,

â(j+1)
k|k,s = 0.5 (nz + E(j)(κk,s)) (81)

b̂(j+1)
k|k,s = −0.5 {tr [B(j+1)

k,s E(j)(R−1
k,s )] + E(j)(κk,s)} (82)

and E(j+1)(κk,s) is given by:

E(j+1)(κk,s) = φ̂
(j+1)
k|k,s /Φ̂

(j+1)
k|k,s (83)

in which:

φ̂
(j+1)
k|k,s = φ̂k|k−1,s + 0.5 (84)

Φ̂
(j+1)
k|k,s = Φ̂k|k−1,s − 0.5E(j+1)(log(γk,s)) + 0.5E(j+1)(γk,s)− 0.5 . (85)

The pseudo-measurement matrix for sensor s turns out to be:

Hk,s = PT
xz,k|k−1,sZk|k−1 (86)

where PT
xz,k|k−1,s can be obtained via

Pxz,k|k−1,s =
1

2nx

2nx

∑
i=1

χi,k−1YT
i,k−1,s − x̂k|k−1ŷT

k|k−1,s . (87)
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Hence, the information matrix and vector contributions due to sensor s can be derived as follows:

I(j+1)
k,s = HT

k,s

(
R̃(j+1)

k|k,s

)−1
Hk,s (88)

ι
(j+1)
k,s = HT

k,s

(
R̃(j+1)

k|k,s

)−1
(yk,s − ŷk|k−1,s + Hk,s x̂k|k−1) (89)

from which the information matrix and vector can be updated according to

Z(j+1)
k|k = Zk|k−1 +

S

∑
s=1

I(j+1)
k,s (90)

ζ
(j+1)
k|k = ζk|k−1 +

S

∑
s=1

ι
(j+1)
k,s . (91)

Finally, the global state estimate and covariance can be obtained by (63) and (64). To summarize the
above developments, the flow-chart of the proposed VBST-CIFF is shown in Figure 2. Accordingly,
the pseudocode is reported in Algorithm 2.

Please notice that VBST-CIFF is actually tightly-coupled (centralized) in that the raw
measurements from all sensors are integrated into a single nonlinear information filter. Thanks to
the adoption of the information filter form and the assumption that measurement noise signals of
the various sensors are uncorrelated, the filter’s multi-sensor measurement update turns out to be
decoupled into single-sensor updates as in (67) and (68). However, the overall filter is coupled through
the information feedback of Zk, ζk into the local filters (see Figure 1).

Figure 2. Flow-chart of proposed VBST-CIFF (variational Bayesian Student’s t-based-cubature
information feedback fusion).
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Algorithm 2 Time-recursion of VBST-CIFF

Input: x̂k−1|k−1, Pk−1|k−1, yk,s, τ, δ̂k−1|k−1,s, ∆̂k−1|k−1,s, φ̂k−1|k−1,s, Φ̂k−1|k−1,s, Qk−1

Step 1: Time update:

(1) Compute Zk|k−1 and ζk|k−1 by (22) and (23).

(2) Compute δ̂k|k−1,s and ∆̂k|k−1,s by (71) and (72).

(3) Compute φ̂k|k−1,s and Φ̂k|k−1,s by (73) and (74).

Step 2: Variational fixed-point iterations:

Initialize:

x̂(0)k|k = x̂k|k−1, P(0)
k|k = Pk|k−1, δ̂

(0)
k|k,s = δ̂k|k−1,s, ∆̂

(0)
k|k,s = ∆̂k|k−1,s, φ̂

(0)
k|k,s = φ̂k|k−1,s, Φ̂

(0)
k|k,s = Φ̂k|k−1,s

Measurement update:

(1) Perform Cholesky decomposition of Pk|k−1 and cubature sampling via (56) and (57) .

(2) Compute Pxz,k|k−1,s by (87).

(3) Variational parameter update:

for j = 0, 1, . . . , N − 1 do

(a) Update E(j)(κk,s), φ̂
(j+1)
k|k,s , and Φ̂

(j+1)
k|k,s by (83)–(85).

(b) Update E(j+1)(γk,s), â(j+1)
k|k,s , and b̂(j+1)

k|k,s by (80)–(82).

(c) Update R̃(j+1)
k|k,s , δ̂

(j+1)
k|k,s and ∆̂

(j+1)
k|k,s by (75)–(77).

(d) Update Hk,s by (86).

(e) Update I(j+1)
k,s and ι

(j+1)
k,s by (88) and (89).

(f) Set variational parameters:

δ̂k|k,s = δ̂
(N)
k|k,s, ∆̂k|k,s = ∆̂

(N)
k|k,s, φ̂k|k,s = φ̂

(N)
k|k,s, Φ̂k|k,s = Φ̂

(N)
k|k,s

end for

Step 3: Fusion (at the global center):

(1) Update Z(N)
k|k and ζ

(N)
k|k by (90) and (91);

(2) Update x̂(N)
k|k and P(N)

k|k via (63) and (64).

(3) Set:

x̂k|k = x̂(N)
k|k , Pk|k = P(N)

k|k , δ̂k|k,s = δ̂
(N)
k|k,s, ∆̂k|k,s = ∆̂

(N)
k|k,s, φ̂k|k = φ̂

(N)
k|k,s, Φ̂k|k = Φ̂

(N)
k|k,s

Output: x̂k|k, Pk|k, δ̂k|k,s, ∆̂k|k,s, φ̂k|k,s, Φ̂k|k,s

5. Simulation Results

5.1. VBST-CIF Single-Sensor Target Tracking

Consider a target car tracking scenario with just a single sensor (a 2D radar). The state of the
car is taken as x = [ς, ς̇, µ, µ̇, ω]T, where ς and µ are the Cartesian coordinates of position, while ς̇

and µ̇ represent the corresponding velocity, and ω is the turning rate. The car moves according to the
coordinated turn (CT) model:

xk = F(ωk−1)xk−1 + wk−1 (92)

with a turning-rate dependent state-transition matrix:
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F(ω) =


1 sin(ω)

ω 0 − 1−cos(ω)
ω 0

0 cos(ω) 0 −sin(ω) 0
0 1−cos(ω)

ω 1 sin(ω)
ω 0

0 sin(ω) 0 cos(ω) 0
0 0 0 0 1


fixed at turning rate ω = 10◦; wk−1 = N (0, Qk−1);

Qk−1 =



p1T3

3
p1T2

2 0 0 0
p1T2

2 T 0 0 0

0 0 p1T3

3
p1T2

2 0

0 0 p1T2

2 T 0
0 0 0 0 p2T


,

with noise intensity factors p1 = 0.1, p2 = 1.75× 10−4 and sampling interval T = 1 [s]. Conversely,
the measurement function of the radar is:

yk =

[ √
ς2

k + µ2
k

atan2 (ςk, µk)

]
+ vk (93)

where: atan2(ς, µ) denotes the 4-quadrant inverse-tangent defined as the argument of the complex
number ς + jµ, j denoting the imaginary unit; vk is heavy-tailed measurement noise such that:

vk ∼
{
N (0, Λk) , with probability 0.9
N (0, 100Λk) , with probability 0.1

(94)

with Λk =

[
4 [m2] 0

0 10−4 [rad2]

]
. Moreover, the initial values for state and SECM of the car are set

as follows:

x0 = [100 [m], 3 [m/s], 100 [m], 2 [m/s],
−10π

180
[rad] ]T (95)

P0 =


10 [m2] 0 0 0 0

0 1 [m2/s2] 0 0 0
0 0 10 [m2] 0 0
0 0 0 1 [m2/s2] 0
0 0 0 0 10−4 [rad2]

 . (96)

A total of 100 independent Monte Carlo trials have been carried out, with each trial lasting for
t = 50 [s]. Furthermore, the root-mean-square-error (RMSE) is adopted to assess tracking precision.
For variable b at time k, it is defined as:

RMSEb(k) =

√√√√ 1
NMC

NMC

∑
i=1

(
bi

k − b̂i
k

)T (
bi

k − b̂i
k

)
(97)

where: NMC denotes the number of Monte Carlo trials; b denotes either the position p = [ς, µ]T or
velocity v = [ς̇, µ̇]T; and bi

k is the true value in the i-th trial at time k. Conversely, b̂i
k represents the

estimated value in the i-th trial at time k. Furthermore, the mean-root-mean-square-error (MRMSE)
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is used to measure the average RMSE during the whole simulation time. Specifically, MRMSE for
variable b is defined as:

RMSEb =
1

t/T

t/T

∑
k=1

RMSEb(k). (98)

Simulation results are presented to compare the conventional CIF [43] with the proposed VBST-CIF.
Simulation parameters have been chosen in the same way as in [33]. Specifically, in CIF, the process
noise covariance Q and MNCM R are fixed to Q = Qk−1 and R = Λk. Conversely, in the proposed
VBST-CIF, Q = Qk−1, while the scale matrix as well as other noise statistical parameters are adaptively
estimated. Other parameters are set in the same way as in [33]: forgetting the factor τ = 0.9; number of
VB iterations N = 10; initial noise parameters of the scale matrix δ = nz + 2 = 4 and ∆ = Λk; initial
noise parameters of the DOF parameter φ = 5 and Φ = 1.

Results are presented in Figures 3–6 and Table 1. Figures 3–6 demonstrate that the proposed
VBST-CIF outperforms conventional CIF in position, velocity, and turning-rate estimation. Precisely,
Table 1 shows that VBST-CIF yields an MRMSE improvement with respect to conventional CIF of
respectively 56% in position, 48% in velocity, and 20% in turning-rate.
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Figure 3. Target trajectory.
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Figure 4. Position root-mean-square-error (RMSE) in single-sensor target tracking.
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Figure 5. Velocity RMSE in single-sensor target tracking.
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Figure 6. Turning-rate RMSE in single-sensor target tracking.

Table 1. Mean-root-mean-square-error (MRMSE) in single-sensor target tracking.

Filter RMSEp RMSEv RMSEω

CIF 5.2364 1.8646 0.0518
VBST-CIF 2.3052 0.9740 0.0412

5.2. VBST-CIFF Multi-Sensor Target Tracking

Let us now consider a multi-sensor target (car) tracking scenario with two (radar) sensors S1 and
S2, located at (10, 10) and respectively at the origin (0, 0). The car’s state is taken as x = [ς, ς̇, µ, µ̇]T

where ς, ς̇, µ, and µ̇ have the same same meaning as in Section 5.1. The state transition matrix in (92) is:

F =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 .

The process noise covariance is Qk−1 = I4, where I4 denotes the 4× 4 identity matrix. Furthermore,
the measurement model is:

yk,s =

[ √
(ςk − ςs)2 + (µk − µs)2

atan2 (ςk, µk)

]
+ vk,s (99)
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where: s = 1, 2 refers to S1, S2; yk,s denotes the measurement of radar s at time k; [ςs, µs]T refers
to the known position of radar s, specifically [ς1, µ1]T = [10, 10]T and [ς2, µ2]T = [0, 0]T ; vk,s is the
heavy-tailed noise of radar s at time k generated as follows:

vk,1 ∼
{
N (0, Λk,1) , with probability 0.9
N (0, 100Λk,1) , with probability 0.1

(100)

vk,2 ∼
{
N (0, Λk,2) , with probability 0.9
N (0, 100Λk,2) , with probability 0.1

(101)

where Λk,1 =

[
152 [m2] 0

0 0.0152 [rad2]

]
and Λk,2 =

[
102 [m2] 0

0 0.012 [rad2]

]
. Initial values for x0

and P0 are set as follows:

x0 = [50 [m], 10 [m/s], 80 [m], 20 [m/s] ]T (102)

P0 =


1 [m2] 0 0 0

0 1 [m2/s2] 0 0
0 0 1 [m2] 0
0 0 0 1 [m2/s2]

 . (103)

Monte Carlo simulations have been carried out with 100 independent trials. The CIFF of Section 4.1
and the proposed VBST-CIFF of Section 4.2 are compared in the above described multi-sensor target
tracking scenario. Specifically, in CIFF, Q and R are fixed to Q = Qk−1 for both sensors, R = Λk,1 for
sensor 1, and R = Λk,2 for sensor 2. Conversely, in the proposed VBST-CIFF, Q = Qk−1, while the scale
matrix of each sensor as well as other parameters are adaptively estimated. The same values for the
simulation time t, sampling interval T, forgetting factor τ, number of VB iterations N, as well as initial
parameters of the scale matrix (δ, ∆), initial parameters of the DOF parameter (φ, Φ) of the previous
single-sensor case-study of Section 5.1 have been adopted.

The results are presented in Figures 7–10 and Table 2. It is clear from Figures 7 and 8 that the
proposed VBST-CIF provides, compared to conventional CIF, smaller RMSEs in both position and
velocity for each local sensor during the whole simulation time. Figure 10 shows that the proposed
VBST-CIFF outperforms the conventional CIFF, at the fusion center during the whole simulation time.
Furthermore, it can be seen that in Table 2 the proposed VBST-CIFF provides an MRMSE improvement
of 74% in position and 58% in velocity compared to conventional CIF with sensor 1, as well as an
improvement of 62% in position and 42% in velocity compared to CIF with sensor 2. Moreover,
the proposed VBST-CIFF provides an MRMSE improvement of 58% in position and 42% in velocity
compared to CIFF.

Table 2. MRMSEs in multi-sensor target tracking.

Filter Sensor RMSEp RMSEv

CIF 1 40.1874 7.5373
CIF 2 27.1914 5.4180

CIFF Fusion 24.1697 5.4225
VBST-CIF 1 15.5891 3.5502
VBST-CIF 2 11.4030 3.2353

VBST-CIFF Fusion 10.1193 3.1117
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Figure 7. Position RMSE of different sensors in multi-sensor target tracking.
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Figure 8. Velocity RMSE of different sensors in multi-sensor target tracking.
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Figure 9. Position RMSE of fusion in multi-sensor target tracking.
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Figure 10. Velocity RMSE of fusion in multi-sensor target tracking.

5.3. Experimental Case-Study

Let us consider the experimental setup of Figure 11. A model-car moves along a straight line
with a nearly constant velocity starting from initial position (1018, 2619) [mm]. A depth camera
(Camera 1, Intel RealSense Depth Camera D435i depth sensor) located at (0, 0) measures its distance
from the moving car, while another depth camera (Camera 2, Intel RealSense Tracking Camera T265),
located onboard the car can get the location and azimuth angle of the car with respect to Camera
1. Please notice that the performance of Camera 1 is highly affected by the unstable Tiny YOLOv3
detector. Thus, the measurement function is the same as in (93) with a measurement noise of unknown
heavy-tailed distribution. The total sampling samples are 363, with a sampling interval of T = 1/60 [s].
Moreover, initial values of the model-car are selected as:

x0 = [1018 [mm], 2619 [mm], 228.76 [mm/s], 311.90 [mm/s] ]T (104)

P0 =


1 [mm2] 0 0 0

0 1 [mm2] 0 0
0 0 1 [mm2/s2] 0
0 0 0 1 [mm2/s2]

 . (105)

Figure 11. Experimental setup.
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Let us consider the experimental results reported in Figures 12 and 13 and Table 3. Figure 12
shows the true and estimated car trajectories, from which it can be seen that the proposed VBST-CIF
can track the car more accurately. Position and velocity RMSEs of both conventional CIF and proposed
VBST-CIF are reported in Figure 13. Specifically, the proposed VBST-CIF provides an improvement
of 46.24% in position MRMSE and of 0.08% in velocity MRMSE, with respect to conventional CIF,
thus demonstratiung the effectiveness and superiority of the proposed VBST-CIF.
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Figure 12. Car trajectory.
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Figure 13. Position and velocity RMSEs.

Table 3. MRMSEs in the experimental case study.

Filter RMSEp [mm] RMSEv [mm/s]

CIF 11.7397 1.1985
VBST-CIF 6.3111 1.0991

6. Conclusions

This paper focused on state estimation and information fusion in multi-sensor nonlinear systems
with heavy-tailed measurement noise. An adaptive variational Bayes Student’s t cubature information
filter (VBST-CIF) algorithm was first designed for a nonlinear single-sensor system based on the
cubature information filter (CIF) framework, wherein the Student’s t (ST) distribution was utilized
to model the heavy-tailed measurement noise, and the variational Bayes (VB) method along with
the spherical-radial cubature (SCR) rule were exploited in order to jointly estimate the system
state as well as noise statistics. The VBST-CIF facilitated multi-sensor fusion, allowing to derive
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a VBST cubature information feedback fusion (VBST-CIFF) algorithm for nonlinear multi-sensor
systems with heavy-tailed measurement noise. The filtering accuracy of the proposed algorithms was
assessed in single-sensor and multi-sensor target tracking scenarios. Simulation and experimental
results demonstrated that the proposed VBST-CIF/VBST-CIFF outperformed conventional CIF/CIFF
algorithms. Future work will focus on consensus filtering for multi-agent systems with heavy-tailed
process and measurement noise.
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