Special Issue "High Resolution Active Optical Remote Sensing Observations of Aerosols, Clouds and Aerosol-Cloud Interactions and Their Implication to Climate"

A special issue of Remote Sensing (ISSN 2072-4292). This special issue belongs to the section "Atmosphere Remote Sensing".

Deadline for manuscript submissions: 29 February 2020.

Special Issue Editors

Dr. Simone Lolli
E-Mail Website
Guest Editor
University of Maryland Baltimore County, Baltimore, MD 21250, USA; CNR-IMAA, 85050 Potenza, Italy
Interests: radiative transfer; aerosols; LiDAR; image fusion
Special Issues and Collections in MDPI journals
Assoc. Prof. Sheng-Hsiang (Carlo) Wang
E-Mail Website
Guest Editor
Department of Atmospheric Sciences, National Central University, Taoyuan City, Taiwan
Interests: air quality remote sensing; aerosol-cloud-radiation interaction; planetary boundary layer dynamics
Dr. James Campbell
E-Mail Website
Guest Editor
Naval Research Laboratory, MD, USA
Assoc. Prof. Kai Qin
E-Mail Website
Guest Editor
School of Environment and Geoinformatics, China University of Mining and Technology,Xuzhou 221116, China
Interests: aerosol remote sensing; satellite-based air quality mapping

Special Issue Information

Dear Colleagues,

This session focuses on new observations of aerosols and clouds events and, eventually, their mute interaction on sub-km, sub-diurnal scales enabled by active optical remote sensing (LiDAR) methodologies. Contributions describing original research results from ground-based, airborne, and space-based observational vantage points are solicited. In particular, geometrical and optical properties of aerosol layers are important in climate, radiation budget, and cloud formation research (aerosol–cloud interaction). One of the goals of this Special Issue is, therefore, to survey the state-of-the-art of active optical remote sensing instruments for determining the vertical and horizontal distribution of clouds and aerosols throughout the atmospheric column. Another topic that benefits greatly from active optical remote sensing instruments is the elucidation of chemical and physical processes that occur in moderately and heavily dust polluted environments. For this application it is necessary to accurately describe the planetary boundary layer dynamics and depth evolution (a field in which LiDAR techniques excel). Other topics of interest for this Special Issue include: process studies related to atmospheric composition, pollution, transport and dynamics, and convective storm development.

The 3th ISPRS Workshop on Remote Sensing and Synergic Analysis on Atmospheric Environment (ISPRS-RSAE) will be held in Nanjing, China during 25-27 October 2019 (http://isprs-2019.csp.escience.cn/dct/page/1), as a continuous event organized by The ISPRS Working Group on Remote Sensing of Atmospheric Environment (ISPRS WG III/8). This Special Issue is also built on the presentations at the 2019 ISPRS-RSAE workshop.

Dr. Simone Lolli
Assoc. Prof. Sheng-Hsiang (Carlo) Wang
Dr. James Campbell
Assoc. Prof. Kai Qin
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Remote Sensing is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Lidar
  • Aerosol-cloud interaction,
  • Cirrus clouds
  • Aerosols
  • Boundary layer
  • Air pollution
  • Radiative Transfer
  • Climate

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

Open AccessArticle
Role and Mechanisms of Black Carbon Affecting Water Vapor Transport to Tibet
Remote Sens. 2020, 12(2), 231; https://doi.org/10.3390/rs12020231 - 09 Jan 2020
Abstract
Although some studies reported the impact of black carbon (BC) on the climate over the Tibetan Plateau (TP), the contribution and mechanisms of BC affecting the water vapor transport to Tibet are not fully understood yet. Here, utilizing the satellite observations and reanalysis [...] Read more.
Although some studies reported the impact of black carbon (BC) on the climate over the Tibetan Plateau (TP), the contribution and mechanisms of BC affecting the water vapor transport to Tibet are not fully understood yet. Here, utilizing the satellite observations and reanalysis data, the effects of BC on the climate over the TP and water vapor transport to the Tibet were investigated by the Community Earth System Model (CESM 2.1.0). Due to the addition of BC, a positive net heat forcing (average is 0.39 W/m2) is exerted at the surface, which induces a pronounced warming effect over the TP and consequently intensifies the East Asian Summer monsoon (EASM). However, significant cooling effects in northern India, Pakistan, Afghanistan and Iran are induced due to the BC and related feedbacks, which reduces significantly the meridional land–sea thermal contrast and finally weakens the South Asian summer monsoon (SASM). Consequently, the water vapor transport to the south border is decreased due to addition of BC. Moreover, through affecting the atmospheric circulation, the BC could induce an increase in the imported water vapor from the west and east borders of the TP, and an increase outflowing away from the north border of the TP. Overall, due to the BC, the annual mean net importing water vapor over TP is around 271 Gt, which could enhance the precipitation over the TP. The results show that the mean increase in the precipitation over TP is about 0.56 mm/day. Full article
Show Figures

Graphical abstract

Open AccessFeature PaperArticle
Overview of the New Version 3 NASA Micro-Pulse Lidar Network (MPLNET) Automatic Precipitation Detection Algorithm
Remote Sens. 2020, 12(1), 71; https://doi.org/10.3390/rs12010071 - 24 Dec 2019
Abstract
Precipitation modifies atmospheric column thermodynamics through the process of evaporation and serves as a proxy for latent heat modulation. For this reason, a correct precipitation parameterization (especially for low-intensity precipitation) within global scale models is crucial. In addition to improving our modeling of [...] Read more.
Precipitation modifies atmospheric column thermodynamics through the process of evaporation and serves as a proxy for latent heat modulation. For this reason, a correct precipitation parameterization (especially for low-intensity precipitation) within global scale models is crucial. In addition to improving our modeling of the hydrological cycle, this will reduce the associated uncertainty of global climate models in correctly forecasting future scenarios, and will enable the application of mitigation strategies. In this manuscript we present a proof of concept algorithm to automatically detect precipitation from lidar measurements obtained from the National Aeronautics and Space Administration Micropulse lidar network (MPLNET). The algorithm, once tested and validated against other remote sensing instruments, will be operationally implemented into the network to deliver a near real time (latency <1.5 h) rain masking variable that will be publicly available on MPLNET website as part of the new Version 3 data products. The methodology, based on an image processing technique, detects only light precipitation events (defined by intensity and duration) such as light rain, drizzle, and virga. During heavy rain events, the lidar signal is completely extinguished after a few meters in the precipitation or it is unusable because of water accumulated on the receiver optics. Results from the algorithm, in addition to filling a gap in light rain, drizzle, and virga detection by radars, are of particular interest for the scientific community as they help to fully characterize the aerosol cycle, from emission to deposition, as precipitation is a crucial meteorological phenomenon accelerating atmospheric aerosol removal through the scavenging effect. Algorithm results will also help the understanding of long term aerosol–cloud interactions, exploiting the multi-year database from several MPLNET permanent observational sites across the globe. The algorithm is also applicable to other lidar and/or ceilometer network infrastructures in the framework of the Global Aerosol Watch (GAW) aerosol lidar observation network (GALION). Full article
Show Figures

Graphical abstract

Open AccessArticle
Aerosol Optical Radiation Properties in Kunming (the Low–Latitude Plateau of China) and Their Relationship to the Monsoon Circulation Index
Remote Sens. 2019, 11(24), 2911; https://doi.org/10.3390/rs11242911 - 05 Dec 2019
Abstract
Based on the Langley method and the EuroSkyRad (ESR) pack retrieval scheme, we carried out the retrieval of the aerosol properties for the CE–318 sunphotometer observation data from March 2012 to February 2014 in Kunming, China, and we explored the possible mechanisms of [...] Read more.
Based on the Langley method and the EuroSkyRad (ESR) pack retrieval scheme, we carried out the retrieval of the aerosol properties for the CE–318 sunphotometer observation data from March 2012 to February 2014 in Kunming, China, and we explored the possible mechanisms of the seasonal variations. The seasonal variation of the aerosol optical depth (AOD) was unimodal and reached a maximum in summer. The retrieval analysis of the Angstrom exponent (α) showed the aerosol types were continental, biomass burning (BB), and urban/industrial (UI); the content of the desert dust (DD) was low, and it may have contained a sea–salt (SS) aerosol due to the influence of the summer monsoon. All the aerosol particle spectra in different seasons showed a bimodal structure. The maximum and submaximal values were located near 0.2 μm and 4 μm, respectively, and the concentration of the aerosol volume was the highest in summer. In summer, aerosol particles have a strong scattering power but a weak absorption power; this pattern is the opposite in winter. The synergistic effect of the East Asian monsoon and the South Asian monsoon seasonal oscillations can have an important impact on the variation of the aerosol properties. The oscillation variation characteristic of the total vertical columnar water vapor (CWV) and the monsoon index was completely consistent. The aerosol types and sources in the Yunnan–Kweichow Plateau and the optical radiation properties were closely related to the monsoon circulation activities during different seasons and were different from other regions in China. Full article
Show Figures

Graphical abstract

Open AccessArticle
New Global View of Above-Cloud Absorbing Aerosol Distribution Based on CALIPSO Measurements
Remote Sens. 2019, 11(20), 2396; https://doi.org/10.3390/rs11202396 - 16 Oct 2019
Abstract
Above-low-level-cloud aerosols (ACAs) have gradually gained more interest in recent years; however, the combined aerosol–cloud radiation effects are not well understood. The uncertainty about the radiative effects of aerosols above cloud mainly stems from the lack of comprehensive and accurate retrieval of aerosols [...] Read more.
Above-low-level-cloud aerosols (ACAs) have gradually gained more interest in recent years; however, the combined aerosol–cloud radiation effects are not well understood. The uncertainty about the radiative effects of aerosols above cloud mainly stems from the lack of comprehensive and accurate retrieval of aerosols and clouds for ACA scenes. In this study, an improved ACA identification and retrieval methodology was developed to provide a new global view of the ACA distribution by combining three-channel CALIOP (The Cloud–Aerosol Lidar with Orthogonal Polarization) observations. The new method can reliably identify and retrieve both thin and dense ACA layers, providing consistent results between the day- and night-time retrieval of ACAs. Then, new four-year (2007 to 2010) global ACA datasets were built, and new seasonal mean views of global ACA occurrence, optical depth, and geometrical thickness were presented and analyzed. Further discussion on the relative position of ACAs to low clouds showed that the mean distance between the ACA layer and the low cloud deck over the tropical Atlantic region is less than 0.2 km. This indicates that the ACAs over this region are more likely to be mixed with low-level clouds, thereby possibly influencing the cloud microphysics over this region, contrary to findings reported from previous studies. The results not only help us better understand global aerosol transportation and aerosol–cloud interactions but also provide useful information for model evaluation and improvements. Full article
Show Figures

Graphical abstract

Open AccessArticle
Vertical Structures of Dust Aerosols over East Asia Based on CALIPSO Retrievals
Remote Sens. 2019, 11(6), 701; https://doi.org/10.3390/rs11060701 - 23 Mar 2019
Cited by 4
Abstract
The spatiotemporal and especially the vertical distributions of dust aerosols play crucial roles in the climatic effect of dust aerosol. In the present study, the spatial-temporal distribution of dust aerosols over East Asia was investigated using Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations [...] Read more.
The spatiotemporal and especially the vertical distributions of dust aerosols play crucial roles in the climatic effect of dust aerosol. In the present study, the spatial-temporal distribution of dust aerosols over East Asia was investigated using Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) retrievals (01/2007–12/2011) from the perspective of the frequency of dust occurrence (FDO), dust top layer height (TH) and profile of aerosol subtypes. The results showed that a typical dust belt was generated from the dust source regions (the Taklimakan and Gobi Deserts), in the latitude range of 25°N~45°N and reaching eastern China, Japan and Korea and, eventually, the Pacific Ocean. High dust frequencies were found over the dust source regions, with a seasonal sequence from high to low as follows: spring, summer, autumn and winter. Vertically, FDOs peaked at about 2 km over the dust source regions. In contrast, FDOs decreased with altitude over the downwind regions. On the dust belt from dust source regions to downwind regions, the dust top height (TH) was getting higher and higher. The dust TH varied in the range of 1.9–3.1 km above surface elevation (a.s.e.), with high values over the dust source regions and low values in the downwind areas, and a seasonally descending sequence of summer, spring, autumn and winter in accord with the seasonal variation of the boundary layer height. The annual AOD (Aerosol Optical Depth) was generally characterized by two high and two low AOD centers over East Asia. The percent contribution of the Dust Aerosol Optical Depth to the total AOD showed a seasonal variation from high to low as follows: spring, winter, autumn and summer. The vertical profile of the extinction coefficient revealed the predominance of pure dust particles in the dust source regions and a mixture of dust particles and pollutants in the downwind regions. The dust extinction coefficients over the Taklimakan Desert had a seasonal pattern from high to low as follows: spring, winter, summer and autumn. The results of the present study offered an understanding of the horizontal and vertical structures of dust aerosols over East Asia and can be used to evaluate the performance aerosol transport models. Full article
Show Figures

Figure 1

Other

Jump to: Research

Open AccessLetter
Features of the Cloud Base Height and Determining the Threshold of Relative Humidity over Southeast China
Remote Sens. 2019, 11(24), 2900; https://doi.org/10.3390/rs11242900 - 05 Dec 2019
Abstract
Clouds play a critical role in adjusting the global radiation budget and hydrological cycle; however, obtaining accurate information on the cloud base height (CBH) is still challenging. In this study, based on Lidar and aircraft soundings, we investigated the features of the CBH [...] Read more.
Clouds play a critical role in adjusting the global radiation budget and hydrological cycle; however, obtaining accurate information on the cloud base height (CBH) is still challenging. In this study, based on Lidar and aircraft soundings, we investigated the features of the CBH and determined the thresholds of the environmental relative humidity (RH) corresponding to the observed CBHs over Southeast China from October 2017 to September 2018. During the observational period, the CBHs detected by Lidar/aircraft were commonly higher in cold months and lower in warm months; in the latter, 75.91% of the CBHs were below 2000 m. Overall, the RHs at the cloud base were mainly distributed between 70 and 90% for the clouds lower than 1000 m, in which the most concentrated RH was approximately 80%. In addition, for the clouds with a cloud base higher than 1000 m, the RH thresholds decreased dramatically with increasing CBH, where the RH thresholds at cloud bases higher than 2000 m could be lower than 60%. On average, the RH thresholds for determining the CBHs were the highest (72.39%) and lowest (63.56%) in the summer and winter, respectively, over Southeast China. Therefore, to determine the CBH, a specific threshold of RH is needed. Although the time period covered by the collected CBH data from Lidar/aircraft is short, the above analyses can provide some verification and evidence for using the RH threshold to determine the CBH. Full article
Show Figures

Graphical abstract

Open AccessTechnical Note
Evaluation of Terra-MODIS C6 and C6.1 Aerosol Products against Beijing, XiangHe, and Xinglong AERONET Sites in China during 2004-2014
Remote Sens. 2019, 11(5), 486; https://doi.org/10.3390/rs11050486 - 27 Feb 2019
Cited by 4
Abstract
In this study, Terra-MODIS (Moderate Resolution Imaging Spectroradiometer) Collections 6 and 6.1 (C6 & C6.1) aerosol optical depth (AOD) retrievals with the recommended high-quality flag (QF = 3) were retrieved from Dark-Target (DT), Deep-Blue (DB) and merged DT and DB (DTB) level–2 AOD [...] Read more.
In this study, Terra-MODIS (Moderate Resolution Imaging Spectroradiometer) Collections 6 and 6.1 (C6 & C6.1) aerosol optical depth (AOD) retrievals with the recommended high-quality flag (QF = 3) were retrieved from Dark-Target (DT), Deep-Blue (DB) and merged DT and DB (DTB) level–2 AOD products for verification against Aerosol Robotic Network (AERONET) Version 3 Level 2.0 AOD data obtained from 2004–2014 for three sites located in the Beijing-Tianjin-Hebei (BTH) region. These are: Beijing, located over mixed bright urban surfaces, XiangHe located over suburban surfaces, and Xinglong located over hilly and vegetated surfaces. The AOD retrievals were also validated over different land-cover types defined by static monthly NDVI (Normalized Difference Vegetation Index) values obtained from the Terra-MODIS level-3 product (MOD13A3). These include non-vegetated surfaces (NVS, NDVI < 0.2), partially vegetated surfaces (PVS, 0.2 ≤ NDVI ≤ 0.3), moderately vegetated surfaces (MVS, 0.3 < NDVI < 0.5) and densely vegetated surfaces (DVS, NDVI ≥ 0.5). Results show that the DT, DB, and DTB-collocated retrievals achieve a high correlation coefficient of ~ 0.90–0.97, 0.89–0.95, and 0.86–0.95, respectively, with AERONET AOD. The DT C6 and C6.1 collocated retrievals were comparable at XiangHe and Xinglong, whereas at Beijing, the percentage of collocated retrievals within the expected error (↔EE) increased from 21.4% to 35.5%, the root mean square error (RMSE) decreased from 0.37 to 0.24, and the relative percent mean error (RPME) decreased from 49% to 27%. These results suggest significant relative improvement in the DT C6.1 product. The percentage of DB-collocated AOD retrievals ↔EE was greater than 70% at Beijing and Xinglong, whereas less than 66% was observed at XiangHe. Similar to DT AOD, DTB AOD retrievals performed well at XiangHe and Xinglong compared with Beijing. Regionally, DB C6 and C6.1-collocated retrievals performed better than DT and DTB in terms of good quality retrievals and relatively small errors. For diverse vegetated surfaces, DT-collocated retrievals reported small errors and good quality retrievals only for NVS and DVS, whereas larger errors were reported for PVS. MVS. DB contains good quality AOD retrievals over PVS, MVS, and DVS compared with NVS. DTB C6.1 collocated retrievals were better than C6 over NVS, PVS, and DVS. C6.1 is substantially improved overall, compared with C6 at local and regional scales, and over diverse vegetated surfaces. Full article
Show Figures

Graphical abstract

Open AccessTechnical Note
Vertically Resolved Precipitation Intensity Retrieved through a Synergy between the Ground-Based NASA MPLNET Lidar Network Measurements, Surface Disdrometer Datasets and an Analytical Model Solution
Remote Sens. 2018, 10(7), 1102; https://doi.org/10.3390/rs10071102 - 11 Jul 2018
Cited by 8
Abstract
In this paper, we illustrate a new, simple and complementary ground-based methodology to retrieve the vertically resolved atmospheric precipitation intensity through a synergy between measurements from the National Aeronautics and Space Administration (NASA) Micropulse Lidar network (MPLNET), an analytical model solution and ground-based [...] Read more.
In this paper, we illustrate a new, simple and complementary ground-based methodology to retrieve the vertically resolved atmospheric precipitation intensity through a synergy between measurements from the National Aeronautics and Space Administration (NASA) Micropulse Lidar network (MPLNET), an analytical model solution and ground-based disdrometer measurements. The presented results are obtained at two mid-latitude MPLNET permanent observational sites, located respectively at NASA Goddard Space Flight Center, USA, and at the Universitat Politècnica de Catalunya, Barcelona, Spain. The methodology is suitable to be applied to existing and/or future lidar/ceilometer networks with the main objective of either providing near real-time (3 h latency) rainfall intensity measurements and/or to validate satellite missions, especially for critical light precipitation (<3 mm h1). Full article
Show Figures

Graphical abstract

Back to TopTop