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Abstract: Turbulent mixing is critical in affecting urban climate and air pollution. Nevertheless,
our understanding of it, especially in a cloud-topped boundary layer (CTBL), remains limited.
High-temporal resolution observations provide sufficient information of vertical velocity profiles,
which is essential for turbulence studies in the atmospheric boundary layer (ABL). We conducted
Doppler Light Detection and Ranging (LiDAR) measurements in 2019 using the 3-Dimensional
Real-time Atmospheric Monitoring System (3DREAMS) to reveal the characteristics of typical
daytime turbulent mixing processes in CTBL over Hong Kong. We assessed the contribution of
cloud radiative cooling on turbulent mixing and determined the altitudinal dependence of the
contribution of surface heating and vertical wind shear to turbulent mixing. Our results show that
more downdrafts and updrafts in spring and autumn were observed and positively associated with
seasonal cloud fraction. These results reveal that cloud radiative cooling was the main source of
downdraft, which was also confirmed by our detailed case study of vertical velocity. Compared to
winter and autumn, cloud base heights were lower in spring and summer. Cloud radiative cooling
contributed ~32% to turbulent mixing even near the surface, although the contribution was relatively
weaker compared to surface heating and vertical wind shear. Surface heating and vertical wind shear
together contributed to ~45% of turbulent mixing near the surface, but wind shear can affect up to
~1100 m while surface heating can only reach ~450 m. Despite the fact that more research is still
needed to further understand the processes, our findings provide useful references for local weather
forecast and air quality studies.
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1. Introduction

Turbulent mixing is a crucial part of the atmospheric boundary layer (ABL), which modulates
the variation in temperature, flow velocity, moisture, and atmospheric composition and thus acts
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as a bridge between the top of the ABL and the surface [1,2]. Vertical velocity, which is the key
parameter reflecting the characteristics of turbulent mixing, is generally driven by sources such as heat
transfer from a warm ground surface (surface heating), vertical wind shear, or a combination of both
processes in a cloud-free boundary layer [3]. When reaching the capping inversion area at the top of
the ABL, updrafts due to surface heating (thermal) can penetrate into the stable layer above, inducing
dry air intrusion which can even reach the heights close to the surface in form of downdrafts [4].
Studies concentrating on convectively driven turbulent mixing have been well documented both in
observation [5,6] and numerical modeling of boundary layer meteorology [7,8].

However, the frequent occurrence of boundary-layer clouds reduces buoyancy by suppressing
direct radiative forcing during the day and also reduces thermal loss during the night [9,10].
Cloud-topped-cooling in stratocumulus layers was highlighted as it results in top-down mixing
from the cloud layer toward the surface during day and night while less of a cooling effect was found
in cloudless or cumulus-topped boundary layers [11]. This kind of cooling effect has been investigated
both in observation [12,13] and numerical modeling [14]. Meanwhile, in terms of airflow, it has been
well established that low-level vertical wind shear induced by surface friction helps to organize and
maintain convective systems through exchanging moist thermals [15] and regulating aerosol effects on
deep convective clouds [16]. Nevertheless, the detailed contribution of low-level vertical wind shear
to the turbulent mixing generated in a cloud-topped boundary layer (CTBL) is still vague, especially
in the daytime. Although cloud-topped radiative cooling effect and vertical wind shear process are
critical to control the structure of turbulence and aerosol distribution, which is essential for human
health, long-term observations of the high-time-resolution vertical profile of updrafts and downdrafts
still remain relatively limited [3].

Except for the in situ observations by radiosondes and aircrafts [17–19], many studies have been
carried out based on the ground-based remote sensing observations such as ceilometer, radar wind
profiler, or different types of Light Detection and Ranging (LiDAR) systems [20–24]. For example,
observation projects such as Cloudnet, European Aerosol Research Lidar Network (EARLINET),
EUMETNET Profiling Programme (E-PROFILE), and Aerosol, Clouds and Trace Gases Research
Infrastructure (ACTRIS) in European countries combined radar, ceilometer, and LiDAR together to
obtain aerosol, clouds, trace gases, and wind profiles [25–28]. Among all the LiDAR techniques such as
micro-pulse LiDAR (MPL), elastic/Raman LiDAR, and depolarization LiDAR [29,30], Doppler LiDARs
can simultaneously provide wind profile data as well as aerosol attenuated backscatter at a high vertical
and temporal resolution [31–33]. Doppler LiDAR performance has been proved in several previous
studies on the mixing layer [34]. For example, Pearson et al. (2010) directly observed the mixing
process using the Doppler LiDAR and argued that this was the most appropriate methodology to
analyze the dispersion in the lower atmosphere [31]. In addition, the turbulence measured by Doppler
LiDARs was used to derive a mixing layer [35], whereas other studies combined several techniques
such as multi-wavelength LiDAR and microwave radiometers [36,37]. Overall, Doppler LiDAR
measurements can provide data at high time and vertical resolutions, allowing for detailed analyses of
turbulent mixing.

Hong Kong is a typical coastal city with a significant ABL variation which is frequently affected by
boundary layer clouds. Most previous observational studies based on ceilometer and aerosol LiDARs
mainly focused on the retrieval method and diurnal variation of the height of ABL (ABLH) using
backscatter coefficients [20,38]. Few studies applied high time- and vertical-resolution observations for
vertical wind profile in Hong Kong. Recently, the 3-Dimensional Real-time Atmospheric Monitoring
System (3DREAMS) was established to measure and analyze the vertical profiles of horizontal wind
speed and direction, vertical wind velocity as well as aerosol attenuated backscatter in Hong Kong [33].
Three 1.5-µm Doppler LiDAR units (Halo Photonics Stream Line XR Scanning Doppler LiDAR system)
were installed at Hong Kong Observatory weather station: King’s Park (LiDAR KP), the Physical
Geography Experimental Station of the Chinese University of Hong Kong (LiDAR CUHK), and Hung
Shui Kiu Church at Yuen Long (LiDAR HSK) to better observe the atmospheric boundary layer
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conditions at the south, east, and northwest of Hong Kong, respectively. LiDARs located at King’s
Park and the Chinese University of Hong Kong were operated regularly since late 2017, while the one
at Yuen Long was established recently. For sufficient data availability, this study used the data of the
LiDAR KP from 3DREAMS to determine the turbulent mixing characteristics in the typical daytime
CTBL over Hong Kong in 2019.

Using vertical profiles of vertical velocity and horizontal wind at high time- and vertical-resolutions
from a ground-based Doppler LiDAR combined with surface and upper-air meteorological data,
we characterized the typical diurnal variation of ground-level meteorological parameters and vertical
wind profile with a focus on clouds over Hong Kong in 2019. Then four cloud-topped cases in different
seasons in 2019 were selected to determine the relative contribution of cloud radiative cooling, surface
heating, and vertical wind shear to turbulent mixing during daytime in CTBL. In Section 2, the operating
specification of Doppler LiDAR employed in this study, together with all the other meteorological
data, is described. Major results are shown and discussed in Sections 3 and 4, respectively. Finally,
a conclusion is given in Section 5.

2. Materials and Methods

2.1. Ground-Based Doppler LiDAR Measurement Using 3DREAMS

The Doppler LiDAR (LiDAR KP) used in this paper was located at the King’s Park Meteorological
Station (KPMS, 22.311 N◦, 114.173 E◦, Figure 1) of the Hong Kong Observatory (HKO). KPMS is the
only upper-air sounding station in Hong Kong. This Doppler LiDAR is a part of 3DREAMS [33].
The instrument was fixed on a concrete foundation in a flat grass field, with an altitude of 65 m above
the mean sea level. The observation site was located on a small hill in the urban area with lots of
buildings in the surroundings. The east, west, and south sides are close to the sea, with the north close
to the mountains.
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Figure 1. Location (red dot) of the LiDAR at King’s Park (LiDAR KP). The figure was built on a map
obtained from Google map, https://www.google.com/maps.

The Doppler LiDAR is a Halo Photonics 1.5-µm pulsed Doppler instrument from Halo Photonics
Company. The instrument had been used in studies exploring the characteristics of the planetary
boundary layer (PBL) in the tropical and mid-latitude environments [33,39]. The Doppler LiDAR
employed in this study operated round the clock and has been set up for an optimized vertical
resolution of 30 m in the boundary layer up to around 3 km altitude. It was operated in velocity
azimuth display (VAD) scanning mode for obtaining one horizontal wind profiles every 10 min using
6 beams around a circle at an elevation angle of 75◦. The Doppler LiDAR was also operated in
vertical stare mode to collect attenuated backscatter coefficient measurements for the rest of the time,
with vertical spatial and temporal resolutions of 30 m and one second, respectively. Erroneous data,
which might be caused by measurement or instrument errors, were removed based on signal intensity
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(SI). A threshold value of 1.01 was defined for SI, which refers to a signal-noise-ratio (SNR) of −20 dB.
All data below this threshold were removed. The quality of Doppler wind data was checked before
using it in our analysis. Results show that the percentage difference between the averaged horizontal
wind speeds provided by LiDAR and upper air sounding data for heights less than 1.00 km was less
than 10%, which indicates a sufficient agreement between both data sources [33].

2.2. Meteorological Data from Hong Kong Observatory

The ground surface meteorological data and upper-air sounding data were provided by the Hong
Kong Observatory (HKO). The regular wind profile observations at KPMS at Hong Kong Time (HKT)
08:00 (UTC 00:00) and HKT 20:00 (UTC 12:00) were used to validate the wind profiles from our Doppler
LiDAR at KPMS. Daily total rainfall recorded at the KPMS station in 2019 can be found at HKO websites
(https://www.weather.gov.hk/en/cis/dailyExtract.htm?y=2019). Hourly surface meteorological data
recorded at KPMS, including relative humidity, solar radiation, and cloud fraction, were also used.

2.3. Information on the Sampling Days

Clear and cloudy days were defined according to the averaged cloud fraction between 07:00 and
17:00 HKT. Firstly, we removed the days when rainfall was recorded according to the meteorological
data from HKO. 172 no-rainfall days were selected totally, accounting for 47% of all days in 2019.
Of which, the average cloud fraction less than 20% were defined as clear days, whereas the remaining
days were defined as cloudy days. Table 1 shows the information of the samples used in our research.

Table 1. Numbers of no rain days and cloudy days in each season, and the percentage of no rain days
with a cloudy sky.

Season Number of No
Rain Days

Number of
Cloudy Days

Percentage of No Rain Days
with A Cloudy Sky

DJF 51 40 78%
MAM 38 32 84%

JJA 25 20 80%
SON 58 35 61%

2.4. Validation of LiDAR and Definitions for Turbulent Mixing

Wind profile of our LiDAR has been well validated in 3DREAMS. Moreover, ABLH is also an
important parameter for the LiDAR’s validation. Currently, there are many mature algorithms such as
potential temperature gradient or Richardson number methods for radiosondes, attenuated backscatter
coefficient methods for ceilometers, and particle extinction and backscatter coefficient methods for
Raman and elastic LiDARS, respectively to retrieve the ABLH [40,41]. Some newly developed
algorithms also obtained finer results for this purpose [42–44]. In order to verify the accuracy of the
retrieval ABL from our LiDAR, here we applied the gradient method in the profile of water vapor
mixing ratio and virtual potential temperature from regular sounding data to compare with the gradient
of our attenuated backscatter coefficient (i.e., maximum -∇β, as ∇β should always be negative) on a
clear case: 08:00 HKT (UTC 00) 16 October (surface wind speed: 4 m/s; wind direction: Northeast;
temperature: 24.2 ◦C; Cloud fraction: 0). An attenuated backscatter coefficient profile should be
moving averaged using a time window of 3 min and vertical window of 3 layers [22,32]. The ABLHs
retrieved based on LiDAR’s attenuated backscatter coefficients and upper air sounding profiles of water
vapor mixing ratio and virtual potential temperature show good consistency (Figure 2), confirming the
accuracy of our LiDAR’s capacity in clear-sky ABLH retrieval.

The turbulent mixing was typically defined as the vertical velocity variance σ2
w(z) within 1 minute

higher than a threshold of 0.1 m2s−2 at a certain layer [31]. Therefore, here the definitions of variance
and skewness are given:

σ2
w(z) = w′(z)2, (1)

https://www.weather.gov.hk/en/cis/dailyExtract.htm?y=2019
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sw(z) =
(

w′(z)
σw(z)

)3

, (2)

where z is the height (m), w is the vertical wind velocity (m/s). w′ is the deviation between instant
vertical velocity and the mean. As sw(z) is a noisy profile, a 10-min moving average was applied
for the visualization in Figure 7. Correspondingly, the 1-min skewness sw(z) of vertical velocity
was also calculated to represent the sources of turbulent mixing [4,32]. If sw(z) > 0, the mixing is
induced by surface heating and vertical wind shear processes. If sw(z) < 0, the mixing is induced by
cloud-driven ones.Remote Sens. 2020, 12, x FOR PEER REVIEW 5 of 17 
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(red line), and attenuated backscatter coefficient (black dot) at 08:00 Hong Kong Time (HKT) (UTC 00)
on 16 October. The range of atmospheric boundary layer height (ABLH) has been marked with orange
dash lines.

Wind shear was found to play an important role in a radiative-convective equilibrium system as
well as in the regulating of the aerosol distribution [16,45]. It has significant effects on the momentum
transport under different weather conditions, especially in a CTBL in which thermals are relatively
lower than that in a clear one. Bulk vertical wind shear (VWS) was used to represent the intensity of
vertical wind shear between two layers and was defined as:

VWS =

(
∆u2 + ∆v2

)1/2

∆z
, (3)

where u and v are the two components of horizontal wind, whereas ∆z is the layer thickness which
was 30 m in this study. We also detected the cloud base height according to a threshold of log(β) > −4
and combined the method documented in Manninen’s study [32].

3. Results

3.1. Vertical Wind Profiles and Ground-Level Meteorological Parameters on Cloudy Days in 2019

This section provides a description of meteorological conditions on cloudy days. Notably,
among all the 172 no rain days in 2019, 74% of them were cloudy days. Figure 3a shows that the
largest cloud fraction occurred in spring followed by summer, winter, and autumn. A similar seasonal
variation was also observed in relative humidity (RH). The maximum of RH (90%) was observed at
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07:00 in spring, while the minimum (60%) occurred at 13:00 in autumn. Nevertheless, the difference
between maximum and minimum in each season was within 15%. In terms of solar radiation, a
negative association with cloud fraction was presented. Although the temperature in summer was the
highest, the higher cloud fraction in summer blocked part of solar radiation and made the surface solar
radiation lower than that in autumn. Overall, cloud fraction was larger than 40% during the daytime
of cloudy days in 2019, indicating that the effects associated with clouds on CTBL are ineluctable.
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Figure 3. Diurnal variation of meteorological parameters of (a) cloud fraction, (b) temperature,
(c) solar radiation, and (d) relative humidity (RH) from ground-level observation data at King’s Park
Meteorological Station (KPMS) on cloudy days in 2019. Sunrise and sunset marked in the figure
were extracted from the Hong Kong Observatory website (https://www.hko.gov.hk/tc/gts/astron2019/

almanac2019_index.htm). A t-test for the differences between seasons was conducted. The t-test results
show that all the seasonal differences can pass a 95% test except the solar radiation difference between
winter and spring (p < 0.2) and RH difference between spring and summer (p < 0.3).

Figure 4 shows the diurnal variation of a cloudy-day wind profile within 1500 m in different
seasons. For horizontal wind speed, the maximum occurred at 1035 m in summer with a value of
12.22 m/s at 13:00 HKT. Similarly, an obvious increase in wind speed appeared above 700 m in each
season. On cloudy days, the prevailing wind direction was southeast in summer, while that was
northwest in autumn and winter. Figure 4f shows that the prevailing wind direction varied significantly
in spring. For vertical velocity, downdrafts were more common in spring while more updrafts were
observed in autumn.

As revealed by Figure 3a, the highest cloud fraction was observed in spring while the lowest was
obtained in autumn. The lower cloud fraction allowed more solar radiation reaching the ground that
enhanced surface heating and thus updrafts, which were more common in the afternoon in autumn
as shown in Figure 4l. Figure 5 shows the probability density function curve of cloud base height
on cloudy days in different seasons. Cloud base height with the highest probability was 1395 m and
1425 m in winter and autumn, respectively, whereas that was 1095 m in spring and 1185 m in summer.
The lower cloud base height in spring and summer reflected the more synoptic systems in the two
seasons such as trough and typhoon, which were associated with low and thick clouds. It should also
be noted that the distribution of cloud base height in winter was flatter than that in other seasons,
showing the largest variations in cloud base height in winter.

https://www.hko.gov.hk/tc/gts/astron2019/almanac2019_index.htm
https://www.hko.gov.hk/tc/gts/astron2019/almanac2019_index.htm


Remote Sens. 2020, 12, 1533 7 of 16Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 17 

 

 
Figure 4. Diurnal variation of wind profiles of horizontal wind speed (left), horizontal wind direction 
(middle), and vertical velocity (right) on cloudy days in 2019. The rows from top to bottom represent 
winter, spring, summer and autumn, respectively. 

As revealed by Figure 3a, the highest cloud fraction was observed in spring while the lowest 
was obtained in autumn. The lower cloud fraction allowed more solar radiation reaching the ground 
that enhanced surface heating and thus updrafts, which were more common in the afternoon in 
autumn as shown in Figure 4l. Figure 5 shows the probability density function curve of cloud base 
height on cloudy days in different seasons. Cloud base height with the highest probability was 1,395 
m and 1,425 m in winter and autumn, respectively, whereas that was 1,095 m in spring and 1,185 m 
in summer. The lower cloud base height in spring and summer reflected the more synoptic systems 
in the two seasons such as trough and typhoon, which were associated with low and thick clouds. It 
should also be noted that the distribution of cloud base height in winter was flatter than that in other 
seasons, showing the largest variations in cloud base height in winter. 

Figure 4. Diurnal variation of wind profiles of horizontal wind speed (left), horizontal wind direction
(middle), and vertical velocity (right) on cloudy days in 2019. The rows from top to bottom represent
winter, spring, summer and autumn, respectively.

3.2. Case Study of Vertical Velocity and Turbulent Mixing Characteristics

To assess vertical velocity and turbulent mixing characteristics on cloudy days, four cases with
high cloud fraction and thick clouds in different seasons were selected for a detailed analysis. The four
cases included 1 Feb, 1 May, 22 Aug and 23 Nov. Figure 6 shows the vertical velocity profiles from
07:00 to 17:00 HKT in the four cases. 10-min cloud base height derived from attenuated backscatter
coefficient was marked as black dots. As shown in the results, evident downdrafts were observed
under the cloud base especially during 10:00 to 10:30 on 01 Feb, 10:00 to 12:00 on 01 May, 09:30 to
12:00 on 22 Aug and 16:00 to 17:00 on 23 Nov. Some evident red patches occurred in each case might
be driven by relatively strong surface heating at that time. These characteristics further confirm that
cloud-induced radiative cooling is one of the main sources of downdrafts during the daytime on
cloudy days.
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Figure 6. Vertical velocity profiles from 07:00 to 17:00 HKT on (a) 01 Feb, (b) 01 May, (c) 22 Aug, (d) 23
Nov. 10-min cloud base height has been marked as black dots in each profile. Positive vertical velocity
indicates updraft.

To further understand the characteristics of turbulent mixing in the CTBL, the variance and
skewness of the 1-min interval vertical velocity were calculated. Figure 7 (left panels) shows significant
vertical velocity variances (σ2

w > 0.1), implying the significant turbulent mixing generated from the
near-surface layer to the bottom of clouds. Figure 7 (right panels) shows the skewness in the four
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cases. Three sources (i.e., cloud radiative cooling, surface heating and vertical wind shear) were
considered as the main driving forces of turbulent mixing in the CTBL. It is noted that negative
skewness implies the turbulent mixing due to cloud radiative cooling whereas the positive one implies
that the turbulent mixing was induced by surface heating, vertical wind shear, or a combination of
them [32]. As expected, turbulent mixing near the ground surface was dominantly controlled by
positive skewness. Nevertheless, the negative skewness was also evidently observed especially in
Figure 7f,g. In the variance of these two cases, a clear weaker variance was derived where there was
negative skewness compared to the place where skewness was positive. This may imply that surface
heating and vertical wind shear are relatively larger than cloud radiative cooling effect in terms of
contribution to turbulent mixing.Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 17 
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3.3. Cloud Contribution to the Turbulent Mixing

To further reveal the contribution of cloud radiative cooling to the intensity of turbulent mixing in
different layers in the CTBL, we calculated the proportion of variance with a negative skewness to
represent cloud contribution in Figure 8a and with a positive skewness to represent surface heating and
vertical wind shear in Figure 8b, respectively. Note that the sum of the two contributions was not equal
to 1 as there were many blank zones in the skewness profile where the value was 0. This part was also
reflected by Manninen et al. who called this phenomenon as intermittent [32]. Figure 8a shows that
cloud radiative cooling contributed ~32% to the turbulent mixing near the surface. It was comparable
with the one from surface heating and vertical wind shear. The contribution of cloud-topped cooling
increased with the height, but the peak emerged at ~800 m and then the contribution started to decrease
again. One explanation is that most clouds in these four cases appeared at around 1000 m or even
lower (see Figure 6a–c), and the cloud-topped region can be affected by the entrainment of warm and
dry air from above the cloud and the turbulent instability, which has recently been studied by Mellado
et al. [46]. Figure 8b explains that the overall contribution of surface heating and vertical wind shear to
the turbulent mixing in each layer decreased with height, with the highest mean value of 45% near the
surface. Meanwhile, the standard deviation tended to be larger especially above 800 m, indicating that
the significant contribution was up to that height.
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Figure 8. Contribution of (a) cloud radiative cooling and (b) surface heating and vertical wind shear to
the turbulent mixing within the daytime cloud-topped boundary layer (CTBL) in all the cases. Y axis is
the altitude (z) normalized by cloud base height (h).

Except for cloud radiative cooling, both surface heating and vertical wind shear have significant
impacts on the turbulent mixing. Hence, we further distinguished the effects of these two factors.
Figure 9 shows the daytime mean intensity of vertical wind shear between different levels in each
case. The highest magnitude of wind shear always occurred between two nearest layers (i.e., 30 m in
our study). A significant increase was observed in each profile at ~600 m to 1000 m. The magnitude
above this layer height stayed higher than that near-surface. This result reveals that, on cloudy days,
the contribution of vertical wind shear on turbulent mixing was more significant aloft than near
the surface.
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Figure 9. Vertical profile of the averaged daytime vertical wind shear between different heights for
(a) 01 Feb, (b) 01 May, (c), 22 Aug, (d) 23 Nov. Shading denotes the intensity of wind shear at least two
consecutive layers where x-axis is the top layer height and y-axis is the bottom layer height. Note that
the colormap is presented at a log scale.

Figure 10 depicts the correlation between turbulent mixing and surface heating due to solar
radiation and vertical wind shear. In Figure 10a, surface radiation was used to represent the level of
surface heat flux. Significant correlation coefficients were derived from 135 m to 435 m and from 855 m
to 975 m, respectively. The appearance of the high-level significant correlation may be still induced
by the entrainment discussed above, which was associated with the temperature inversion, resulting
in the adverse direction of the reducing effect from surface heating. Figure 10a also shows that, in a
typical daytime CTBL, surface heating significantly contributed to the turbulent mixing up to 435 m
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from ground level. On the other hand, in Figure 10b, vertical wind shear was calculated between every
two consecutive layers (30 m). A much higher correlation coefficient can be derived in Figure 10b
compared to Figure 10a. Moreover, significant results can reach up to 1095 m in a typical daytime
CTBL, indicating that vertical wind shear (mechanical process) played a more important role than
surface heating in a CTBL.
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4. Discussion

Since Hong Kong is a typical coastal high-density city in the subtropics, the variations of the
ABL there are complex. Due to its coastal location and complex terrain conditions, the formation and
movement of clouds within the boundary layer occur often throughout a year, and its radiative cooling
effect on the ground in the form of downdrafts is considerable. The findings that most clouds appeared
at around 1000 m to 1500 m allowed us to figure out the regular depth of the typical CTBL in Hong
Kong. Within this range, the surface heating may be important, but radiative fluxes induced by clouds
produced local sources of cooling within the CTBL and can greatly influence its turbulent structure and
dynamics [1]. Although we took the altitude into account, we did not categorize cloud types in detail
and did not consider the situation when clouds are overlapped in the vertical direction, which may
have an impact on the ABL characteristics [47].

Until now, the existing research based on observations with a high-time-resolution of the vertical
wind profile gave us a general understanding of the characteristics of the turbulent mixing in a
CTBL [3,11]. We can see in our results that even in the lowest layer near the surface, the cloud
radiative cooling effects can still contribute ~32% of the turbulent mixing, indicating the importance
of cloud-induced radiative cooling. This finding provides useful reference for turbulence and
aerosol-radiation-cloud interaction research [48–50]. While the influence of meteorology on air quality
is critical [51–54], the framework of 3DREAMS provides useful wind and aerosol backscatter data to
understand air pollution, especially in the transboundary air pollution [55,56]. For example, during a
transboundary air pollution (TAP) episode [56–60], the 3DREAMS can help us to understand the
atmospheric stability, and also the contributions of cloud, buoyancy and wind shear in the local-scale
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vertical mixing procedure. In addition, as revealed by our results that the vertical wind shear can affect
up to over 1000 m while the surface heating can only reach around 400 m in the CTBL, we should also
consider the influence of wind structure on the regulating of aerosol, especially during heavy pollutant
episodes. Pioneering work has been conducted by Yang et al. in 2019 [39].

The lack of direct long-time and high vertical resolution observations has brought great difficulties
to atmospheric turbulence research, mesoscale weather forecasting, and thus air pollution studies.
More intuitive observations, such as continuous observation of vertical wind profiles, are relatively
rare. Once there is a direct observation of vertical wind profile, we can obtain the various boundary
layer characteristics under different types of weather conditions, thus the research of boundary layer
will have a significant improvement, which has been confirmed by Hogan et al. (2009) that long-term
Doppler LiDAR observations would be useful for diagnosing the source of turbulence [11].

In general, our intention was to systematically observe and diagnose the boundary layer
characteristics in Hong Kong and clarify the transfer of atmospheric energy in the boundary layer.
The recently developed 3DREAMS can monitor the aerosol distribution and 3-dimension wind profile
simultaneously. The monitoring of wind profiles can not only clarify the characteristics of atmospheric
energy transfer but also monitor aerosols to help attribute local and transboundary air pollutions.
Furthermore, our observations can also provide reliable validation data for mesoscale weather models
and turbulence models. Our future monitoring will still be conducted under the framework of
3DREAMS to explore the influence of terrain on the boundary layer structure.

5. Conclusions

We employed high temporal and spatial (vertical) observations from a Doppler LiDAR to explore
the turbulent mixing characteristics in the daytime cloud-topped boundary layer over Hong Kong
in 2019 using 3DREAMS. Ground-level meteorological parameters and typical diurnal variation of
vertical wind profile associated with clouds over Hong Kong in 2019 were derived to illustrate the
cloud characteristics. Four typical cases from each season in 2019 were selected to illustrate the
turbulent mixing characteristics based on the variance and skewness profiles of vertical velocity. Finally,
the contribution of cloud radiative cooling, surface heating, and vertical wind shear on turbulent
mixing were analyzed.

On cloudy days in 2019, the highest cloud fraction was observed in spring while the lowest was
obtained in autumn. Meanwhile, downdrafts were more common in spring while more updrafts were
observed in autumn, revealing that cloud radiative cooling is the main source of downdraft. On cloudy
days, low-level clouds occurred generally within the range of 1000 to 1500 m. Compared to winter and
autumn ones, cloud base heights were lower in spring and summer. Case studies of vertical velocity
confirmed that in a typical daytime CTBL in Hong Kong, boundary layer clouds always act as the
sink of heat near the bottom of the cloud layer. Although cloud radiative cooling effect on turbulent
mixing was relatively weaker compared to surface heating and vertical wind shear, it still contributed
~32% even near the surface. Surface heating and vertical wind shear contributed ~45% together near
the surface, but the effect of wind shear can be up to ~1100 m while that of surface heating can only
reach ~450 m, revealing that vertical wind shear (mechanical process) plays a more important role than
surface heating (thermal) in CTBL.

In general, our findings improved our knowledge of the turbulent mixing layer and provided
useful references for weather forecast and air quality studies.
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