Advanced Processes for Sustainable Energy Conversion and Utilization

A special issue of Processes (ISSN 2227-9717). This special issue belongs to the section "Chemical Processes and Systems".

Deadline for manuscript submissions: 30 September 2026 | Viewed by 697

Special Issue Editor

Special Issue Information

Dear Colleagues,

Sustainable tools for energy conversion are becoming increasingly important across various energy sub-fields worldwide. In particular, the processes involved in solar photovoltaic systems; consentrated solar systems; wind turbines and their alternators; harvesting devices working under mechanical, electromagnetic, thermal, and optical stresses; and battery technologies with invertor/convertor circuitries have garnered significant interest. It is widely known that even a 1% increase in energy conversion efficiency can lead to substantial cost savings for the gloabl energy sector. Therefore, it is imperative that we promote sustainable efforts on energy conversion mechanisms. In this context, the scope of our Special Issue includes innovative design and prototype production in materials science, as well as improvements in the efficiency of auxiliary equipment used during energy conversion processes. Additionally, contributions focused on enhancing the efficiency of chemical reactions in any fuel-cell or battery system are also welcome for submission to this Special Issue.

Prof. Dr. Erol Kurt
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Processes is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • transformer
  • harvester
  • solar
  • photovoltaic
  • crystal growth
  • conversion
  • energy
  • battery
  • invertor
  • convertor
  • wind
  • fuel-cell
  • generator

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

27 pages, 6058 KB  
Article
A Dynamic Energy Management Algorithm for Battery–Ultracapacitor-Based UPS Systems
by Yagmur Kircicek and Hakan Akca
Processes 2025, 13(12), 3762; https://doi.org/10.3390/pr13123762 - 21 Nov 2025
Viewed by 432
Abstract
This study presents a dynamic energy management algorithm (DEMA) designed for hybrid battery–ultracapacitor systems in uninterruptible power supply (UPS) applications. The proposed algorithm aims to enhance power reliability and extend battery life by dynamically coordinating energy flow between the battery and ultracapacitor under [...] Read more.
This study presents a dynamic energy management algorithm (DEMA) designed for hybrid battery–ultracapacitor systems in uninterruptible power supply (UPS) applications. The proposed algorithm aims to enhance power reliability and extend battery life by dynamically coordinating energy flow between the battery and ultracapacitor under various operating modes. A single-phase UPS system was modeled and simulated in MATLAB/Simulink (Matlab R2025a version), and subsequently validated through experimental tests using an energy analyzer and an oscilloscope. The DEMA identifies and manages five operating modes, ensuring smooth transitions between grid-connected and backup states. During sudden load variations, particularly at a 1500 W step change, the ultracapacitor effectively supports the battery by supplying transient power, thereby reducing current stress and preventing deep discharge. Both simulation and experimental results confirm that the proposed algorithm maintains stable DC bus voltage, improves dynamic response, and achieves optimal energy utilization across all modes. The developed hybrid UPS control approach demonstrates high reliability and can be effectively implemented in critical load systems requiring uninterrupted power and enhanced battery longevity. Full article
(This article belongs to the Special Issue Advanced Processes for Sustainable Energy Conversion and Utilization)
Show Figures

Figure 1

Back to TopTop