Polymeric Materials and Their Application in 3D Printing, 2nd Edition

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Applications".

Deadline for manuscript submissions: 31 August 2025 | Viewed by 12050

Special Issue Editors


E-Mail Website
Guest Editor
National Institute for Aerospace Research “Elie Carafoli”—INCAS, Bucharest, Romania
Interests: polymeric composites; nanocomposites; aerospace materials; circular economy; sustainability; mechanical properties
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 01106 Bucharest, Romania
Interests: bio(nano)materials; synthesis methods; material processing and design; advanced coatings; tissue engineering; drug delivery; characterization methods
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In the last decade, additive manufacturing’s ability to produce customized parts with complex shapes has led to increased global demand for this technology as a manufacturing solution in various fields of engineering, from consumer goods, medicine, electronics, and construction to automotives and aerospace. Three-dimensional-printing-based technologies using polymeric materials offer cost-effectiveness, customized geometries, complex design, high-precision manufacturing, and reduced processing time while using highly sustainable materials.

This Special Issue aims to gather the latest research in the field of 3D-printed polymers designed for application in the fields in which this technology attracts the most attention and interest. Papers are expected to implement experimental or simulation approaches to challenges in polymer and polymeric composite 3D printing techniques that are encountered in each engineering field. Overcoming 3D printing challenges will greatly contribute to advancing development in topics related to transport, engineering, medicine, and the environment. This Special Issue will focus on both fundamental and applied research aimed at the development, characterization, and application of polymers for 3D printing technologies implemented in, but not limited to, aerospace, automotives, construction, medicine, prototyping, and consumer goods (including electronics, sports, devices, spare parts, etc.).

Dr. Cristina-Elisabeta Pelin
Prof. Dr. Anton Ficai
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • 3D printing
  • thermoplastic polymers
  • thermoset polymers
  • polymeric (nano)composites
  • additive manufacturing methods and processing
  • mechanical properties
  • transport applications
  • medical applications
  • rapid prototyping
  • 3D printing design solutions

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

18 pages, 44098 KiB  
Article
Optimization of Process Parameters for Steel Wire-Reinforced Polylactic Acid Composites Produced by Additive Manufacturing
by Turker Turkoglu and Ahmet Cagri Kilinc
Polymers 2025, 17(5), 624; https://doi.org/10.3390/polym17050624 - 26 Feb 2025
Viewed by 389
Abstract
The mechanical performance of Fused Deposition Modeling (FDM)-produced polymer composites is highly dependent on processing parameters; however, most studies focus on unreinforced polymers, leaving a gap in understanding how these parameters influence continuous wire-reinforced composites. This study addresses this gap by investigating the [...] Read more.
The mechanical performance of Fused Deposition Modeling (FDM)-produced polymer composites is highly dependent on processing parameters; however, most studies focus on unreinforced polymers, leaving a gap in understanding how these parameters influence continuous wire-reinforced composites. This study addresses this gap by investigating the effect of hatch spacing and layer thickness on the tensile properties of steel wire-reinforced PLA composites. The Taguchi method was employed to systematically optimize mechanical performance, using an L9 orthogonal array to evaluate tensile strength across different process conditions. The results showed that layer thickness was the most influential factor, contributing to 75.861% of the total variance (F = 60.90, p = 0.001), followed by hatch spacing (21.647%, F = 17.37, p = 0.010). The highest tensile strength of 231.61 MPa was obtained at a hatch spacing of 0.4 mm and a layer thickness of 0.2 mm, confirming the importance of optimizing these parameters to improve interfacial bonding and minimize defects. Signal-to-Noise (S/N) ratio analysis further validated these optimal conditions, with the highest S/N ratio of 47.29 observed under the same settings. This study provides a structured approach to optimizing process parameters for metal-reinforced polymer composites, contributing to the development of stronger, more reliable FDM-produced composite materials. Full article
(This article belongs to the Special Issue Polymeric Materials and Their Application in 3D Printing, 2nd Edition)
Show Figures

Graphical abstract

22 pages, 63447 KiB  
Article
Effect of Atmospheric Plasma Treatment on Mechanical Properties of 3D-Printed Continuous Aramid Fiber/PLA Composites
by Fidan Bilir Kilinc, Ebru Bozaci, Ahmet Cagri Kilinc and Turker Turkoglu
Polymers 2025, 17(3), 397; https://doi.org/10.3390/polym17030397 - 1 Feb 2025
Cited by 1 | Viewed by 962
Abstract
In this study, an aluminum heating block with two inlets (for the Polylactic acid (PLA) filament and the continuous aramid fiber) was produced and placed onto an extruder, and continuous-aramid-fiber-reinforced PLA composites were fabricated by using the nozzle impregnation method. Layer height values [...] Read more.
In this study, an aluminum heating block with two inlets (for the Polylactic acid (PLA) filament and the continuous aramid fiber) was produced and placed onto an extruder, and continuous-aramid-fiber-reinforced PLA composites were fabricated by using the nozzle impregnation method. Layer height values of 0.4 mm, 0.6 mm, and 0.8 mm and hatch spacing values of 0.6 mm, 0.8 mm, and 1.0 mm were used for the investigation of the processing parameters on the properties of composites by differentiating the reinforcement volume fraction. Additionally, atmospheric plasma treatment was used for the surface modification of the reinforcement fiber. The properties of composites reinforced by using surface-modified fibers were also investigated in order to reveal the efficacy of the atmospheric plasma treatment on the properties of composites. The effect of the atmospheric plasma treatment on the fiber properties was investigated by using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). Continuous-aramid-fiber-reinforced PLA composites were characterized mechanically by fiber pull-out, tensile, and flexural testing. The fracture surfaces of composites were analyzed by using SEM. The combination of a reduced layer height and a narrower hatch spacing yielded the best mechanical performance, with a tensile strength of 410.25 MPa achieved at a 0.6 mm layer height and a 0.4 mm hatch spacing. This combination minimizes void formation, enhances fiber alignment, and strengthens interlayer adhesion, leading to superior mechanical properties. The FTIR and XPS results showed that atmospheric plasma modification can enhance the interfacial bonding strength by improving the surface morphology and increasing the content of polar groups on the fiber surface. By combining optimized manufacturing conditions with the atmospheric plasma treatment, the mechanical performance of continuous-aramid-fiber-reinforced PLA composites was enhanced. Full article
(This article belongs to the Special Issue Polymeric Materials and Their Application in 3D Printing, 2nd Edition)
Show Figures

Graphical abstract

19 pages, 5938 KiB  
Article
A New Polymeric Hybrid Auxetic Structure Additively Manufactured by Fused Filament Fabrication 3D Printing: Machine Learning-Based Energy Absorption Prediction and Optimization
by Rezgar Hasanzadeh
Polymers 2024, 16(24), 3565; https://doi.org/10.3390/polym16243565 - 20 Dec 2024
Cited by 2 | Viewed by 860
Abstract
The significance of this paper is an investigation into the design, development, and optimization of a new polymeric hybrid auxetic structure by additive manufacturing (AM). This work will introduce an innovative class of polymeric hybrid auxetic structure by the integration of an arrow-head [...] Read more.
The significance of this paper is an investigation into the design, development, and optimization of a new polymeric hybrid auxetic structure by additive manufacturing (AM). This work will introduce an innovative class of polymeric hybrid auxetic structure by the integration of an arrow-head unit cell into a missing rib unit cell, which will be fabricated using fused filament fabrication (FFF) technique, that is, one subset of AM. The auxetic performance of the structure is validated through the measurement of its negative Poisson’s ratio, confirming its potential for enhanced energy absorption. A chain of regression, linear, and quadratic polynomial machine learning algorithms are used to predict and optimize the energy absorption capability at variant processing conditions. Amongst them, the polynomial regression model stands out with an R-squared value of 92.46%, reflecting an excellent predictive capability for energy absorption of additively manufactured polymeric hybrid auxetic structure. The optimization technique revealed that the printing speed of 80 mm/s and layer height of 200 µm were the critical values to achieve a maximum amount of energy absorption at 5.954 kJ/m2, achieved at a printing temperature of 244.65 °C. Such results also contribute to the development of AM, since they show not only the potential for energy absorption of polymeric hybrid auxetic structures but also how effective machine learning is in the optimization of the AM process. Full article
(This article belongs to the Special Issue Polymeric Materials and Their Application in 3D Printing, 2nd Edition)
Show Figures

Figure 1

17 pages, 5271 KiB  
Article
Chess-like Pieces Realized by Selective Laser Sintering of PA12 Powder: 3D Printing and Micro-Tomographic Assessment
by Giovanna Colucci, Luca Fontana, Jacopo Barberi, Chiara Vitale Brovarone and Massimo Messori
Polymers 2024, 16(24), 3526; https://doi.org/10.3390/polym16243526 - 18 Dec 2024
Viewed by 727
Abstract
The paper highlights the realization of 3D-printed parts with complex geometries, such as chess-like pieces, using polyamide 12 (PA12) as polymeric powder via selective laser sintering (SLS). The research activity focuses on the study of the powder printability, the optimization of the printing [...] Read more.
The paper highlights the realization of 3D-printed parts with complex geometries, such as chess-like pieces, using polyamide 12 (PA12) as polymeric powder via selective laser sintering (SLS). The research activity focuses on the study of the powder printability, the optimization of the printing parameters, and the tomographic evaluation of the printed objects. Morphological analyses were carried out to study the PA12 powder microstructure considering that SLS required specific particle size distribution and shape, able to guarantee a good flowability necessary to take part in a sintering process. DSC and TG analyses were performed to determine the sintering window and the crystallinity degree, and to evaluate the thermal stability of the PA12 powder due to the importance of the powder processability for the SLS process. The novelty lies in the realization of chess-like pieces very challenging to print via SLS due to their different and highly detailed structures, and the in-depth analysis of the dimensional accuracy evaluated by micro-tomography. The 3D-printed samples obtained show high printing quality and dimensional stability. The μ-CT analysis also confirms the key role of the object shape and section changes on the final porosity of the chess-like pieces. Full article
(This article belongs to the Special Issue Polymeric Materials and Their Application in 3D Printing, 2nd Edition)
Show Figures

Figure 1

26 pages, 29595 KiB  
Article
Induction Heating of Laminated Composite Structures with Magnetically Responsive Nanocomposite Interlayers for Debonding-on-Demand Applications
by Eleni Gkartzou, Konstantinos Zafeiris, Christos Tsirogiannis, Alberto Pedreira, Adrián Rodríguez, Pablo Romero-Rodriguez, Giorgos P. Gakis, Tatjana Kosanovic-Milickovic, Apostolos Kyritsis and Costas A. Charitidis
Polymers 2024, 16(19), 2760; https://doi.org/10.3390/polym16192760 - 30 Sep 2024
Viewed by 1594
Abstract
In the present study, the feasibility to achieve localized induction heating and debonding of multi-material composite structures is assessed in testing coupons prepared by Automated Fiber Placement (AFP) and extrusion-based additive manufacturing (AM) technologies. Nano-compounds of Polyether-ketone-ketone (PEKK) with iron oxide nanoparticles acting [...] Read more.
In the present study, the feasibility to achieve localized induction heating and debonding of multi-material composite structures is assessed in testing coupons prepared by Automated Fiber Placement (AFP) and extrusion-based additive manufacturing (AM) technologies. Nano-compounds of Polyether-ketone-ketone (PEKK) with iron oxide nanoparticles acting as electromagnetic susceptors have been processed in a parallel co-rotating twin-screw extruder to produce filament feedstock for extrusion-based AM. The integration of nanocomposite interlayers as discrete debonding zones (DZ) by AFP-AM manufacturing has been investigated for two types of sandwich-structured laminate composites, i.e., laminate-DZ-laminate panels (Type I) and laminate-DZ-AM gyroid structures (Type II). Specimens were exposed to an alternating magnetic field generated by a radio frequency generator and a flat spiral copper induction coil, and induction heating parameters (frequency, power, heating time, sample standoff distance from coil) have been investigated in correlation with real-time thermal imaging to define the debonding process window without compromising laminate quality. For the optimized process parameters, i.e., 2–3 kW generator power and 20–25 mm standoff distance, corresponding to magnetic field intensities in the range of 3–5 kA m−1, specimens were effectively heated above PEKK melting temperature, exhibiting high heating rates within the range of 5.3–9.4 °C/s (Type I) and 8.0–17.5 °C/s (Type II). The results demonstrated that localized induction heating successfully facilitated debonding, leading to full unzipping of the debonding zones in both laminate structures. Further insight on PEKK nanocomposites debonding performance was provided by thermal, morphological characterization and non-destructive inspection via X-ray micro-computed tomography at different processing stages. The developed framework aims to contribute to the development of rapid, on-demand joining, repair and disassembly technologies for thermoplastic composites, towards more efficient maintenance, repair and overhaul operations in the aviation sector and beyond. Full article
(This article belongs to the Special Issue Polymeric Materials and Their Application in 3D Printing, 2nd Edition)
Show Figures

Graphical abstract

16 pages, 16327 KiB  
Article
3D-Bioprinted Gelatin Methacryloyl-Strontium-Doped Hydroxyapatite Composite Hydrogels Scaffolds for Bone Tissue Regeneration
by Cosmin Iulian Codrea, Dilruba Baykara, Raul-Augustin Mitran, Ayşe Ceren Çalıkoğlu Koyuncu, Oguzhan Gunduz and Anton Ficai
Polymers 2024, 16(13), 1932; https://doi.org/10.3390/polym16131932 - 6 Jul 2024
Cited by 2 | Viewed by 2382
Abstract
New gelatin methacryloyl (GelMA)—strontium-doped nanosize hydroxyapatite (SrHA) composite hydrogel scaffolds were developed using UV photo-crosslinking and 3D printing for bone tissue regeneration, with the controlled delivery capacity of strontium (Sr). While Sr is an effective anti-osteoporotic agent with both anti-resorptive and anabolic properties, [...] Read more.
New gelatin methacryloyl (GelMA)—strontium-doped nanosize hydroxyapatite (SrHA) composite hydrogel scaffolds were developed using UV photo-crosslinking and 3D printing for bone tissue regeneration, with the controlled delivery capacity of strontium (Sr). While Sr is an effective anti-osteoporotic agent with both anti-resorptive and anabolic properties, it has several important side effects when systemic administration is applied. Multi-layer composite scaffolds for bone tissue regeneration were developed based on the digital light processing (DLP) 3D printing technique through the photopolymerization of GelMA. The chemical, morphological, and biocompatibility properties of these scaffolds were investigated. The composite gels were shown to be suitable for 3D printing. In vitro cell culture showed that osteoblasts can adhere and proliferate on the surface of the hydrogel, indicating that the GelMA-SrHA hydrogel has good cell viability and biocompatibility. The GelMA-SrHA composites are promising 3D-printed scaffolds for bone repair. Full article
(This article belongs to the Special Issue Polymeric Materials and Their Application in 3D Printing, 2nd Edition)
Show Figures

Figure 1

22 pages, 4796 KiB  
Article
Exploring Polymer-Based Additive Manufacturing for Cost-Effective Stamping Devices: A Feasibility Study with Finite Element Analysis
by Cristian Giolu, Cristina Pupăză and Cătălin Gheorghe Amza
Polymers 2024, 16(13), 1894; https://doi.org/10.3390/polym16131894 - 2 Jul 2024
Cited by 1 | Viewed by 1449
Abstract
This research investigates the feasibility of manufacturing stamping devices using Material Extrusion (MEX) Additive Manufacturing (AM) technology, traditionally fabricated from metal, to reduce production costs and time. This study examines polymer-based devices subjected to Finite Element Analysis (FEA) to evaluate their performance in [...] Read more.
This research investigates the feasibility of manufacturing stamping devices using Material Extrusion (MEX) Additive Manufacturing (AM) technology, traditionally fabricated from metal, to reduce production costs and time. This study examines polymer-based devices subjected to Finite Element Analysis (FEA) to evaluate their performance in stamping metal sheets of varying thicknesses. The findings reveal that ABS polymer devices, while demonstrating potential, operate near the material’s limit under compression forces, particularly for sheet thicknesses up to 1 mm. Specifically, differences of 0.7 mm were observed at the connection radii of 0.25 mm sheets and 1.4 mm for 0.5 mm sheets, with angular deviations of 1.5 degrees for 0.25 mm sheets and 4 degrees for 0.5 mm sheets. Additionally, devices made of Nylon were deemed suitable for reduced-thickness sheets (0.25 mm), performing better than those made of ABS. These results suggest that while ABS devices exhibit significant deviations (up to 45 degrees for 1 mm sheets), the method shows promise for small batch production and prototyping. Further optimisation through material enhancements and mechanical improvements is recommended to minimise deformations and enhance precision. Full article
(This article belongs to the Special Issue Polymeric Materials and Their Application in 3D Printing, 2nd Edition)
Show Figures

Figure 1

14 pages, 5078 KiB  
Article
Electrowriting of SU-8 Microfibers
by Diego Armando Sandoval Salaiza, Nico Valsangiacomo, Niyazi Ulas Dinç, Mustafa Yildirim, Jorge Madrid-Wolff, Arnaud Bertsch, Sebastien Jiguet, Paul D. Dalton, Juergen Brugger and Christophe Moser
Polymers 2024, 16(12), 1630; https://doi.org/10.3390/polym16121630 - 8 Jun 2024
Viewed by 1623
Abstract
As microfiber-based additive manufacturing (AM) technologies, melt electrowriting (MEW) and solution electrowriting (SEW) have demonstrated efficacy with more biomedically relevant materials. By processing SU-8 resin using MEW and SEW techniques, a material with substantially different mechanical, thermal, and optical properties than that typically [...] Read more.
As microfiber-based additive manufacturing (AM) technologies, melt electrowriting (MEW) and solution electrowriting (SEW) have demonstrated efficacy with more biomedically relevant materials. By processing SU-8 resin using MEW and SEW techniques, a material with substantially different mechanical, thermal, and optical properties than that typically processed is introduced. SU-8 polymer is temperature sensitive and requires the devising of a specific heating protocol to be properly processed. Smooth-surfaced microfibers resulted from MEW of SU8 for a short period (from 30 to 90 min), which provides the greatest control and, thus, reproducibility of the printed microfibers. This investigation explores various parameters influencing the electrowriting process, printing conditions, and post-processing to optimize the fabrication of intricate 3D structures. This work demonstrates the controlled generation of straight filaments and complex multi-layered architectures, which were characterized by brightfield, darkfield, and scanning electron microscopy (SEM). This research opens new avenues for the design and development of 3D-printed photonic systems by leveraging the properties of SU-8 after both MEW and SEW processing. Full article
(This article belongs to the Special Issue Polymeric Materials and Their Application in 3D Printing, 2nd Edition)
Show Figures

Figure 1

Other

Jump to: Research

23 pages, 2799 KiB  
Systematic Review
A Critical Systematic Scoping Review on the Applications of Additive Manufacturing (AM) in the Marine Industry
by Ayberk Sözen and Gökdeniz Neşer
Polymers 2025, 17(1), 4; https://doi.org/10.3390/polym17010004 - 24 Dec 2024
Viewed by 943
Abstract
(1) Background: Additive manufacturing (AM), which has also become known as 3D printing, is rapidly expanding its areas of use in the marine industry. This study undertakes a historical development of AM in the marine industry. The study also criticises these developments to [...] Read more.
(1) Background: Additive manufacturing (AM), which has also become known as 3D printing, is rapidly expanding its areas of use in the marine industry. This study undertakes a historical development of AM in the marine industry. The study also criticises these developments to date and the future technological applications they will lead to, while considering the benefits for the industry and its segments. (2) Methods: This review followed the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and was registered in the Open Science Framework. The personalized search strategy was applied to Scopus, and Web of Science databases. The core emphasis was placed on two eligibility criteria throughout the evaluation process. Firstly, Criteria 1 sought to determine the paper’s relevance to AM. Secondly, Criteria 2 aimed to assess whether the paper delves into the implementation of AM or provides valuable insights into its utilisation within the marine industry. The risk of bias was analysed using a checklist of important parameters to be considered. (3) Results: In recent years, there has been a growing trend in studies related to the application of AM in the marine industry. While AM is widespread in industries such as automotive, aviation, and healthcare, it is relatively new for the marine industry. Almost only 5% of publications related to AM are related to the marine industry. There is a need for extensive research in many areas. It has been observed that classification societies and approval institutions, which largely drive the marine industry, have not yet taken AM into consideration sufficiently. (4) Conclusions: The studies show that AM is very promising for the marine industry. However, there are new studies at the experimental and theoretical level that need to be carried out to determine the right materials and AM methods to establish the quality control methodology and the necessary classification rules. This review also emphazises AM’s pivotal role in reshaping the marine industry, addressing the potential environmental and occupational safety effects of AM. Full article
(This article belongs to the Special Issue Polymeric Materials and Their Application in 3D Printing, 2nd Edition)
Show Figures

Graphical abstract

Back to TopTop