Electrowriting of SU-8 Microfibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Electrowriting Setup
2.3. Printing Regimes, PDMS Substrate Embedding and Characterization Techniques
3. Results
3.1. Melt Electrowriting: Shock Heat Protocol for SU-8
3.2. Solution Electrowriting
3.3. Optical Guiding Demonstration
4. Discussion
5. Conclusions
- Shock heat protocol devised for SU-8. Intensive heating for a short amount of time (30 min before printing) allows the processing of an SU-8 material. This could be further extended to other heat-sensitive materials or thermoset polymers and resins compatible with MEW.
- MEW-based printing of smooth-textured fibers suitable for photonic and waveguiding applications. Obtention of fibers from 60 to 10 µm diameter range.
- Validation of printing directly on PDMS substrates and further embedding with a second PDMS layer, which can be implemented to provide fibers with flexible cladding for photonic device fabrication.
- SEW printing utilizing 75% wt. SU-8 ink, resulting in the repeatable obtention of microfibers with a diameter size ranging from 25 to 5 µm.
- Extensive characterization of the parameters utilized for printing. Voltage (kV), pressure (mbar range), stage speed, crosslinking times, and their influence on the printability of SU-8.
- Strategy to increment ink viscosity via in-solution material crosslinking.
- Obtention of 3D constructs that show microscale fiber merging. Coupled with AM principles, this suggests the potential for functional multilayer constructs with localized control over physicochemical properties by incorporating nanomaterials into the SU-8 base.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bose, S.; Ke, D.; Sahasrabudhe, H.; Bandyopadhyay, A. Additive Manufacturing of Biomaterials. Prog. Mater. Sci. 2018, 93, 45–111. [Google Scholar] [CrossRef] [PubMed]
- Dinc, N.U.; Saba, A.; Madrid-Wolff, J.; Gigli, C.; Boniface, A.; Moser, C.; Psaltis, D. From 3D to 2D and Back Again. Nanophotonics 2023, 12, 777–793. [Google Scholar] [CrossRef]
- Macdonald, E.; Salas, R.; Espalin, D.; Perez, M.; Aguilera, E.; Muse, D.; Wicker, R.B. 3D Printing for the Rapid Prototyping of Structural Electronics. IEEE Access 2014, 2, 234–242. [Google Scholar] [CrossRef]
- Dalton, P.D. Melt Electrowriting with Additive Manufacturing Principles. Curr. Opin. Biomed. Eng. 2017, 2, 49–57. [Google Scholar] [CrossRef]
- D’Amato, A.R.; Ding, X.; Wang, Y. Using Solution Electrowriting to Control the Properties of Tubular Fibrous Conduits. ACS Biomater. Sci. Eng. 2021, 7, 400–407. [Google Scholar] [CrossRef]
- Brown, T.D.; Dalton, P.D.; Hutmacher, D.W. Melt Electrospinning Today: An Opportune Time for an Emerging Polymer Process. Prog. Polym. Sci. 2016, 56, 116–166. [Google Scholar] [CrossRef]
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhu, J.; Cheng, H.; Li, G.; Cho, H.; Jiang, M.; Gao, Q.; Zhang, X. Developments of Advanced Electrospinning Techniques: A Critical Review. Adv. Mater. Technol. 2021, 6, 2100410. [Google Scholar] [CrossRef]
- Calzado-Delgado, M.; Guerrero-Pérez, M.O.; Yeung, K.L. A New Versatile x–y–z Electrospinning Equipment for Nanofiber Synthesis in Both Far and near Field. Sci. Rep. 2022, 12, 4872. [Google Scholar] [CrossRef]
- He, X.-X.; Zheng, J.; Yu, G.-F.; You, M.-H.; Yu, M.; Ning, X.; Long, Y.-Z. Near-Field Electrospinning: Progress and Applications. J. Phys. Chem. C 2017, 121, 8663–8678. [Google Scholar] [CrossRef]
- Turner, B.N.; Strong, R.; Gold, S.A. A Review of Melt Extrusion Additive Manufacturing Processes: I. Process Design and Modeling. Rapid Prototyp. J. 2014, 20, 192–204. [Google Scholar] [CrossRef]
- Feng, R.; Farris, R.J. Influence of Processing Conditions on the Thermal and Mechanical Properties of SU8 Negative Photoresist Coatings. J. Micromech. Microeng. 2002, 13, 80. [Google Scholar] [CrossRef]
- Chung, S.; Park, S. Effects of Temperature on Mechanical Properties of SU-8 Photoresist Material. J. Mech. Sci. Technol. 2013, 27, 2701–2707. [Google Scholar] [CrossRef]
- Sun, L.; Zou, H.; Sang, S. Effect of Temperature on the SU-8 Photoresist Filling Behavior during Thermal Nanoimprinting. Polym. Eng. Sci. 2021, 61, 2222–2229. [Google Scholar] [CrossRef]
- Robinson, T.M.; Hutmacher, D.W.; Dalton, P.D. The Next Frontier in Melt Electrospinning: Taming the Jet. Adv. Funct. Mater. 2019, 29, 1904664. [Google Scholar] [CrossRef]
- Böhm, C.; Stahlhut, P.; Weichhold, J.; Hrynevich, A.; Teßmar, J.; Dalton, P.D. The Multiweek Thermal Stability of Medical-Grade Poly(ε-Caprolactone) During Melt Electrowriting. Small 2022, 18, 2104193. [Google Scholar] [CrossRef] [PubMed]
- Wunner, F.M.; Wille, M.; Noonan, T.G.; Bas, O.; Dalton, P.D.; De-Juan-Pardo, E.M.; Hutmacher, D.W. Melt Electrospinning Writing of Highly Ordered Large Volume Scaffold Architectures. Adv. Mater. 2018, 30, 1706570. [Google Scholar] [CrossRef]
- Kade, J.C.; Dalton, P.D. Polymers for Melt Electrowriting. Adv. Healthc. Mater. 2021, 10, 2001232. [Google Scholar] [CrossRef]
- King, W.; Bowlin, G. Near-Field Electrospinning and Melt Electrowriting of Biomedical Polymers—Progress and Limitations. Polymers 2021, 13, 1097. [Google Scholar] [CrossRef]
- Martinez, V.; Behr, P.; Drechsler, U.; Polesel-Maris, J.; Potthoff, E.; Vörös, J.; Zambelli, T. SU-8 Hollow Cantilevers for AFM Cell Adhesion Studies. J. Micromech. Microeng. 2016, 26, 055006. [Google Scholar] [CrossRef]
- Del Campo, A.; Greiner, C. SU-8: A Photoresist for High-Aspect-Ratio and 3D Submicron Lithography. J. Micromech. Microeng. 2007, 17, R81–R95. [Google Scholar] [CrossRef]
- Bsoul, A.; Pan, S.; Cretu, E.; Stoeber, B.; Walus, K. Design, Microfabrication, and Characterization of a Moulded PDMS/SU-8 Inkjet Dispenser for a Lab-on-a-Printer Platform Technology with Disposable Microfluidic Chip. Lab Chip 2016, 16, 3351–3361. [Google Scholar] [CrossRef] [PubMed]
- Bertsch, A.; Renaud, P. Special Issue: 15 Years of SU8 as MEMS Material. Micromachines 2015, 6, 790–792. [Google Scholar] [CrossRef]
- Panusa, G.; Dinc, N.U.; Psaltis, D. Photonic Waveguide Bundles Using 3D Laser Writing and Deep Neural Network Image Reconstruction. Opt. Express OE 2022, 30, 2564–2577. [Google Scholar] [CrossRef] [PubMed]
- Porte, X.; Dinc, N.U.; Moughames, J.; Panusa, G.; Juliano, C.; Kadic, M.; Moser, C.; Brunner, D.; Psaltis, D. Direct (3+1)D Laser Writing of Graded-Index Optical Elements. Optica 2021, 8, 1281–1287. [Google Scholar] [CrossRef]
- Guo, C.; Dhayalan, Y.; Shang, X.; Powell, J.; Lancaster, M.J.; Xu, J.; Wang, Y.; Wang, H.; Alderman, B.; Huggard, P.G. A 135–150-GHz Frequency Tripler Using SU-8 Micromachined WR-5 Waveguides. IEEE Trans. Microw. Theory Technol. 2020, 68, 1035–1044. [Google Scholar] [CrossRef]
- Samanta, S.; Dey, P.K.; Banerji, P.; Ganguly, P. Development of Micro-Ring Resonator-Based Optical Bandpass Filter Using SU-8 Polymer and Optical Lithography. Opt. Mater. 2018, 77, 122–126. [Google Scholar] [CrossRef]
- Wang, Y.; Ke, M.; Lancaster, M.J.; Chen, J. Micromachined 300-GHz SU-8-Based Slotted Waveguide Antenna. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 573–576. [Google Scholar] [CrossRef]
- Shang, X.; Yang, H.; Glynn, D.; Lancaster, M.J. Submillimeter-Wave Waveguide Filters Fabricated by SU-8 Process and Laser Micromachining. IET Microw. Antennas Propag. 2017, 11, 2027–2034. [Google Scholar] [CrossRef]
- Kakunuri, M.; Kaushik, S.; Saini, A.; Sharma, C.S. SU-8 Photoresist-Derived Electrospun Carbon Nanofibres as High-Capacity Anode Material for Lithium Ion Battery. Bull. Mater. Sci. 2017, 40, 435–439. [Google Scholar] [CrossRef]
- Jao, P.F.; Kim, K.T.; Kim, G.J.-A.; Yoon, Y.-K. Fabrication of an All SU-8 Electrospun Nanofiber Based Supercapacitor. J. Micromech. Microeng. 2013, 23, 114011. [Google Scholar] [CrossRef]
- Huling, J.; Götz, A.; Grabow, N.; Illner, S. GIFT: An ImageJ Macro for Automated Fiber Diameter Quantification. PLoS ONE 2022, 17, e0275528. [Google Scholar] [CrossRef] [PubMed]
- Götz, A.; Senz, V.; Schmidt, W.; Huling, J.; Grabow, N.; Illner, S. General Image Fiber Tool: A Concept for Automated Evaluation of Fiber Diameters in SEM Images. Measurement 2021, 177, 109265. [Google Scholar] [CrossRef]
- Hochleitner, G.; Youssef, A.; Hrynevich, A.; Haigh, J.N.; Jungst, T.; Groll, J.; Dalton, P.D. Fibre Pulsing during Melt Electrospinning Writing. BioNanoMaterials 2016, 17, 159–171. [Google Scholar] [CrossRef]
- Fakhfouri, V.; Cantale, N.; Mermoud, G.; Kim, J.Y.; Boiko, D.; Charbon, E.; Martinoli, A.; Brugger, J. Inkjet Printing of SU-8 for Polymer-Based MEMS a Case Study for Microlenses. In Proceedings of the 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems, Tucson, AZ, USA, 13–17 January 2008; pp. 407–410. [Google Scholar]
- Bodnár, E.; Grifoll, J.; Rosell-Llompart, J. Polymer Solution Electrospraying: A Tool for Engineering Particles and Films with Controlled Morphology. J. Aerosol Sci. 2018, 125, 93–118. [Google Scholar] [CrossRef]
- Rosell-Llompart, J.; Grifoll, J.; Loscertales, I.G. Electrosprays in the Cone-Jet Mode: From Taylor Cone Formation to Spray Development. J. Aerosol Sci. 2018, 125, 2–31. [Google Scholar] [CrossRef]
- Liashenko, I.; Hrynevich, A.; Dalton, P.D. Designing Outside the Box: Unlocking the Geometric Freedom of Melt Electrowriting Using Microscale Layer Shifting. Adv. Mater. 2020, 32, 2001874. [Google Scholar] [CrossRef] [PubMed]
- Reneker, D.H.; Kataphinan, W.; Theron, A.; Zussman, E.; Yarin, A.L. Nanofiber Garlands of Polycaprolactone by Electrospinning. Polymer 2002, 43, 6785–6794. [Google Scholar] [CrossRef]
- Melocchi, A.; Parietti, F.; Maroni, A.; Foppoli, A.; Gazzaniga, A.; Zema, L. Hot-Melt Extruded Fi Laments Based on Pharmaceutical Grade Polymers for 3D Printing by Fused Deposition Modeling. Int. J. Pharm. 2016, 509, 255–263. [Google Scholar] [CrossRef]
- Hrynevich, A.; Liashenko, I.; Dalton, P.D. Accurate Prediction of Melt Electrowritten Laydown Patterns from Simple Geometrical Considerations. Adv. Mater. Technol. 2020, 5, 2000772. [Google Scholar] [CrossRef]
- Winterstein, T.; Staab, M.; Nakic, C.; Feige, H.-J.; Vogel, J.; Schlaak, H.F. SU-8 Electrothermal Actuators: Optimization of Fabrication and Excitation for Long-Term Use. Micromachines 2014, 5, 1310–1322. [Google Scholar] [CrossRef]
- Tan, T.L.; Wong, D.; Lee, P.; Rawat, R.S.; Patran, A. Study of a Chemically Amplified Resist for X-Ray Lithography by Fourier Transform Infrared Spectroscopy. Appl. Spectrosc. 2004, 58, 1288–1294. [Google Scholar] [CrossRef] [PubMed]
- Durga Prakash, M.; Vanjari, S.R.K.; Sharma, C.S.; Singh, S.G. Ultrasensitive, Label Free, Chemiresistive Nanobiosensor Using Multiwalled Carbon Nanotubes Embedded Electrospun SU-8 Nanofibers. Sensors 2016, 16, 1354. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, K.Z.; Chong, W.Y.; Ibrahim, M.H.; Yap, Y.K.; Ahmad, F.; Lai, C.K.; Ariffin, N.A.M.; Ahmad, H. Graphene Oxide Doped SU-8 Waveguide and Its Application as Saturable Absorber. IEEE Photonics J. 2017, 9, 1–7. [Google Scholar] [CrossRef]
- Feilden, E.; Ferraro, C.; Zhang, Q.; García-Tuñón, E.; D’Elia, E.; Giuliani, F.; Vandeperre, L.; Saiz, E. 3D Printing Bioinspired Ceramic Composites. Sci. Rep. 2017, 7, 13759. [Google Scholar] [CrossRef]
- Gaal, G.; Mendes, M.; de Almeida, T.P.; Piazzetta, M.H.O.; Gobbi, Â.L.; Riul, A.; Rodrigues, V. Simplified Fabrication of Integrated Microfluidic Devices Using Fused Deposition Modeling 3D Printing. Sens. Actuators B Chem. 2017, 242, 35–40. [Google Scholar] [CrossRef]
- Jiguet, S. Microfabrication D’objets Composites Fonctionnels en 3D et à Haut Facteur de Forme, par Procédés UV-LIGA et Microstéréolithographie; EPFL: Lausanne, Switzerland, 2005. [Google Scholar] [CrossRef]
Shock Heat Protocol Melt Electrowriting (MEW) | Solution Electrowriting (SEW) | |
---|---|---|
Printing Materials | SU-8 pellets (solid, uncured) | SU-8 (25% wt./wt. solid, uncured) + cyclopentanone (75% wt./wt.) |
Substrates | Glass slides (Silica, 26 mm × 76 mm × 1 mm) 6-inch float wafers (SiO2 glass) 6-inch Si wafer + PDMS coat | Glass slides (Silica, 26 mm × 76 mm × 1 mm) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandoval Salaiza, D.A.; Valsangiacomo, N.; Dinç, N.U.; Yildirim, M.; Madrid-Wolff, J.; Bertsch, A.; Jiguet, S.; Dalton, P.D.; Brugger, J.; Moser, C. Electrowriting of SU-8 Microfibers. Polymers 2024, 16, 1630. https://doi.org/10.3390/polym16121630
Sandoval Salaiza DA, Valsangiacomo N, Dinç NU, Yildirim M, Madrid-Wolff J, Bertsch A, Jiguet S, Dalton PD, Brugger J, Moser C. Electrowriting of SU-8 Microfibers. Polymers. 2024; 16(12):1630. https://doi.org/10.3390/polym16121630
Chicago/Turabian StyleSandoval Salaiza, Diego Armando, Nico Valsangiacomo, Niyazi Ulas Dinç, Mustafa Yildirim, Jorge Madrid-Wolff, Arnaud Bertsch, Sebastien Jiguet, Paul D. Dalton, Juergen Brugger, and Christophe Moser. 2024. "Electrowriting of SU-8 Microfibers" Polymers 16, no. 12: 1630. https://doi.org/10.3390/polym16121630
APA StyleSandoval Salaiza, D. A., Valsangiacomo, N., Dinç, N. U., Yildirim, M., Madrid-Wolff, J., Bertsch, A., Jiguet, S., Dalton, P. D., Brugger, J., & Moser, C. (2024). Electrowriting of SU-8 Microfibers. Polymers, 16(12), 1630. https://doi.org/10.3390/polym16121630